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Abstract
Several transition metal dichalcogenides (TMDs) can be exfoliated to produce nearly
two-dimensional (2D) semiconductor layers supporting robust excitons with non-hydrogenic
Rydberg series of states. Black phosphorus (BP) can also be layered to create a nearly 2D
material with interesting properties including its pronounced in-plane anisotropy that
influences, in particular, exciton states making them different from those in other 2D
semiconductors. We apply the Rayleigh–Ritz variational method to evaluate the energies and
approximate the wavefunctions of the ground and lowest excited states of the exciton in a 2D
semiconductor with anisotropic effective masses of electrons and holes. The electron–hole
interaction is described by the Rytova–Keldysh potential, which is considered beyond the
standard zero-thickness approximation. The exciton binding energies calculated for BP and
TMD (molybdenum disulphide and tungsten disulphide) monolayers are compared with
previously published data.
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1. Introduction

Since the first demonstration of unusual electronic proper-
ties of monolayer graphene [1], two-dimensional materials
have become an important field of research worldwide [2].
These materials can be obtained from natural substances
by mechanical or electro-chemical methods of exfoliation.
Their three-dimensional forms, in most cases, can be found
in nature [2] and this has inspired studies of possible applica-
tions of the 2D counterparts among which one can find met-
als, insulators and a variety of semiconductors [3, 4]. Several
transition metal dichalcogenides (TMDs) are nearly 2D semi-

∗ Author to whom any correspondence should be addressed.

conductor layers with remarkable properties among which are
the extremely robust excitons whose energy spectra cannot be
described by the hydrogen model [5, 6]. The exciton binding
energies depend on the environment and vary in the range of
approximately 200–900 meV.

Black phosphorous (BP) is an allotropic form of phos-
phorous, which is thermodynamically stable at normal
conditions and composed of an orthorhombic lattice of phos-
phorous atoms. Alike graphite, it has a layered structure and
the atoms within a layer form six-member rings; however, con-
trary to graphene, not all of these 6 atoms lie in the same
plane. The reduction of this material to the nearly 2D form
containing one or few monolayers, named phosphorene, can
be compared to the reduction of graphite to graphene and also
results in new interesting properties [7, 8]. Calculations have
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shown that phosphorene is a semiconductor with the band gap
considerably wider than in the 3D form and strongly depend-
ing on the number of monolayers [4, 9]. It has been possible
to isolate few-layer flakes of phosphorene with a modification
of the mechanical exfoliation method [10] and the material has
promise for opto-electronics owing to the relatively high car-
rier mobility and the tunable band-gap energy corresponding to
the infrared spectral range [4, 11–13]. Particularly interesting
are the non-linear optical properties of phosphorene [14–16].

As a direct band gap semiconductor, phosphorene also sup-
ports the formation of excitons and, as in other 2D materi-
als, these excitons are expected to be robust because of the
reduced screening [6, 17]. The binding energies that have been
measured for phosphorene using infrared photoluminescence
(PL), PL excitation and absorption spectroscopy range from
0.1 to 0.9 eV for monolayer phosphorene (it depends on the
screening effect from the substrate and overlaying material)
[8, 17]. It has been found that the increase in the number of
layers can be monitored by an increase in the width of the layer
where the exciton is present [17]. Arguably the most interest-
ing property of phosphorene is the anisotropy of its crystallo-
graphic structure. Unlike graphene, phosphorene has a corru-
gated honeycomb structure that is ductile along one of the in-
plane crystal directions but stiff along the other [7]. It causes, in
particular, the anisotropy of carriers’ effective masses, which
leads to anisotropic transport properties and greatly influences
the shape and energies of the excitons and the related optical
properties of phosphorene [18].

There is a broad literature on the electronic and exci-
ton properties of TMDs, see references [6, 19] for a recent
review. As for the phosphorene, its single-particle electronic
band structure has been calculated using the density func-
tional theory (DFT) approaches [7, 9, 11, 20] the tight-binding
approximation [21] and the k · p method [18]. Using the
Bethe–Salpeter equation on top of the DFT calculations, two-
particle (including exciton) properties have been evaluated
[9, 11]. However, this approach is computationally very
demanding. Alternatively, with input from single-particle cal-
culations and experiments, the Wannier effective mass theory
can be used to calculate the exciton energy spectrum assum-
ing confinement of the electron and hole to the material’s
plane [10]. The precise excitonic states in few-layer BP can
be determined by numerical diagonalization of the effective
mass Hamiltonian [22]. Yet more attractive, when possible, are
semi-analytical approaches, such as the recently proposed per-
turbation theory approximation where the anisotropy is writ-
ten in the form of a potential energy term that breaks axial
symmetry of an isotropic 2D layer [23].

In the present work, we apply the variational method orig-
inally proposed by Ritz [24] to the evaluation of the energies
of the ground and lowest excited states of the exciton in a 2D
semiconductor with anisotropic electron and hole masses. This
approach has been successfully used to find an approximate
solution of the Schrödinger equation for reduced-symmetry
potentials. For instance, exciton states in very narrow quan-
tum wells were calculated by treating the exciton Bohr radius
as a free parameter and minimizing the energy with respect to it
for a given well width [25] including the ultimate zero-width

limit [26]. Here we assume the solutions of the Schrödinger
equation for the hydrogen-like 2D atom [27] as trial func-
tions and modify them in such a way that they can account for
the expected anisotropy. Such a choice looks natural for 2D
materials [26]; here we extend it to the lowest-energy excited
states. The variational method yield a good approximation to
the exact energies of the true eigenstates of the system and
also provides an approximate analytical expression for the
wavefunction. In the next section, the method is exemplified
for a hydrogen-like 2D atom (linked by the Coulomb poten-
tial) with an anisotropic reduced mass. To model excitons in
2D semiconductors, we consider the Rytova–Keldysh (RK)
potential [28, 29] and its extension to few-monolayer (FML)
materials. The results will be presented for (isotropic) FMLs
of TMD (MoS2 and WS2) and (anisotropic) BP monolayers,
free-standing or cladded by boron nitride (h-BN) layers (an h-
BN/BP/h-BN structure), including the ground state as the first
three excited states (namely, 2s and 2px,y).

