
An activity-centered ubiquitous computing

framework for supporting occasional human activities

in public places

Helder Pinto

Information Systems Department

School of Engineering, University of Minho

Supervisor: Rui J. José

Sep 12, 2008

Acknowledgements

This is the most wanted moment of a research work – reaching the end of a long and

gratifying journey and thanking those who accompanied me in this work, those who al-

leviated pain in some occasions or shared some good moments that research can provide.

I thus acknowledge:

Rui, for his engagement, professionalism, wisdom, and patience. Rui has, along these

years, strongly influenced the way I reason, I write, and, above all, my critical thinking.

Rui is great at putting in question what we believe or want to be unquestionable and I

am deeply grateful for it.

Simona and Śılvia, for all their love, confidence, and understanding, and for all the

joy they bring to my life.

My parents, Mário and Rosa, and my brother, Frederico, who have always been

enthusiastic about my work.

Those who closely followed my work, for all their friendship and interest, specially

Adriano Moreira, Ângelo Moreira, César Ariza, Filipe Meneses, Francisco Bernardo,

Helena Rodrigues, Jason Pascoe, Noé Vilas Boas, and Paula Monteiro.

Those who have somehow contributed to the deployment of the several user studies,

particularly Ângelo Moreira, César Ariza, Domingos Freitas, and Jorge Figueiredo, and

all the subjects of the user studies, for their availability and interest.

The staff of the 2005 School of Engineering Week, Vila Flor Cultural Center, and

Interacção 2006, for their availability and support to the user studies.

Ubisign, for the support given in these last months, and, finally, Fundação para a

Ciência e a Tecnologia, for the financial support, without which all this work and results

would be impossible.

iii

Abstract

An activity-centered ubiquitous computing framework for sup-

porting occasional human activities in public places

A major challenge to ubiquitous computing system designers is the provision of

walk-up-and-use solutions for supporting activities performed by occasional visitors to a

particular place. When arriving for the first time to a particular place, occasional visitors

have little or no idea about what the local environment is providing to support their

activity. Furthermore, this support has to be self-explainable and quickly learnable, as

occasional visitors are not prepared to interact with an unknown system and do not

have time to spend understanding and learning how to use new tools.

Ubiquitous computing environments promise to transparently support people in their

daily activities by leveraging computing resources existent in the physical environment.

Ubiquitous computing can greatly enhance the experience of occasional visitors to public

spaces, by offering effective and transparent means for achieving their activities. More-

over, ubiquitous computing interaction artefacts are becoming increasingly cheap, thus

allowing for widespread availability throughout public spaces. However, there is still

much to do to achieve the vision of a computing system that requires little or no atten-

tion at all, so that humans can use the computer unconsciously. Ideally, people should

perform an activity requiring computing tools as they perform any other activity, by

focusing on the activity itself, and using the computing tool as naturally as other tools.

There is thus the need to center the design and development of ubiquitous systems

in the human activity, in order to bring computing closer to people and to transpar-

ently support activities that take place in the physical world. This work thus follows

an activity-centered approach to ubiquitous computing and contributes with Activi-

v

vi Acknowledgements

tySpot, an activity-centered conceptual and software framework targeted at providing

ubiquitous computing support for occasional visitors to public spaces. The conceptual

framework aims at modelling human activity and user interaction with the ubiquitous

computing system. Undertaking an activity-centered approach to ubiquitous comput-

ing system design requires an understanding of how humans think about and carry out

their activities. Therefore, this research is grounded on previous work on human activity

analysis, namely Activity Theory, a conceptual framework for analyzing human activity

developed during the twentieth century.

The software framework includes a ubiquitous computing infrastructure for provid-

ing the actual support to occasional visitors, tools for deploying ubiquitous computing

solutions by non-computer-expert public space administrators, and a software library

for developing the support to new activities.

Both the conceptual and software framework have been evaluated by a series of

end-user studies which showed that ActivitySpot is effective for walk-up-and-use sys-

tems, making user interaction with a ubiquitous computing system almost as natural as

interacting with other everyday tools. The majority of users clearly reported that Ac-

tivitySpot fostered learnability and usability. The choice of using elementary, everyday

interaction means with a simple stimulus-response interaction model was also funda-

mental in the success with end-users. Moreover, the ActivitySpot software framework

enables rapid development of the support for new activities and actions, by means of

a software library for developers, as well as it eases the deployment and configuration

of that support, by means of a graphical user interface authoring tool for public space

managers.

Resumo

Plataforma de computação ub́ıqua, baseada em actividade, para

suporte a actividades humanas ocasionais em espaços públicos

Um dos maiores desafios para quem desenha sistemas de computação ub́ıqua é o

fornecimento de soluções que favoreçam a interacção espontânea, sem treino prévio,

sobretudo as destinadas a suportar actividades realizadas por visitantes ocasionais de

um determinado lugar. Quando chegam pela primeira vez a um determinado lugar,

os visitantes sabem pouco ou nada sobre o que é disponibilizado para facilitar a sua

visita. Além disso, o suporte fornecido tem de ter caracteŕısticas que permitam uma

aprendizagem rápida da sua utilização, visto que os visitantes ocasionais não estão

preparados para interagir com um sistema desconhecido e não têm tempo para aprender

a usar novas ferramentas.

A computação ub́ıqua promete ajudar, de modo transparente, as pessoas nas suas

actividades diárias, tirando partido dos recursos de computação existentes no ambiente

f́ısico. A computação ub́ıqua pode deveras melhorar a experiência dos visitantes oca-

sionais de espaços públicos, oferecendo-lhes meios transparentes e eficazes para levarem

a cabo as suas actividades. Além disso, os artefactos de computação ub́ıqua estão a

tornar-se cada vez mais acesśıveis, havendo pois condições para uma disponibilidade

alargada na generalidade dos espaços públicos. No entanto, há ainda muito a fazer

para concretizar a visão de um sistema de computação que requeira pouca ou nenhuma

atenção por parte dos utilizadores. Idealmente, as pessoas deveriam executar uma ac-

tividade que requeira ferramentas de computação com a mesma facilidade com que exe-

cutam outras actividades, focando-se na própria actividade e utilizando as ferramentas

de computação tão naturalmente como utilizam outras ferramentas.

vii

viii Resumo

Há pois a necessidade de centrar o desenho e o desenvolvimento de sistemas ub́ıquos

na actividade humana, de modo a aproximar a computação das pessoas e a suportar de

maneira transparente as actividades que têm lugar no mundo f́ısico. Este trabalho

segue, portanto, uma abordagem centrada na actividade e contribui com o Activi-

tySpot, uma plataforma conceptual e de software, centrada na actividade, destinada

a fornecer suporte de computação ub́ıqua para visitantes ocasionais de espaços públicos.

A plataforma conceptual pretende modelar a actividade humana e a interacção com o

sistema de computação ub́ıqua. A opção pela abordagem centrada na actividade requer

o entendimento sobre como os humanos pensam e executam as suas actividades. É,

pois, por isso que esta investigação é baseada em trabalho prévio na área de análise de

actividades humanas, nomeadamente na Teoria da Actividade, um modelo conceptual

de análise da actividade humana, desenvolvido durante o século XX.

A plataforma de software inclui uma infra-estrutura de computação ub́ıqua destinada

a suportar as actividades de visitantes ocasionais, ferramentas para a instalação de

soluções de computação ub́ıqua por parte de administradores de espaços públicos que

não dominem necessariamente ferramentas computacionais, e uma biblioteca de software

para o desenvolvimento do suporte a novas actividades.

Ambas as plataformas foram avaliadas por uma série de estudos com utilizadores.

Estes estudos demonstraram que o ActivitySpot é eficaz em situações de utilização

espontânea de sistemas que não tenham sido objecto de treino prévio, tornando a in-

teracção com um sistema de computação ub́ıqua tão natural como a interacção com

outras ferramentas do dia-a-dia. A maioria dos utilizadores relatou claramente que o

ActivitySpot fomentou a fácil aprendizagem e utilização. A opção pela utilização de

meios de interacção elementares e de uso diário e de um modelo de interacção simples,

baseado no conceito de est́ımulo-resposta, foi igualmente fundamental no sucesso obtido

com a utilização do sistema. Além disso, verificou-se que a plataforma ActivitySpot

permite o rápido desenvolvimento de suporte a novas actividades e acções, através da

biblioteca de software, assim como facilita a instalação e configuração do suporte às ac-

tividades, por meio de uma ferramenta gráfica de edição destinada a gestores de espaços

públicos.