2. Variational method for anisotropic
hydrogen-like 2D atom

We will apply the Rayleigh–Ritz variational method to the
hydrogen-like 2D atom with an anisotropic reduced effective
mass, which is a two-dimensional tensor with the principal
components μx and μy. Choosing the axes along the principal
directions of the mass tensor, the relative motion of the two
particles is described by the following Hamiltonian:

H =
p2

x

2μx
+

p2
y

2μy
+ VC(r), (1)

where r =
√

x2 + y2 is the 2D radius-vector modulus and
VC(r) is the usual Coulomb potential, VC(r) = −q2/r with
q denoting the absolute value of the electron charge. The
Hamiltonian (1) lacks axial symmetry and, to the best of our
knowledge, the corresponding Schrödinger equation cannot be
solved analytically. However, if we assume μx = μy, it does
have an analytical solution [27]. In particular, the ground state
wave-function has the form

Ψ10(r) =
β1√
2π

e−β1
r
2 , (2)

with β1 = 4μq2/h̄2 and the energy E(0)
1 = −2μq4/h̄2.

Considering the anisotropic Hamiltonian (1) with the
Coulomb potential, we can assume the following trial function
for the ground state:

Ψ1(x, y) = Ce−
√

ax2+by2
, (3)

where a and b are some positive parameters (a, b > 0) and the
constant C is determined by the normalisation condition,

C =

√
2
π

(ab)1/4. (4)

The ground state energy can be evaluated approximately by
requiring an absolute minimum of the function:
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E(a, b) = 〈Ψ1|Ĥ|Ψ1〉

=

[
h̄2

4

(
a
μx

+
b
μy

)
− q2

π

∫ 2π

0

×
(

1
a
+ sin2 θ

(
1
b
− 1

a

))−1/2

dθ

]
, (5)

where the radial integral has been evaluated analytically. Thus,
we have two equations from which a and b can be found:

∂E
∂a

=
∂E
∂b

= 0. (6)

The integral appearing in (5) can be expressed through the
complete elliptic integral K(1 − b/a) [30]. For definiteness,
we will assume μx > μy and a > b. The system (6) can be
rewritten as:

U
√

b − 2μx
b2

a2
K′ (1 − b/a

)
= 0, (7)

U
√

b − μyK
(
1 − b/a

)
+ 2μy

b
a

K′ (1 − b/a
)
= 0, (8)

where U = π h̄2

8q2 and K′ is the derivative of K.
In order to demonstrate the effect of the mass anisotropy,

we will assume μ̄ ≡ 1
2

(
μx + μy

)
= m0 (m0 is the free electron

mass), and present the results for the energies as a function of
Δμ = μx − μy. Equations (7) and (8) may be rewritten as:

U
√

b − (2μ̄+Δμ)
b2

a2
K′ (1 − b/a

)
= 0; (9)

(2μ̄−Δμ)

(
K
(
1 − b/a

)
− 2

b
a

K′ (1 − b/a
))

− 2 (2μ̄+Δμ)

(
b
a

)2

K′ (1 − b/a
)
= 0. (10)

It is convenient to solve the latter equation for b/a first and
then plug the result into equation (9) to obtain b.

The dependence of the binding energy upon Δμ is shown
in figure 1 (left panel); E1 decreases as the mass anisotropy
increases since we keep the average mass, μ̄ constant. Also
shown is the squared modulus of the wave-function in the
origin; this quantity determines the oscillator strength of the
exciton transition between the ground state and vacuum, which
enters the excitonic susceptibility of the material [31, 32].

χ2D = 2〈|Mn(e)|2〉(En − h̄ω − ih̄γ)−1. (11)

Here the factor of 2 stands for two spin orientations (or, equiv-
alently, for two valleys), the angular brackets denote averaging
over photon polarizations (e), n denotes an exciton state with
energy En, γ is a broadening parameter, and the matrix element
is:

Mn = 〈n| − d̂ · e |0〉, (12)

where |0〉 stands for exciton vacuum. In the envelope func-
tion approximation, the dipole moment operator d̂ acts only on

the Bloch functions of the conduction and valence bands and
yields a material parameter dCV = dCV(	ex ± i	ey)/

√
2, while

|0〉 = δ(	re −	rh); |n〉 = Ψn(	re −	rh)

with	re (	rh) denoting the electron (hole) radius-vector. Indeed,
|Mn|2 ∝ |Ψn(0)|2, which is presented in the left panel of
figure 1.

We may also consider some excited states. For this, we need
to construct orthogonal trial wave-functions that would resem-
ble the (known) true wave-functions in the isotropic limit. In
the latter case, for a given principal quantum number n, there
are degenerate states with angular momenta |l| = 0, . . . , n −
1. For instance, for n = 2, there are two independent wave-
functions; their expressions can be found in reference [27] and
they suggest the following form of three trial functions that we
need in the anisotropic case:

Ψ20 = C20 (1 − dρ2) e−ρ2 , ρ2 =
√

a20x2 + b20y2; (13)

Ψ2x = C2x xe−ρ2x , ρ2x =
√

a2xx2 + b2xy2; (14)

and
Ψ2y = C2yye−ρ2y , ρ2y =

√
a2yx2 + b2yy2. (15)

These functions are chosen orthogonal to each other. They also
must be orthogonal to Ψ1, which we now rewrite as

Ψ1(x, y) =

√
2
π

(a1b1)1/4e−ρ1 , ρ1 =
√

a1x2 + b1y2. (16)

The functionsΨ2x andΨ2y are clearly orthogonal to the s func-
tions and to each other by parity. The orthogonality condition
for Ψ20 and Ψ1,

∫
Ψ20Ψ1 dx dy = 0, (17)

requires a particular choice of the parameter d and
equation (17) therefore represents an equation to determine it.

Therefore, evaluation of the state energies E2x and E2y

requires finding two parameters for each of them, a2x (a2y) and
b2x (b2y). For the 2s state, with the energy E20, a20 and b20

have to be determined and d depends on these two parameters
and the previously calculated a1 and b1. In the next section,
we shall apply this procedure to the Hamiltonian with the RK
potential.

3. Results and discussion

3.1. The Rytova–Keldysh potential

The potential felt by a point charge in a thin film is affected
by the other charges in the film, as well as by the difference
of dielectric functions of the film and the exterior [28]. The
Poisson equation for this scenario, in the zero-thickness limit,
has the commonly used RK potential as a solution [28, 29].
The electrostatic potential energy for a film of infinitesimal

3
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Figure 1. (Left) Ground state energy (blue curve) calculated for Coulomb potential (equations (9) and (10)) plotted as a function of Δμ (in
units of m0, for a fixed μ̄ = m0. The energy values are normalized by the ground state energy for the isotropic case. The green curve shows
the relative oscillator strength associated with the excitonic transition, given by the envelope wave-function at r = 0. (Right) The same for
the RK potential. The parameters are r0 = 2.5 nm and κ = 4.5, which corresponds to hBN-BP-hBN. The energy is scaled to the effective
Rydberg energy, Reff

y = Ryμx/(ε1 + ε2)m0. The inset presents the comparison to the results of figure 4(a) of reference [22] where the energy
is plotted against μy/μx and the parameters used correspond to the system vacuum-BP-SiO2.

thickness, L ≈ 0, is usually written in the form:

V(r) = −q2

r0

π

2

[
H0

(
κr
r0

)
− Y0

(
κr
r0

)]
≡ −πq2

2r0
K
(
κr
r0

)
,

(18)

where r0 is the screening length, κ =
ε1+ε′1

2 is the average of
the dielectric constants above and below the 2D material, H0 is
the zero-order Struve function and Y0 the zero-order Neumann
function [30]. The Schrödinger equation (1) with the potential
(18) describes envelope wave-functions in the effective mass
approximation.

Before proceeding to the results of its application to an
anisotropic 2D material, which is our main goal, we would like
to discuss an extension of equation (18) to a FML 2D semicon-
ductor. As shown in appendix A by using the same approach
as the original work [28], the lowest-order finite-thickness
correction is given by:

δV(r) 
 −q2

ε2

[
Ã
r
+ B̃F(β, r) + C̃F

(
1 − αβ

α
, r

)]
, (19)

where ε2 is the dielectric constant of the film material,

Ã =
1

ε− 1
, B̃ = − 2

ε− 2
, C̃ =

ε2 − 2ε+ 2
ε2 − 3ε+ 2

(20)
with ε = ε2/ε1 and α, β and F(ξ, r) defined in appendix A.

Before applying equation (19), it is necessary to remind that
the physical meaning of the screening parameter r0 is the static
2D susceptibility of the monolayer material (times 2π) [33].
Therefore, we can assume that it is proportional to the number
of monolayers (N) in FML films [34],

r0N = r̃0N, (21)

where r̃0 is a fitting parameter. Also, we use L = l0N for n � 1.
For hypothetical sub-monolayer films (L < l0, the thickness
of the WS2 monolayer is l0 ≈ 1.22 nm [35]) we take the
screening parameter equal to r0, i.e. rN�1 = r0.

The potential energy is then expressed as

V (N)(r) 
 −q2

ε2

[
πε2

2r0N
K0

(
κr
r0N

)
+

Ã
r
+ B̃F

(
κ

r0N
, r

)

+ C̃F

(
ε2 − κ

r0N
, r

)]
. (22)

It is plotted in figure 2 (the parameters used are listed in
table 1). The correction with respect to the limiting case L = 0
exists already in the case of monolayer (where r01 = r̃0). With
the increase of N the dependence (22) becomes closer to
1/(ε2r) (figure 2).

The isotropic ground state energy for N-layer is determined
by minimizing the function

E(N)
1 (a) =

h̄2

2
a
μ
+ 4a

∫ ∞

0
V (N)(r)e−2

√
ar r dr, (23)

and the energy of the first excited state (2s) is given by

E(N)
2s (a) =

h̄2

2
a
μ
+

4
3

a
∫ ∞

0
V (N)(r)e−2

√
ar
(
1 − 2

√
ar
)2

r dr.

(24)
(with a different value of a obtained by the minimization of
(24)). The energy of the 2p excited state is given by:

E(N)
2p (a) =

h̄2

2
a
μ
+

8a2

3

∫ ∞

0
V (N)(r)e−2

√
arr3 dr. (25)

The energies computed for WS2 assuming infinitesimal
thickness (L = 0, with the standard RK potential and the
‘standard’ value of the screening parameter, r0 = 7.5 nm)
and for the cases of 1–5 MLs (using the thickness-corrected
potential and the adjusted value of the screening parameter,
equation (21)) are shown in the right panel of figure 2. They
are in a very good agreement with the experimental data [36],
as can be seen from table 2.
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Figure 2. (Left) RK potential for L = 0 (dashed curve) and with finite thickness correction for different values of L as indicated (κ = 1,
l0 = 1.22 nm and r0 = 7.5 nm for L = 0 and L = 0.01, while r̃0 = 9.6 nm for L � 1). The value of r̃0 was adjusted to obtain the same value
of the exciton binding energy for the cases L = 0 (conventional RK potential (18) with the ‘standard’ r0 [36, 37]) and L = 1 (corrected
potential). Also shown is the Coulomb potential for bulk material with dielectric constant ε2 = 9.1 (dotted curve). (Right) Calculated
energies of two lowest exciton states in free-standing FML WS2, for different values of L as indicated (the lines are guides to the eye).