Table of contents

Acknowledgements iii

Abstract v

Resumo vii

Table of contents ix

List of figures xv

List of tables xvii

List of listings xix

1 Introduction 1

1.1 Motivation . 2

1.2 Towards a framework for activities . 3

1.2.1 The need for a paradigm shift . 4

1.2.2 Managing activity-centered, distributed, personalized interaction . 6

1.2.3 Thesis . 7

1.3 Challenges . 8

1.3.1 Activity model . 8

1.3.2 User interaction model . 9

1.3.3 User interface management . 10

1.3.4 Facilitating system development 12

1.3.5 Integrating local infrastructure and personal resources 13

ix

x TABLE OF CONTENTS

1.3.6 Activity experience capture, sharing, and customization 15

1.4 Research overview . 16

1.4.1 Thesis validation . 18

1.4.2 Contributions . 19

1.5 Plan of dissertation . 20

1.6 Summary . 21

2 Related work 23

2.1 Assistance to visitors . 23

2.1.1 Context-aware mobile applications 24

2.1.2 Universal interaction . 26

2.1.3 Non-conventional interaction models 28

2.1.4 Discussion . 31

2.2 Activity-centered computing . 31

2.2.1 Desktop management systems . 31

2.2.2 Task mobility . 33

2.2.3 Collaborative tools . 34

2.2.4 Discussion . 35

2.3 Activity modelling . 35

2.3.1 Directing autonomous entities . 35

2.3.2 Representing human activities . 36

2.3.3 Discussion . 37

2.4 Applications of Activity Theory . 38

2.4.1 Discussion . 40

2.5 Distributed user interaction . 40

2.5.1 Design frameworks . 41

2.5.2 Implementations . 42

2.5.3 Discussion . 43

2.6 End-user programming and configuration 43

2.6.1 Context-aware programming . 44

2.6.2 System configuration . 46

TABLE OF CONTENTS xi

2.6.3 Discussion . 48

2.7 Ubiquitous computing infrastructures . 48

2.7.1 Speakeasy . 49

2.7.2 Gaia . 49

2.7.3 Interactive Workspaces . 50

2.7.4 BEACH . 51

2.7.5 ACCORD . 52

2.7.6 Discussion . 52

2.8 Integration with personal resources . 53

2.8.1 Discussion . 55

2.9 Summary . 56

3 Modelling activities and user interaction 57

3.1 Modelling activity . 58

3.1.1 Activity Theory . 58

3.1.2 Physical space . 62

3.1.3 Tools . 62

3.1.4 Context . 63

3.1.5 Personalization . 64

3.1.6 State and history . 65

3.1.7 Discussion . 65

3.2 Modelling user interaction . 67

3.2.1 User interaction design models . 68

3.2.2 Discussion . 71

3.3 The ActivitySpot conceptual framework 74

3.3.1 Concepts . 74

3.3.2 Discussion . 77

3.4 Summary . 79

4 The ActivitySpot software framework 81

4.1 The ActivitySpot architecture . 82

xii TABLE OF CONTENTS

4.1.1 Environment specification . 83

4.1.2 User interaction architecture . 85

4.1.3 Context architecture . 86

4.2 Run-time infrastructure . 86

4.2.1 Requirements . 87

4.2.2 Solution . 89

4.2.3 Discussion . 93

4.3 Software library . 96

4.3.1 Requirements . 97

4.3.2 Solution . 98

4.3.3 Discussion . 101

4.4 GUI authoring tool . 102

4.4.1 Requirements . 102

4.4.2 Solution . 103

4.4.3 Discussion . 111

4.5 Summary . 112

5 Evaluation 113

5.1 User experience in ActivitySpot-enabled environments 114

5.1.1 PhD poster session . 116

5.1.2 Cultural center . 119

5.1.3 Conference . 122

5.1.4 Results . 125

5.2 ActivitySpot environment management 132

5.3 Summary . 137

6 Conclusions 139

6.1 Contributions . 140

6.1.1 Contributions of the conceptual framework 141

6.1.2 Contributions of the software framework 142

6.2 Limitations . 143

TABLE OF CONTENTS xiii

6.3 Future work . 145

References 147

A Environment specification examples 163

A.1 Devices specification . 163

A.2 Context dimensions specification . 164

A.3 Activities and actions specification . 165

B Evaluation materials 169

B.1 Phd poster session survey . 169

B.2 Cultural Center survey . 175

B.3 Conference surveys . 180

B.3.1 Experimental group . 180

B.3.2 Control group . 187

List of figures

3.1 Activity Theory model . 59

3.2 Example of an activity-centered model of a ubiquitous computing envi-

ronment . 75

3.3 The ActivitySpot conceptual model . 76

4.1 A class diagram overview of the ActivitySpot architecture 82

4.2 Class diagram for the ActivitySpot environment specification 83

4.3 Class diagram for the ActivitySpot user interaction system 85

4.4 Class diagram for the ActivitySpot context-awareness system 86

4.5 An instantiation of the ActivitySpot run-time infrastructure (arrows in-

dicate data flow) . 89

4.6 An overview of the ActivitySpot authoring tool 104

4.7 The space editor view of the ActivitySpot authoring tool 105

4.8 An example of device association . 106

4.9 The actions editor view of the ActivitySpot authoring tool 107

4.10 The ActivitySpot activities editor and the activity properties box 109

4.11 The ActivitySpot activities editor and the action properties box 110

5.1 ActivitySpot being used at the Cultural Center 120

5.2 A sample response for the conference program view action 123

5.3 A sample response for the participant list view action 124

xv

List of tables

5.1 Results for the compatibility of the conceptual model 127

5.2 Results for user interaction . 128

5.3 Results for usefulness . 130

5.4 Completion time for each training task T (in seconds), for each subject

(S), with mean, standard deviation, and coefficient of variation 135

5.5 Completion time for the execution step (in seconds), for each subject (S),

with mean, standard deviation, and coefficient of variation 136

xvii

List of listings

4.1 Java definition for the ActionController interface 98

4.2 Java definition for the Stimulus class . 99

4.3 Java definition for the Response class . 100

4.4 Java definition for the ResponseItem class 100

A.1 An XML example of devices specification 163

A.2 An XML example of context dimensions specification 164

A.3 An XML example of activities and actions specification 165

xix

Chapter 1

Introduction

Public spaces are the focal point of a vast range of human activities, such as entertain-

ment, education, health or shopping, and a promising scenario for the deployment of

ubiquitous computing systems. Whereas some of the activities that people may wish

to perform at a public place are not particularly tied to any specific environment (e.g.,

reading e-mail at the museum cafeteria), there is a also a vast range of activities that can

only be physically achieved or acquire special relevance in a specific place (e.g., visiting

a relative at the hospital). These activities are characterized by a strong association

with the specific social and physical setting in which they are meant to take place.

Some people are recurrent users of the places where activities occur (e.g., local work-

ers) while others go there occasionally for very short-term work, for achieving some for-

mality, for meeting with somebody, or just for entertainment. Particularly challenging,

both from the point of view of actors – those who are involved in the activity – and

facility managers – those who provide the means for supporting activity execution – are

activities performed by occasional visitors, i.e., by people that are not used to live or

work in a place and that occasionally pass by. When arriving for the first time to a

particular public space, these visitors have little or no idea about the physical setting

nor about the resource infrastructure that such an environment may provide to assist

activities. These users need help to easily orient themselves in the physical environment,

to identify the resources (humans or artefacts) available for achieving the activity, and

to perceive how to interact with the available resources.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Public spaces, in general, are designed and instrumented to provide some assistance to

their visitors. They may have wall signs, panes, public digital kiosks, staff members,

brochures, receptacles for comments and suggestions, etc. However, that type of support

is normally targeted to the functional aspects of the space and very limited in providing

people with a personalized and rich view of how the space can assist them with their

needs and enhance the execution of the activities they intend to perform at that place. I

next detail each of the main limitations I identify in the current support (either physical

or digital) to occasional visitors to public spaces:

• Lack of personalization. People visiting a public space are not distinguished

by their motives, context, preferences or impairments; everybody gets the same,

mostly limited impression of the environment.

• Weak interactivity. Although most public spaces provide means for gathering

visitors’ opinions or wishes (surveys, complaints book, etc.), these often disrupt

the visiting experience or are too formal or sanctioning. People usually prefer

more spontaneous ways of interaction.

• Weak integration. Many public spaces do not provide an integrated view to

its users. The several available types of resources are not conceptually or even

visually coherent with each other. In other cases, the different means used for

conveying the same information employ a different speech.

• Lack of activity-centered character. Assistance in public spaces is generally

targeted at the functional aspects that are common to most of the activities that

can be carried out there. Instead, it should be centered on the specific activities

the space allows for, with specific support for each possible activity. For example, a

museum visitor interested in visiting only paintings from a specific artist will hardly

find support to easily get to those paintings. Instead, he or she will have to browse

throughout the whole available paintings or visiting instructions. Furthermore,

assistance usually does not consider non-standard users. For example, the available

1.2. TOWARDS A FRAMEWORK FOR ACTIVITIES 3

assistance in most public spaces will be of little or no help to security inspectors

or visitors with physical impairments. Assistance was not targeted to them nor to

their type of activity.

• External location-based assistance. Information and communication tech-

nologies have brought innovations in personal appliances, such as mobile phones

and personal digital assistants, able to assist, in a certain way, visitors to public

spaces. For example, such devices, when coupled with location technology based

on wireless cell information or GPS, can provide map orientation or access to mo-

bile location-based services (e.g., finding a nearby restaurant). However, although

potentially available anywhere the user goes and providing the user with a vast

amount of location-based information, this assistance is poor regarding the speci-

ficities of a particular physical space. For example, mobile location-based services

do not support a visitor willing to know the estimated waiting time in a queue at

a restaurant. Their service is too generic to provide real value to satisfy specific,

space-related user needs, because it is normally just based on a centralized infor-

mation repository (in the device or somewhere in the Internet). Mobile location-

based services are currently not able to dynamically adapt to nearby resources

and enhance its capabilities in order to provide rich and value-added assistance to

visitors [Pinto 05].