Table 1. Parameters used in the calculations.

Parameter WS2 MoS2 BP

r0 (nm) 7.5 3.4 2.5
μ (m0) 0.16 0.275 μx = 0.99, μy = 0.12

Table 2. Comparison of the calculated binding energies (in eV)
of the 1s and 2s states for free-standing WS2 with the results of
reference [36].

State Calculated (L = 0) Experiment

1s 0.31 0.32 ± 0.04
2s 0.13 0.15 ± 0.04

3.2. Ground state for an anisotropic monolayer

We are not aware of experimental data on exciton energies for
FML BP with a well-defined number of monolayers, so we
shall employ the standard RK potential (18) here. With the
trial function (16), which has been used in reference [20], the
energy matrix element is:

E1(a1, b1) =
h̄2

4

(
a1

μx
+

b1

μy

)
−
√

a1b1
q2

r0

×
∫ 2π

0

∫ ∞

0
K
(
κr
r0

)
re−2

√
a1+(b1−a1)sin2 θr dr dθ,

(26)

where K(z) ≡ H0(z) − Y0(z). Minimization of the energy
requires the differentiation of the function given by the double
integral in the right-hand side of (26). Fortunately, the integral∫∞

0 K (βr) e−αr dr has an analytical expression by means of
the entries (6.821) and (6.611) of the Gradshtein and Ryzhik’s
table of integrals [38]. We define:

I(α, β) =
∫ ∞

0
K (βr) re−αr dr = − ∂

∂α

∫ ∞

0
K (βr) e−αr dr,

(27)
(see appendix B for details). Using this auxiliary function,
equations for the a1 and b1 coefficients can be written as

follows:

h̄2

4μx
− q2

2r0

b1

a1

∫ 2π

0

[
I(α, β) +

4a1

α
cos2 θ

∂I(α, β)
∂α

]
dθ = 0;

(28)

h̄2

4μy
− q2

2r0

a1

b1

∫ 2π

0

[
I(α, β) +

4b1

α
sin2 θ

∂I(α, β)
∂α

]
dθ = 0.

(29)

The dependence of the binding energy upon the mass
anisotropy (Δμ for μ̄ = const.) is shown in figure 1 (right
panel). It is qualitatively similar to those for the Coulomb
potential (left panel of the same figure), although the abso-
lute values are different. The decrease of the binding energy
with Δμ seems to contradict the results presented in figure 4
of reference [22]. Notice, however, that the latter was calcu-
lated keeping μx = const. and varying only μy (μy > μx in
reference [22]). To avoid confusion, we re-plotted our calcu-
lated values against (μx/μy) keepingμy = const.; this is shown
in the inset of figure 1, consistent with the results of reference
[22]. The agreement is very good for μy close to μx and wors-
ens when the anisotropy becomes higher but still is of the order
of 3%.

Let us now consider some specific cases characteristic of
real materials. For the h-BN/BP/h-BN structure, using the
parameters [39] κ = 4.5 and r0 = 2.5 nm, equations (28) and
(29) have the solution a1 ≈ 2.45 nm−2 and b1 ≈ 0.533 nm−2,
which yield the energy Eh-BN/BP/h-BN

1 = −257 meV. For
uncovered phosphorene on a SiO2 substrate (κ = 2.4),
a considerably larger (in modulus) value is obtained,
EBP/SiO2

1 = −454 meV.
Replacing phosphorene with MoS2 (for which we set

a1 = b1) and using r0 = 3.4 nm and μ = 0.275m0 (from
reference [39]) also yields a shallower ground state with
Eh−BN/MoS2/h–BN

1 = −215 meV. Again, it might seem contra-
dicting to what should be expected from figure 1 but remember
that we fixed 1

2

(
μx + μy

)
= m0 in that figure. In reference

[39] the value Eexp
1 = −221 ± 3 meV was measured for h-

BN/MoS2/h-BN. The value obtained here is slightly outside

5
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Figure 3. Probability density (in nm−2) distribution for the anisotropic ground state of an h-BN/BP/h-BN structure (left) and for the
isotropic ground state of an h-BN/MoS2/h-BN structure (right).

Table 3. Energies (in meV) of the ground and first excited states for
different configurations. The values in parentheses are the matrix
elements (divided by the elementary charge) for dipole transitions to
the ground state.

Materials BP MoS2

State In h-BN BP-SiO2 In h-BN MoS2-SiO2

1s −257 −454 −215 −367
2s −56 −135 −49 −114
2px −110 (0.541 nm) −382 −66 (0.931 nm) −146
2py −48 (0.271 nm) −225 −66 (0.931 nm) −146

of the error bars, but within the interval corresponding to the
twice of the indicated standard deviation.

The ground state wave-functions are shown in figure 3.
We notice that the wave-function for phosphorene is approx-
imately two times more extended in the y-direction than that
for MoS2, while the ground state energies differ by only about
15%. Such a pronounced anisotropy of the envelope wave-
function, however, does not directly affect the dipole transi-
tion matrix element’s dependence upon the polarization of the
electric field, e, which is determined by the angular depen-
dence of the scalar product |e · Pcv|, where Pcv is the momen-
tum matrix element between the Bloch states of the conduc-
tion and valence bands [40]. Yet, the multiplicative factor
|Ψ1(0)|2 depends on the degree of anisotropy and also on the
dielectric constants of the cladding layers. We have |Ψ1(0)|2 =
0.729 nm−2 and 0.991 nm−2 for phosphorene incorporated into
h-BN/BP/h-BN and BP/SiO2 structures, respectively. That is,
the transition oscillator strength is considerably higher in the
latter case.

3.3. Excited states for an anisotropic monolayer

The normalization constants of the trial wave-functions
(13)–(15) are calculated in appendix C. Beginning with the

2px state and using the trial wave-function (14), we obtain:

E2x(a, b) = 〈Ψ2x|Ĥ|Ψ2x〉 =
h̄2

8

[
3a
μx

+
b
μy

]

+
8a

√
ab

3π

×
∫ ∞

0

∫ 2π

0
V(r)cos2 θe−2r

√
a+(b−a)sin2 θr3 dr dθ.

(30)

Minimization of this energy leads to the equations:

3h̄2

8μx
+

4
3

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

a3 b cos2 θ√
a + (b − a) sin2 θ

− 3
2

√
ab

)

×K
(
κr
r0

)
r3 cos2 θe−2

√
a+(b−a)sin2 θrdr dθ = 0,

(31)

h̄2

8μy
+

4
3

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

a3 b sin2 θ√
a + (b − a) sin2 θ

− 1
2

√
a3

b

)

×K
(
κr
r0

)
r3 cos2 θ e−2

√
a+(b−a)sin2 θr dr dθ = 0.

(32)

The energy can be written in terms of the function I(α, β),
which is given in appendix B:

E2x(a, b) = 〈Ψ2x|Ĥ|Ψ2x〉 =
h̄2

8

[
3a
μx

+
b
μy

]
+

8
√

a3 b
3π

×
∫ 2π

0
cos2 θ

∂2

∂α2
I(α, β)dθ. (33)

Solving these equations yields the optimized constants
a2x and b2x. For instance, for the h-BN/BP/h-BN structure,

6
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Figure 4. Binding energies of the 2px (blue), 2py (red), and 2s (green) states plotted as a function of Δμ (in units of m0), for a fixed μ̄ = m0.
The energies are normalized by the corresponding values for the isotropic case (where μx = μy = m0). The inset shows the relative
oscillator strength associated with the exciton creation/recombination transition.

Table 4. Dipole moments (divided by the elementary charge) for
transitions |0〉 → |1s〉 and |0〉 → |2s〉 in nm.

Materials BP MoS2

State In h-BN BP-SiO2 In h-BN MoS2-SiO2

1s 0.854 1.067 0.695 0.859
2s 0.457 0.644 0.311 0.701

using μx = 0.9933m0 and μy = 0.12m0 [41], we get a2x ≈
2.30 nm−2 and b2x ≈ 0.610 nm−2, corresponding to the energy
Eh−BN/BP/h−BN

2x = −107 meV.
Similar, for the 2py state with the trial wave-function (15),

we have:

E2y(a, b) =
h̄2

8

[
a
μ x

+
3b
μy

]
+

8
√

ab3

3π

×
∫ ∞

0

∫ 2π

0
V(r)r2 sin2 θe−2r

√
a+(b−a)sin2 θ r dr dθ

(34)

and the equations for a and b,

h̄2

8μx
+

4
3

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

ab3 cos2 θ√
a + (b − a) sin2 θ

− 1
2

√
b3

a

)

×K
(
κr
r0

)
r3 sin2 θe−2

√
a+(b−a)sin2 θr dr dθ = 0;

(35)

3h̄2

8μy
+

4
3

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

ab3 sin2 θ√
a + (b − a) sin2 θ

− 3
2

√
ab

)

×K
(
κr
r0

)
r3 sin2 θe−2

√
a+(b−a)sin2 θr dr dθ = 0.

(36)

Again, the energy can be written in terms of the function
I(α, β) (appendix B):

E2y(a, b) = 〈Ψ2y|Ĥ|Ψ2y〉 =
h̄2

8

[
a
μx

+
3b
μy

]
+

8
√

ab3

3π

×
∫ 2π

0
sin2 θ

∂2

∂α2
I(α, β)dθ. (37)

Numerical solution of (35) and (36) yields the optimal values
of a2y and b2y. The calculated values of E2y for the h-BN/BP/h-
BN structure are given in table 3.

Finally, the total energy for the Ψ20 state is:

E20(a, b) = 〈Ψ20|Ĥ|Ψ20〉 =
h̄2

4

(
a
μx

+
b
μy

)
2 + d2

2 − 4d + 3d2

− q2

r0

2
√

ab
2 − 4d + 3d2 ×

∫ ∞

0

∫ 2π

0
K
(
κr
r0

)

× (1 − d
√

a + (b − a)sin2 θr)2 re−2
√

a+(b−a)sin2 θr dr dθ,
(38)

or, written in terms of the function I(α, β),

7
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Figure 5. Probability density (in nm−2) distribution for the lowest excited states in the h-BN/BP/h-BN structure: 2s (top left), 2py (top right)
and 2px state (bottom left). For comparison, also shown is the 2px state in the (isotropic) h-BN/MoS2/h-BN structure (bottom right).

E20(a, b) = 〈Ψ2x|Ĥ|Ψ20〉

=
1

2 − 4d + 3d2

[
h̄2

4

(
a
μx

+
b
μy

)(
2 + d2

)
(39)

− 2
√

ab
q2

r0

∫ 2π

0

(
1 + α

d
2
∂α

)2

I(α, β)dθ

]
.