In summary, public spaces are still not providing its visitors with an integrated, rich,

and personalized support for the activities they may carry out there. There is the need

for solutions that successfully integrate the physical environment with its occasional

users, placing the focus on activities.

1.2 Towards a framework for activities performed

by occasional visitors to public places

This work is based on the assumption that an adequate assistance to visitors is more

likely to be achieved if there is some type of local infrastructure capable of integrat-

4 CHAPTER 1. INTRODUCTION

ing on the one side local resources and knowledge about the physical environment and,

on the other side, visitors, their resources, and knowledge about their activities. Many

public places are currently instrumented with devices such as the already mentioned dig-

ital kiosks, public flat screens, radio-frequency readers, voice synthesis and recognition,

and many other types of sensors and interaction devices. These devices, altogether,

are becoming the realization of what Mark Weiser once called ubiquitous computing

[Weiser 91]. Ubiquitous computing environments promise to transparently support peo-

ple in their daily activities by leveraging computing resources existent in the physical

environment. Ubiquitous computing can greatly enhance the experience of occasional

visitors to public spaces, by offering effective and transparent means for achieving their

activities, while providing a personalized support. Moreover, ubiquitous computing in-

teraction artefacts are becoming increasingly cheap, thus allowing for widespread avail-

ability throughout public spaces. A public space of the future will be able to provide

an integrated ubiquitous computing infrastructure, composed of many different types of

interaction devices, sensors, and actuators targeted at the specific activities of visitors.

1.2.1 The need for a paradigm shift

During the last decades, humans have been using the computer as a new artifact or tool

to achieve their activities. The computer relieves humans from doing tedious operations,

which is particularly evident, for example, in industrial automation and control or in

enterprise information systems. The personal computer has also been a successful tool

for communication and entertainment. However, it has not yet achieved a comparably

great success in supporting the mundane activities of everyday life. Unlike other human-

invented tools, the personal computer is still too difficult to use [Norman 98], often

disturbing users rather than helping them. This happens mainly because computing

systems generally do not consider the characteristics of human activity. By imposing

application- and document-centered models and unnatural interfaces, computers oblige

humans to dedicate considerable efforts in manipulating the tool, rather than focusing

on higher-level concerns. Paraphrasing Norman [Norman 98], it should be “possible to

have all the material needed for an activity ready at hand, available with little or no

1.2. TOWARDS A FRAMEWORK FOR ACTIVITIES 5

mental overhead: tools, documents, and information are gathered together into packages

manually designed for the particular activities in which they participate”.

The computer tool requires so much attention and consciousness from the user that

often an otherwise simple task becomes a laborious challenge. For example, setting

up the computing environment and opening applications and documents required for

some activity are not central to the activity itself and should be a simple, possibly

automated operation. However, in many cases they require too much attention from

the user. This characteristic may not have originated massive rejection in the adop-

tion of personal desktop computers, but it may be decisive in the success of ubiquitous

computing systems, particularly in public spaces. Visitors to public spaces will not sit

in a comfortable chair in front of a desk, but will rather be moving within buildings

or streets, possibly in a hurry, with one or both hands taken. Furthermore, ubiqui-

tous computing systems are going to be used by every kind of people, and not only by

a computer-educated population. Such a computing system cannot require too much

attention, if possible any attention at all, so that humans can use the computer un-

consciously [Satyanarayanan 01]. Ideally, people should perform an activity requiring

computing tools as they perform any other activity, by focusing on the activity itself,

and using the computing tool as naturally as other tool. There is thus the need to center

the design and development of ubiquitous systems in the human activity, in order to

bring computing closer to people and to transparently support activities that take place

in the physical world [Abowd 00, Banavar 00, Christensen 02, Sousa 02, Norman 05].

Past ubiquitous computing prototypes aimed at assisting visitors to public spaces

have been targeted to specific mobile devices such as PDAs or mobile phones. Besides

limiting the user population to owners of a specific type of device, visitors have to

previously download and install a fully fledged application into their device or to use a

costly and cumbersome connection to a mobile internet site. Besides the low probability

that such an application owns enough knowledge about the local resources available as

the user roams throughout the space, it requires from users to concentrate their attention

on a tiny application interface, possibly using both hands, and diverting them from the

physical environment and the activity at hand. As stated by Abowd [Abowd 00],

6 CHAPTER 1. INTRODUCTION

The focus for the human at any one time is not a single interface to

accomplish some task. Rather, the interaction is more free flowing, like our

interaction with the rich physical world of people, places, and objects in our

everyday lives.

Ubiquitous computing is not about carrying a computer everywhere neither about

keeping the focus on that computer; ubiquitous computing must avoid the focus on the

computer [Weiser 91]. Therefore, it is likely that people will interact with ubiquitous

computing environments by the means of many different, heterogeneous devices (spread

over the physical space or carried by themselves), each device being used as a tool for

accomplishing a particular aspect of their activity [Sousa 05]. This interaction, although

distributed, is naturally perceived by people as part of the same activity, like we do,

e.g., when we use different tools – knives, peelers, pans, etc. – for cooking.

1.2.2 Managing activity-centered, distributed, personalized in-

teraction

Following the presented argument, the solution I propose for the occasional visitor assis-

tance problem is based on these main assumptions: a) public spaces have a ubiquitous

computing infrastructure providing most of the visitor assistance; b) visitors may inter-

act with many different local devices during the same activity execution (distributed in-

teraction); c) assistance to visitors is provided in an activity-centered manner. Notwith-

standing, an all-embracing perspective of the problem must consider some additional

aspects next described:

• The information and hardware resources a ubiquitous computing environment

owns may not be sufficient for providing an effective assistance to visitors. This

is particularly evident when personalization is desirable, because the local infras-

tructure is not likely to own information about visitors profile in advance. The

local infrastructure may thus have to rely on the visitors’ personal domain (e.g.,

profile information or personal interaction devices) for providing a personalized

assistance.