(40)

The condition of orthogonality that determines d (17)
yields:

∫ ∞

−∞

∫ ∞

−∞

(
1 −

√
ax2 + by2d

)
e−
√

a1x2+b1y2
e−
√

ax2+by2
dx dy = 0,

(41)

where a1 and b1 are the optimized constants for the state Ψ1.
Therefore, this parameter must be treated as a function of a
and b, d = d(a, b), when solving equations ∂aE20(a, b) = 0
and ∂bE20(a, b) = 0. The technical procedure that facilitates
solution of this system of equations is presented in appendix D
and the conditions (D.8) determine the solution. For instance,
for the h-BN/BP/h-BN structure we obtain: a ≈ 0.72 nm−2,
b ≈ 0.14 nm−2, d ≈ 1.397 and Eh−BN/BP/h−BN

20 = −56 meV.
The energies of the first four states are presented in table 3,

for the four cases considered, and figure 4 shows the bind-
ing energies of the n = 2 states, expressed in terms of the
effective Rydberg constant versus the mass anisotropy. The
degeneracy of the 2s and 2p states, well-known for the 3D
hydrogen atom and remaining for its 2D counterpart [27]
is lifted already in the isotropic case, where EMoS2/h–BN

2x =

EMoS2/h–BN
2y > EMoS2/h–BN

20 , in agreement with reference [22].
We notice that the 2s energy level is considerably shallower
than both 2p states forΔμ = 0, however, the situation changes
as the anisotropy increases and the 2s and 2py states are

8
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Figure 6. Dipole moment matrix element for the transitions 1s–2px
(blue) and 1s–2py (green), plotted against Δμ for a fixed μ̄,
normalized to the value for Δμ = 0.

inverted. It is also the case of phosphorene (not shown in
figure 4) where Δμ ≈ 1.6μ̄, μ̄ ≈ 0.55m0. The most stable
excited state is the 2px one (table 3).

Moreover, the inset of figure 4 shows how the dipole
moment matrix element for the |0〉 ↔ |2s〉 transition depends
on Δμ for a fixed μ̄. This dependence is qualitatively similar
to that for the ground state (figure 1). The calculated values
are presented in table 4. It is interesting to compare the tran-
sition matrix elements from exciton vacuum to the 1s and 2s
states, which ratio, within the effective mass approximation,
is determined by |Ψ1(0)/Ψ20(0)|2. We calculated the values of
3.49 and 4.99 for h-BN/BP/h-BN and h-BN/MoS2/h-BN struc-
tures, respectively. The square of this parameter determines
the relative strengths of these transitions leading to the exciton
creation or recombination.

The electron densities corresponding to the excited states
for the h-BN/BP/h-BN and h-BN/MoS2/h-BN structures are
shown in figure 5. It is noteworthy how much more extended
the 2p state are, in comparison with the 2s one, in both cases,
despite at least one of them corresponds to the largest binding
energy. Also we can see the reason why EBP/h-BN

2x > EBP/h-BN
2y ,

the stronger confinement in the x-direction in the former case.

3.4. Dipole transition matrix elements between s and p
states

The dipole transitions considered above lead to creation
or annihilation of the exciton. Yet, dipole matrix elements
between the p and s states determine the rates of ‘intraband
optical transitions’, Stark shift, etc. Within the effective mass
approximation, these rates are entirely determined by the
envelope functions [40]. Among the states considered here,
dipole transitions induced by linear-polarized light are possible
between s-type (Ψ1 and Ψ20) and p-type (Ψ2x and Ψ2y) states,
while the reminding matrix elements are equal to zero. Limit-
ing ourselves by considering only the transitions between the
ground and excited states, we have:

〈Ψ1|x|Ψ2x〉 = C1C∗
2x

1√
a3

2xb2x

×
∫ 2π

0

∫ ∞

0
ρ3

2x cos2(θ)e−t(θ)ρ2x dρ2x dθ,

(42)

where

t(θ) =

√
a1

a2x
cos2 θ +

b1

b2x
sin2 θ + 1 (43)

and C1 =
√

2/π(a1b1)1/4. Integrating with respect to ρ2x, we
obtain:

〈Ψ1|x|Ψ2x〉 = C1C∗
2x

1√
a3

2xb2x

∫ 2π

0

6 cos2(θ)
t4(θ)

dθ. (44)

In a similar way, one obtains

〈Ψ1|y|Ψ2y〉 = C1C∗
2y

1√
a2yb3

2y

∫ 2π

0

6 sin2(θ)
t4(θ)

dθ. (45)

Figure 6 shows the effect of mass anisotropy on the matrix
elements (44) and (45) for μx + μy = const.. We notice the
surprising non-monotonic variation of the latter with Δμ.
Using the appropriate solutions for a1, b1, a2x, b2x, a2y and
b2y, we obtained 〈Ψ1|x|Ψ2x〉 = 0.218 nm and 〈Ψ1|y|Ψ2y〉 =
0.967 nm, for the h-BN/BP/h-BN structure.

4. Conclusion

To conclude, we have applied the Rayleigh–Ritz method to the
calculation of the ground and lowest excited states’ energies
in a 2D semiconductor with anisotropic effective masses. In
the isotropic limit, these results compare well with previously
published data obtained e.g. for monolayer WS2 and MoS2

using other numerical methods, which witnesses the reliabil-
ity of the variational approach. Moreover,we employed the RK
potential with a finite-thickness correction (with a correspond-
ingly renormalized screening parameter), which allowed us to
reproduce well the available experimental data [36] on exciton
energies in FML films of WS2.

We note that the variational approach is most efficient at
low anisotropy, yielding slightly lower binding energies than
experiments and other calculations, and this difference grows
slightly with increasing anisotropy. We presented calculated
the energies of the lowest (1s) and n = 2 excited states and
the dipole transition strengths between them and to the exci-
ton vacuum. For an isotropic system, the most stable of the
n = 2 excited states is the 2px one (x denotes the direction
in which the effective mass is heavier). The order of the 2s
and 2py states depends on the mass anisotropy and also on the
dielectric environment of the 2D layer. In particular, the results
in table 3 show that it is different for BP encapsulated by h-BN
and deposited on a SiO2 substrate. We hope that these findings
are of interest for experimentalists and the presented formulae
can be useful for computationally inexpensive calculations of
the exciton energies and transition matrix elements for other
(nearly) 2D materials.

9



J. Phys.: Condens. Matter 34 (2022) 045702 J N S Gomes et al

Acknowledgments

Funding from the European Commission, within the project
‘Graphene-Driven Revolutions in ICT and Beyond’ (Ref. No.
696656), and from the Portuguese Foundation for Science
and Technology (FCT) in the framework of the PTDC/NAN-
OPT/29265/2017 ‘Towards high speed optical devices by
exploiting the unique electronic properties of engineered 2D
materials’ project the Strategic Funding UID/FIS/04650/2019
is gratefully acknowledged. We also wish to thank Nuno Peres
for helpful discussions.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix A. Extension of the R–K potential to finite
L

Equation (8) for the electrostatic potential from the original
Rytova’s paper [28] reads:

ϕ(r) =
πq
ε2L

[
H0

(
2r
εL

)
− Y0

(
2r
εL

)]
≡ πq

ε2L
K0

(
2r
εL

)
,

(A.1)
where ε = ε2/ε1 and ε2 corresponds to the film material. The
correspondence between this relation and equation (18) is
established by setting ε1 → κ and

ε2L = 2r0, εL =
2r0

κ
. (A.2)

Now we take the Fourier transform (FT) of the potential for
a finite thickness L from reference [28], which reads:

ϕ(k) =
2πq
ε2k

[
ekL + δ

ekL − δ

]
, (A.3)

where

δ =
ε− 1
ε+ 1

. (A.4)

For kL → 0 and assuming that ε is large (then 1/ε→ 0), we
can apply the following expansions:

ekL 
 1 + kL +
1
2

(kL)2, (A.5)

δ =
1 − 1/ε
1 + 1/ε


 1 − 2/ε+ 2/ε2. (A.6)

Therefore, the FT of the potential becomes:

ϕ(k) 
 2πq
ε2k

[
1 + kL + 1/2(kL)2 + 1 − 2/ε+ 2/ε2

kL + 1/2(kL)2 + 2/ε− 2/ε2

]
,

(A.7)
or, in our notation,

ϕ(k) 
 πq
r0k

[
2

k + κ/r0
+

1
2

L2
(
k2 + κ2/r2

0

)(
k + κ/r0

) [
1 + L

2

(
k − κ/r0

)]] .
(A.8)

The first term corresponds to the potential for L = 0, and the
second term is the expansion for L → 0. Now to determine the
potential in real space one must perform the inverse FT:

V(r) =
−q

(2π)2

∫ ∞

0

∫ 2π

0
ϕ(k)e−ikr cos θ k dk dθ, (A.9)

where θ is the angle between 	k and 	r. The angular integral
yields the Bessel function:

V(r) =
−q
2π

∫ ∞

0
ϕ(k)J0(kr)k dk. (A.10)

In order to simplify the second term of ϕ(k) we decompose the
fraction as follows:

k2 + β2

k (k + β) (1 + α (k − β))
=

A
k
+

B
k + β

+
C

1 + α (k − β)
,

(A.11)
where α ≡ L/2 and β ≡ κ/r0. This decomposition yields the
coefficients:

A =
β

1 − αβ
, (A.12)

B = − 2β
1 − 2αβ

, (A.13)

C =
1 − 2αβ + 2α2β2

1 − 3αβ + 2α2β2
. (A.14)

So, the potential becomes:

V(r) 
 −q2

r0

{
π

2
K0

(
κr
r0

)
+ α2

∫ ∞

0

(
A +

Bk
k + β

+
Ck

1 + α(k − β)

)
J0(kr)dk

]}


 −q2

r0

{
π

2
K0

(
κr
r0

)
+ α2

[
A
r
+ BF(β, r)

+
C
α

F

(
1 − αβ

α
, r

)]}
, (A.15)

where

F(ξ, r) =
∫ ∞

0

J0(kr)
k + ξ

k dk. (A.16)

The first term in (A.15) is the standard RK potential energy
(18), while the reminder is the finite-thickness correction. It
can be written in the form (19) presented in the main text.

Appendix B. Derivation of equations (28) and (29)
for the ground state
From the expression of the ground state energy, equation (26),
we obtain the following equations for the parameters a1 and b1:

h̄2

4μx
+

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

a1b1 cos2 θ√
a1 + (b1 − a1) sin2 θ

− 1
2

√
b1

a1

)
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× K
(
κr
r0

)
re−2

√
a1+(b1−a1)sin2 θr dr dθ = 0; (B.1)

h̄2

4μy
+

q2

r0

∫ 2π

0

∫ ∞

0

(
r
√

a1b1 sin2 θ√
a1 + (b1 − a1) sin2 θ

− 1
2

√
a1

b1

)

× K
(
κr
r0

)
re−2

√
a1+(b1−a1)sin2 θr dr dθ = 0. (B.2)

Equations (B.1) and (B.2) can be simplified with the ana-
lytically known integrals involving the Struve and Bessel
functions [38]:

∫ ∞

0
e−αxH0(βx)dx =

2
π

log

(√
α2+β2+β

α

)
√
α2 + β2

; (B.3)

∫ ∞

0
e−αxY0 (βx) dx = − 2

π

1√
α2 + β2

× log

(
α+

√
α2 + β2

β

)
.

(B.4)

The integral

I0(α, β) =
∫ ∞

0
[H0 (βr) − Y0 (βr)] e−αr dr

=
2√

πα2 + β2

[
log

(
β +

√
α2 + β2

α

)

+ log

(
α+

√
α2 + β2

β

)]
, (B.5)

and the integral

I(α, β) =
∫ ∞

0
K (βr) re−αr dr, (B.6)

can be written as

I(α, β) = − ∂

∂α
I0(α, β). (B.7)

The ground state energy can be written simply as:

E1 =
h̄2

4

(
a1

μx
+

b1

μy

)
−
√

a1b1
q2

r0

∫ 2π

0
I(α, β)dθ, (B.8)

where α =
√

a1 + (b1 − a1)sin2 θ and β = κ/r0. Therefore,
equations (B.1) and (B.2) read:

∂E1

∂a1
=

h̄2

4μx
− q2

2r0

b1

a1

∫ 2π

0

[
I(α, β) + 4a1

cos2 θ

α

∂I
∂α

]
dθ = 0,

(B.9)

∂E1

∂b1
=

h̄2

4μy
− q2

2r0

a1

b1

∫ 2π

0

[
I(α, β) + 4b1

sin2 θ

α

∂I
∂α

]
dθ = 0.