1.2. TOWARDS A FRAMEWORK FOR ACTIVITIES 7

• In a scenario in which every public space is equipped with a ubiquitous computing

environment for assisting visitors, this kind of system becomes as commonplace as,

for example, the electricity or heating infrastructures in a building. Nowadays, no

one requires an electrician or a plumber in order to manage electricity or heating

provisioning in the different rooms of a building. Control boards and switches can

be easily manipulated by any adult person with minimum know-how. Likewise, I

assume that ubiquitous computing infrastructures and visitor assistance are man-

aged by individuals who are not necessarily ubiquitous computing experts, but

mainly have a rather common computer know-how.

• As stated by the Greek philosopher Heraclitus, the only thing that is constant

is change. In a society where everything is transient, public spaces follow every

cultural and technological change. The nature and structure of activities in a

public space change over time. Likewise, assistance to visitors’ activities evolves,

as new interaction devices become popular or new assistance features are required.

1.2.3 Thesis

The goal of this work is to develop an activity-centered ubiquitous computing frame-

work targeted at assisting occasional visitors to public spaces. Specifically, this disserta-

tion describes a conceptual framework for modelling activities and user interaction and

its instantiation into a ubiquitous computing platform supporting the deployment and

management of assistance to visitors. This approach gives to the activities supported by

public spaces a central role in system conception and perception. Visitors, public space

managers, and ubiquitous computing developers all share a similar perspective of how

ubiquitous computing tools may help carrying out activities. This dissertation shows

that:

Ubiquitous computing environments employing an activity-centered frame-

work for user interaction and system design, based on a simple conceptual

model and on the usage of elementary, everyday interaction devices, are able

to: a) provide effective walk-up-and-use assistance to activities performed by

8 CHAPTER 1. INTRODUCTION

occasional visitors; b) ease the task of public space managers in deploying or

reconfiguring the support to activities, with the help of appropriate tools; and

c) ease the task of ubiquitous computing specialists in developing the support

for new assistance features.

1.3 Challenges

Demonstrating the thesis above involves dealing with many challenges, more or less cen-

tral to the thesis statement. This section describes all these challenges, with particular

focus to those which are more deeply related to the thesis statement. The next section

discusses the research goals, indicating how challenges are addressed – some of these

challenges are partially addressed, either because they are not central to the thesis or

because they imply an effort which is beyond the scope of a PhD thesis.

1.3.1 Activity model

Past research on activity models for supporting the analysis, design, and development

of computer systems (e.g., [Jacob 86, Myers 00]) shows evidence of its suitability for

desktop scenarios. However, ubiquitous computing may be taking protagonism away

from the desktop, changing the way systems are designed and built and, therefore, how

activities are modelled. We understand activity model as the way a particular activity

structure is represented in a human- and machine-understandable vocabulary, so that

it can be both effectively communicated to users and implemented in a ubiquitous

computing infrastructure. Representing how humans perform an activity is a difficult

task, as people may have different mental models of the same activity. Furthermore,

the informal and rather unpredictable nature of the activities addressed in this work

severally affects the efficacy of more structured approaches to formalizing the steps that

compose an activity, such as those used in workflow systems [Suchman 87, Bardram 97,

Abowd 00]. There is therefore a trade-off between the need for a generic model of activity

that can be instantiated by an activity-centered infrastructure for different application

scenarios and the risk of imposing our view of activity on heterogeneous mind-sets.

1.3. CHALLENGES 9

Besides the psychological aspect, other factors increase the difficulty of modelling

human activity. Contextual and personal factors are especially challenging. For exam-

ple, disabled people have to perform an activity possibly in a very different manner; a

person that arrives at the hospital reception may go there for different reasons – for

visiting a relative, for equipment maintenance, etc. Furthermore, the resources that

may be used for accomplishing an activity are everything but static: personal resources

brought by visitors are expected to be transient and available only for the time the visit

lasts; local resources may vary from one moment to the other, e.g., due to breakdowns.

Collaborative scenarios add to the complexity of the activity model: role management,

coordination of users’ actions, and all the aforementioned issues characteristic of indi-

vidual activities that acquire more complexity in collaborative settings.

Finally, as activities are seldom carried out without interruption, the activity model

must cater for activity resumption with no mental overhead for the user. This adds

state to activity modelling, but adds as well human-computer interaction concerns, as

state must be expressive enough for both system activity recovering and helping users

remember in what point the activity was left [Abowd 00].

In summary, we need to define an activity model that: a) is generic enough to be in-

stantiated in any activity while not imposing a vision of activity that is so restrictive that

it does not fit heterogeneous mind-sets; b) considers contextual and personal characteris-

tics of activity, required resources, collaborative scenarios, and interruption/resumption;

c) is simple enough to be used by public space administrators that have shallow com-

puter knowledge and to be quickly learnt by ubiquitous computing developers, while

being powerful enough to support a wide range of solutions.

1.3.2 User interaction model

This work assumes that the user population is composed of occasional visitors to a

public space and that the interaction with the ubiquitous computing infrastructure is

going to be distributed among several devices. We are thus dealing with people that

have a sporadic or even a single contact with the ubiquitous computing infrastructure,

and, therefore, have a very short time to learn how to use the available ubiquitous

10 CHAPTER 1. INTRODUCTION

computing resources. Among the issues posed by this situation, there is primarily the

initial interaction with newly arrived visitors, i.e., making them aware of the available

support to activities. For example, as people see arrows in the streets or buildings

indicating destinations, the local infrastructure should indicate to users the available

support to activities and how to use it. This is mainly a non-system issue, but with

significant weight in the system usability. Moreover, while users accomplish an activity,

the system should provide them with a non-obtrusive support, i.e., avoiding interaction

mechanisms that distract users from their activity. Preferably, the interaction model

should not require from visitors a cognitive effort that goes beyond the reasonable for

such a walk-up-and-use system. The reasonability of this effort is related with the

required learning time and with how naturally system usage integrates with the activity.

When designing for an activity, overall simplicity in features play a prominent role

[Abowd 00]. Ideally, usage instructions should not be needed at all, if user interfaces

are simple enough and self-explainable.

Heterogeneity is a ubiquitous characteristic of ubiquitous computing, particularly

regarding user interaction. Ubiquitous computing environments may be instrumented

with a broad variety of interaction devices and they take in people bringing their own

heterogeneous personal devices. Using a device-dependent approach for designing user

interaction is overwhelming, as new devices and interaction possibilities are constantly

coming up. Powerful abstractions are needed for dealing with this heterogeneity. Fur-

thermore, the user interaction model must help people feel that all interactions, whatever

device is used, are integrated and all part of the same activity.

In summary, the user interaction model must: a) facilitate visible, non-obtrusive,

and simple interaction means; b) provide abstractions powerful enough to deal with

heterogeneity while not compromising simplicity of interaction; and c) make multiple

interactions be perceived as being integrated and part of the same activity.

1.3.3 User interface management

After a ubiquitous computing infrastructure is deployed in a public space, additional

challenges have to be considered: support to new activities may be needed, new inter-

1.3. CHALLENGES 11

action devices may become available, or simply current support may have to be recon-

figured. This requires someone to manipulate a tool representing activities and devices

in order to configure the ubiquitous computing user interface that is available to visi-

tors, by adding new activities, new devices, associating devices to activities, etc. This

is, to a certain extent, similar to graphical user interface management tools, in which

graphical user interface widgets (e.g., buttons, list boxes, menus, etc.) are manipulated

and associated to events and actions in order to build a user interface.

Desktop user interface management in general is usually assigned to computer spe-

cialists, because it requires specialized computer knowledge. Desktop user interface

management is mainly done at software houses, where computer specialists abound.

However, ubiquitous computing user interfaces require deeper specialized knowledge

about the place and the activities and may have to be managed in situ, at the location

where they are deployed. The problem is that for many public spaces, it may not be

possible to hire specialists for managing a ubiquitous computing user interface. If we

want people with common computer knowledge to manage a ubiquitous computing user

interface, they have to be provided with very high level tools that ease their task. The

main challenge here is what kind of tool, abstractions, and metaphors to use, both for

representing and configuring interaction devices and the support for activities.

The usual desktop user interface management tools are not suited to ubiquitous

computing, due to the distributed character of interaction and, above all, to the type

of user interface, which is no longer the screen-keyboard-mouse solution, but is rather

an amalgam of different types of devices, with different sizes (tending to smaller ones)

and form factors. I am not referring only to mobile phones, but also to other modali-

ties of interaction, e.g., voice recognition and synthesis, public displays, radio-frequency

identification, gesture recognition, etc. We have thus to devise new user interface man-

agement tools dealing with new forms of interaction. These tools have to deal also with

a new dimension in user interface management: the physical space. Interaction devices

are spread all over the space and must be contextualized into that same space by the

tool. Furthermore, such a management tool must keep the user away from the details

of how interaction devices interoperate with the infrastructure. It is also expected that

12 CHAPTER 1. INTRODUCTION

such a tool is extensible, i.e., able to support new interaction devices and other local

resources without having to rebuild it.

Another challenge of such a tool is how to create the conditions for avoiding config-

uration or manipulation errors made by user interface managers, i.e., providing a tool

with a user interface that is designed in a way that errors are impossible or at least diffi-

cult to be made. This is what Myers calls path of least resistance: leading users towards

doing the right things and away from doing the wrong things [Myers 00]. Achieving a

highly usable and low error prone tool and, at the same time, powerful enough to enable

the deployment and configuration of useful support to activities is a major challenge.

In summary, the challenges posed by ubiquitous computing user interface manage-

ment include: a) the identification of adequate tools, abstractions, and metaphors for

non-specialists to manipulate infrastructure support to both simple and complex activ-

ities; b) dealing with new forms of interaction, while keeping the user away from the

low-level details of interaction devices; and c) enabling easy evolution by the seamless

addition of new interaction means and other resources.

1.3.4 Facilitating system development

As seen in the previous sub-section, a ubiquitous computing system supporting a par-

ticular public space is going to be frequently updated either with new functionalities or

with new interaction devices. Besides the user interface management aspect, there is

also the logic implementation problem, which requires the development of software spe-

cific to the activities being supported. For example, if a message posting functionality

is required in a public space, software has to be developed to process incoming messages

(e.g., through SMS), to store it into a database, and to allow later visualization through

some output device (e.g., a public display). If later a microphone interface is added,

new software has to be written for supporting voice message input.

Software development tasks should require a minimum effort in order to minimize

system development costs and to facilitate the introduction of new functionalities and

interaction devices. If developing a new functionality is intimidating or expensive, the

support provided by ubiquitous computing spaces becomes sooner or later unsuited

1.3. CHALLENGES 13

to visitor needs or obsolete. However, minimizing ubiquitous computing development

costs requires a combination of characteristics that, per se, is not easily accomplishable.

Firstly, developers must deal with a simple ubiquitous computing architecture that does

not pose learning and development obstacles. All the different interaction devices should

be effectively represented in an abstract manner, so that developers do not have to bother

with low level operational details. Furthermore, developers should not care about how

the infrastructure processes device manipulation and actuation, but rather focus solely

on how their particular piece of functionality reacts to user interaction. Besides this

clear demarcation of concerns, the infrastructure must provide tools that help reducing

the amount of code that programmers need to produce when creating the support for a

new functionality and thus speeding up development pace.

A nowadays indispensable characteristic of any software infrastructure is the degree

to which it is extensible. Developers should easily extend the ubiquitous computing

infrastructure here considered with new interaction devices or scenario-specific func-

tionalities without needing to rebuild the infrastructure code. The challenge here is to

define contracts between the infrastructure extension points and extension developers

so that such contracts are easily learnable by developers and enable the development of

extensions with different levels of complexity.

In summary, a developable ubiquitous computing infrastructure implies several chal-

lenges: a) the combination of developer tools characterized by an abstraction level

enabling easy and rapid development of new ubiquitous computing functionalities with

the need of making the most of the available interaction devices; and b) providing ex-

tensibility mechanisms that are easily learnable and that enable the development of

extensions with different levels of complexity.