(B.10)

Appendix C. Normalization of the excited states
(13)–(15)

Normalization condition for Ψ20 reads:

|C20|2
1√
a2b2

∫ ∞

0

∫ 2π

0
ρ2(1 − ρ2d)2e−2ρ2 dρ2 dθ = 1, (C.1)

|C20|2
2π√
a2b2

∫ ∞

0

(
ρ2 − 2ρ2

2d + ρ3
2d2

)
e−2ρ2 dρ2 = 1, (C.2)

|C20|2
2π√
a2b2

(
1
4
− 2

4
d +

3
8

d2

)
= 1, (C.3)

|C20|2 =
4
√

a2b2

π
(
2 − 4d + 3d2

) . (C.4)

For C2x we have:

|C2x|2
1

a2x
√

a2xb2x

∫ ∞

0

∫ 2π

0
ρ3

2 cos2(θ)e−2ρ2 dρ2 dθ = 1,

(C.5)

|C2x|2
3π

8a2x
√

a2xb2x
= 1, (C.6)

|C2x|2 =
8a2x

√
a2xb2x

3π
. (C.7)

Similarly, for C2y we obtain:

|C2y|2 =
8b2y

√
a2yb2y

3π
. (C.8)

Appendix D. Calculation of the trial wave-function
parameters for the 2s state

We can write the energy of the 2s state (40) as:

〈Ψ20|Ĥ|Ψ20〉 =
h̄2

4
F(a, b, d) − 2

q2

r0
G(a, b, d) (D.1)

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(a, b, d) =

(
a
μx

+
b
μy

)
2 + d2

2 − 4d + 3d2

G(a, b, d) =
1(

2 − 4d + 3d2
)∫ ∞

0

∫ 2π

0
K
(
κρ

√
a−1 cos2 θ + b−1 sin2 θ

r0

)
(1 − ρd)2 ρe−2ρdρ dθ.

(D.2)
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The condition of orthogonality that determines d (17) can
be written as:

d(a, b) =
f1(a, b)

2 f2(a, b)
, (D.3)

where

fi(a, b) =
∫ π/2

0
t−(i+1)(θ, a, b)dθ (D.4)

with t =
√

a1
a cos2 θ + b1

b sin2 θ + 1. Therefore,

⎧⎪⎪⎨
⎪⎪⎩
∂ad =

f2 f ′1a − f1 f ′2a

2 f 2
2

∂bd =
f2 f ′1b − f1 f ′2b

2 f 2
2

, (D.5)

and⎧⎪⎪⎨
⎪⎪⎩

f ′ia = − (i + 1)a1

2a2

∫ π/2

0
t−(i+2)(θ, a, b)

cos2 θ

t(θ, a, b)− 1
dθ

f ′ib = − (i + 1)b1

2b2

∫ π/2

0
t−(i+2)(θ, a, b)

sin2 θ

t(θ, a, b)− 1
dθ

.

(D.6)
Taking now (D.1), minimization of the energy requires:

{
∂aE20(a, b, d(a, b)) = 0

∂bE20(a, b, d(a, b)) = 0
, (D.7)

⎧⎪⎪⎨
⎪⎪⎩

h̄2

4
∂aF(a, b, d(a, b))− 2

q2

r0
∂aG(a, b, d(a, b)) = 0

h̄2

4
∂bF(a, b, d(a, b))− 2

q2

r0
∂bG(a, b, d(a, b)) = 0

,

(D.8)
where

∂aF(a, b, d(a, b)) =
2 + d2

2 − 4d + 3d2

1
μx

+

[
a
μx

+
b
μy

] [
8 − 8d − 4d2

(3d2 − 4d + 2)2

]
∂ad;

(D.9)

∂bF(a, b, d(a, b)) =
2 + d2

2 − 4d + 3d2

1
μy

+

[
a
μx

+
b
μy

] [
8 − 8d − 4d2

(3d2 − 4d + 2)2

]
∂bd;

(D.10)

∂aG(a, b, d(a, b)) = − 1
2 − 4d + 3d2

∫ ∞

0

∫ 2π

0

× κρ2

r0

cos2 θ

2a2
√

a−1 cos2 θ + b−1 sin2 θ
K′

0

×
(
κρ

√
a−1 cos2 θ + b−1 sin2 θ

r0

)

× (1 − ρd)2e−2ρ dρ dθ

+ ∂ad(a, b) ×
[

6d − 4
2 − 4d + 3d2

− G(a, b, d(a, b))
1

2− 4d + 3d2

∫ ∞

0

∫ 2π

0

×K
(
κρ

√
a−1 cos2 θ + b−1 sin2 θ

r0

)

× (1 − ρd)ρ2e−2ρ

]
; (D.11)

∂bG(a, b, d(a, b)) = − 1
2 − 4d + 3d2

∫ ∞

0

∫ 2π

0

× κρ2

r0

sin2 θ

2b2
√

a−1 cos2 θ + b−1 sin2 θ

× K′
0

(
κρ

√
a−1 cos2 θ + b−1 sin2 θ

r0

)

× (1 − ρd)2e−2ρ dρ dθ + ∂bd(a, b)

×
[

6d − 4
2 − 4d + 3d2

G(a, b, d(a, b))

− 1
2 − 4d + 3d2

∫ ∞

0

∫ 2π

0

×K
(
κρ

√
a−1 cos2 θ + b−1 sin2 θ

r0

)

× (1 − ρd)ρ2e−2ρ

]
. (D.12)

The equations ∂aG(a, b, d(a, b)) = ∂bG(a, b, d(a, b)) = 0
are solved numerically.
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