1.3.5 Integrating local infrastructure and personal resources

Providing a personalized experience to occasional visitors is a specially challenging issue

to ubiquitous computing systems. An activity cannot be supported in a personalized

manner solely by the ubiquitous computing infrastructure or by the personal resources.

Local infrastructure and personal resources have to integrate with each other in order to

14 CHAPTER 1. INTRODUCTION

achieve both a personalized support and a thorough exploration of the local resources.

However, since users may have not previously visited the space, we cannot assume

the existence of a local personal profile or information about a particular user and

her/his resources. This makes integration with personal resources a very hard challenge,

with implications at every step of the support to an activity. Firstly, visitors must

be identified by the local infrastructure. This must be achieved for every interaction,

whether the visitor carries a smart phone, wears a smart tag, or brings nothing at all.

Furthermore, visitors have to consent in being identified, even if this identification is

done, e.g., through a pseudonym. Assuming that visitors may employ different devices

to interact with the infrastructure, there is the additional challenge of associating to a

single identity all the different devices or interactions made through it.

The second integration challenge arises when the support to the activity requires

the access to the users’ personal resources (profile, personal equipment, context, etc.).

The issues associated to this challenge can be grouped into resource access and resource

management. Regarding resource access, there is first the problem of making personal

resources known to the local infrastructure, i.e., mechanisms for personal resource pub-

lication when a visitor arrives to a ubiquitous computing environment. After this step,

comes the problem of providing access to personal resources only by authorized parties.

For visitors to trust a local infrastructure, there must be some form of physical or digital

certificate as well as the guarantee that visitor privacy is respected. The access to the

personal resources itself is possibly the major challenge, given the potential heterogene-

ity of profile and context services or personal appliances. The system must be able to

deal with this heterogeneity in order to avoid putting aside visitors without the required

resources.

The resource management issue is particularly pertinent in the case the support to

an activity depends both on local and personal resources. Some activities may include

tasks that are supported alternatively between the local and the personal domains (e.g.,

switching between a user device display for viewing personal, sensitive information and

a wall-sized display for achieving better visualization quality for non-sensitive informa-

tion). These transitions should occur smoothly, without disturbing the user, and, when

1.3. CHALLENGES 15

user interaction is involved, with some cues driving the user’s attention to the new

interaction device.

In summary, integrating local and personal resources poses two main challenges:

a) identifying user interactions and associating them to a single user identity; and b)

accessing and making use of personal resources while dealing with heterogeneity and

privacy.

1.3.6 Activity experience capture, sharing, and customization

The ways of performing an activity, or praxis, evolve over time. When getting trained

at some activity, we share its praxis and at the same time this praxis is continued

and possibly changed [Bødker 91a]. This feedback loop in the course of an activity

forms the basis for a learning process embedded in the activity itself [Bardram 97]. The

practitioners of one activity remember their own experience, share it with others orally

or through documents, and introduce the modifications that best suit their needs. In the

context of activities performed at a particular place, remembering previous experience

or sharing it with others is especially helpful to visitors that do not return often to

perform that activity or that are unexperienced at all. However, it is not trivial to

describe experience in a human understandable manner and, especially, to choose –

pre-hoc or ad-hoc – which events are sufficiently relevant to be captured. A solution

may be to allow users to insert annotations into the experience record, so that they

enrich the information that others (or themselves) may easily access later. However, the

effectiveness of this solution may be severely affected by the additional effort it requires

from users.

As people have their own way of doing things, and as part of a process of activity

evolution, visitors may want to customize recurrent activities in a specific place, so

that next time they perform the activity they are better supported or they transmit to

others better ways of performing that activity. Activity customization involves several

challenges: to specify which parts of the activity can be customized; to what limit

this customization can be done; how to formalize the customization; and how this

customization influences following activity instantiations.

16 CHAPTER 1. INTRODUCTION

In summary, the challenges that activity experience capture, sharing, and customiza-

tion may be reduced to the following: a) how to capture and formalize previous expe-

rience description and, at the same time, making it human-understandable; b) how to

enable and define the boundaries of activity customization.

1.4 Research overview

Among the challenges identified in the previous section, some are less central than others

to the problem of supporting activities performed at a particular place. Moreover,

those challenges are mostly by themselves a topic for a research project on its own.

I have thus decided to focus my research on a restricted set of challenges, which I

consider to be essential in achieving my vision of activity-centered ubiquitous computing

in public spaces. The results of my research are the development of a conceptual model

of activity and user interaction and a ubiquitous computing infrastructure based on it

for supporting activities performed by occasional visitors. This framework is not only

targeted at end users – the visitors – but as well at public space facility managers and

ubiquitous computing developers.

Undertaking an activity-centered approach to ubiquitous computing system design

requires an understanding of how humans think about and carry out their activities. I

believe that the best approach to overcome the activity and user interaction modelling

challenges is to ground my research on previous work on human activity analysis. A

theoretical framework of human activity provides ubiquitous computing researchers with

an agreed set of terms to describe activity and with concepts that drive them in the

construction of systems that intend to support activity [Constantine 06]. Among several

frameworks produced mainly by the fields of psychology and philosophy, I chose Activity

Theory [Luria 76, Leontiev 78, Vygotsky 78, Leontiev 81, Wertsch 81, Engeström 87,

Engeström 99b], a conceptual framework for analyzing human activity developed during

the twentieth century, as the background for this work, based on its maturity acquired

along several decades of research and its set of simple and solid concepts. These concepts,

particularly those related to the structure of human activity (the levels of activity,

1.4. RESEARCH OVERVIEW 17

actions, and operations), form the basis of the activity model I propose.

For modelling user interaction, I also followed an approach based on simple con-

cepts. Given that user interaction with a ubiquitous computing system is done through

multiple, heterogeneous means and, in many cases, with little common characteristics, I

reduced user interaction analysis to basic human-computer interaction concepts: stim-

ulus and response. I assume that, for a given stimulus through a given interaction

medium, a response is produced, synchronously or not, through the same medium or

through other medium or set of media. Interaction media are assumed to be elementary

ones, such as voice input/output, gesture recognition, RFID tag reading, SMS, public

screen display, etc.

The solution I propose for the ubiquitous computing user interface management

challenge is based on the activity-centered conceptual model introduced above and on

the usage of a graphical user interface authoring tool. Such a tool employs an activity-

centered approach, so that the person in charge for the public space facilities can manage

the local environment with activities in mind. The user – the facilities manager – thinks

of activities, actions composing it, and interaction devices used for executing actions.

For example, when a new activity is going to be supported, the authoring tool has to

provide the manager with all the necessary information about local resources (devices,

sensors, available actions, etc.) so that she can decide how to leverage the resources

in order to support visitors. Furthermore, such a tool provides graphical information

about the physical structure of the public space (e.g., in the form of plans) and how the

devices are spread all over the space, allowing the user to reorganize it if needed.

In order to ease the task of developing support for new actions, this work intends to

provide software developers with high-level programming abstractions for representing

stimuli and responses, with minimum dependence on the interaction medium, and fol-

lowing fundamental principles of framework design [Cwalina 05], such as offering a low

barrier to entry (to ease the task of those willing to learn by experiment) or providing

self-documenting object models (derived from the interaction and activity models de-

scribed above). This goal is achieved by the means of a software library, described in

Chapter 4.

18 CHAPTER 1. INTRODUCTION

The following subsections describe the method for validating the thesis and present

the contributions of this dissertation.

1.4.1 Thesis validation

The evaluation of this research implies the validation of the thesis stated in section 1.2.3.

This involves demonstrating that the proposed model of activity and user interaction:

a) is implementable in a ubiquitous computing infrastructure; b) enables a visitor ex-

perience enhanced by the capabilities of ubiquitous computing, making the visitor feel

effectively assisted in the activity in hands, without distracting him or her; c) is suitable

for the needs of public space managers, i.e., it provides clear benefits regarding produc-

tivity and manageability in deploying or reconfiguring the support to activities, with

the help of appropriate tools; and d) eases the task of ubiquitous computing specialists

in developing the support for new assistance features.

The first validation goal is achieved by the implementation and usage of a ubiquitous

computing infrastructure derived from the proposed interaction and activity models –

the ActivitySpot infrastructure.

The evaluation of the end-user experience with ActivitySpot-based support to activ-

ities is accomplished by several user studies, based on real scenarios, which analyze: the

compatibility of the proposed model with the user’s conceptual model; how successful is

user interaction (e.g., without the need for previous training or without distracting from

the actual activity); and the degree of usefulness assigned by end-users to the proposed

approach compared to other approaches (e.g., mobile phone application or public kiosk).

The public space management tool is evaluated by user studies with individuals

who usually perform public space facilities management. These users are given a set of

management tasks (e.g., configuring the support for a new activity or reconfiguring the

support for an existing activity) which they have to accomplish. Their performance in

achieving the tasks and the opinion regarding the tool is evaluated.

Finally, the evaluation of the software library for ubiquitous computing developers

is done by analyzing the solutions developed for the end-user experiences, taking into

account productivity and provided power, i.e., how much does the software library allow

1.4. RESEARCH OVERVIEW 19

for.

Chapter 5 addresses in detail the thesis validation.

1.4.2 Contributions

This work targets the core of the challenges posed by the support to activities performed

by occasional visitors. This work can contribute importantly to the area of ubiquitous

computing by proposing a framework that facilitates the development and deployment

of effective ubiquitous computing solutions. The main contributions of this work are:

• An activity-centered conceptual framework for ubiquitous computing environments.

The framework is composed of an activity model and a user interaction model.

The activity model, informed by Activity Theory and developed with simplicity

of concepts as requirement, is intended to effectively support users of a ubiqui-

tous computing system in public space scenarios, particularly when those users are

occasional visitors. The interaction model is based on elementary, everyday in-

teraction means, which fosters short learning time and usability. (see sub-section

1.3.2). Furthermore, the activity-centered character of the proposed framework

makes user interaction in a ubiquitous computing environment as natural as inter-

acting with other everyday tools and, as described in the next items, the model is

successfully implemented and is effective in most of the issues around design and

deployment of ubiquitous computing solutions for public spaces.

• A run-time infrastructure implementing the conceptual framework. This infras-

tructure is composed of a set of components and architectural abstractions over

which the support to activities depends. The infrastructure also includes a run-

time environment coordinating user interaction and managing the execution of

activities.

• An authoring tool for public space managers for configuring the support to ac-

tivities. This graphical user interface tool is based on the proposed conceptual

model, representing activities, actions, interaction devices, and physical space. Its

20 CHAPTER 1. INTRODUCTION

users can assign actions to activities, devices to actions, and represent device dis-

tribution over the physical space. Further configuration is also possible, such as

defining context-based execution conditions for activities and actions. With this

tool, public space managers with common computer knowledge can easily config-

ure ubiquitous computing support to activities without having to care about the

internals of the infrastructure (see sub-section 1.3.3).

• A software library for supporting the development of new actions. Developers

do not have to care about how the activity is composed or where the interac-

tion devices are disposed or even about the low-level interaction mechanisms (see

sub-section 1.3.4). Developers only have to care about writing the code for stim-

ulus reaction behavior, using high-level abstractions for representing stimuli and

responses, with a weak dependence on the type of interaction medium.

1.5 Plan of dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents other works

which are more or less closely related to mine, namely works on ubiquitous computing as-

sistance to visitors, activity-centered computing, ubiquitous computing infrastructures,

applications of Activity Theory, among others.

Chapter 3 details my proposed model for human activity and user interaction in

ubiquitous computing environments. It begins with a deeper description of Activity

Theory, relating it with the specificities of activities performed by occasional visitors, and

showing how it informs the construction of the activity model I propose. This chapter

completes with a description of the whole proposed conceptual framework, including the

user interaction model.

Chapter 4 is dedicated to the realization of the proposed conceptual framework.

This is done with three elements: a run-time infrastructure, a software library, and

a graphical user interface authoring tool. The run-time infrastructure supports the

deployment and execution of the actual ubiquitous computing support to activities.

The software library provides the means for developing the support to new activities.

1.6. SUMMARY 21

The authoring tool is targeted at public space managers for creating configurations of the

support to new activities or to reconfigure existing ones. For each software framework

element, I enumerate technical requirements, describe its implementation, and discuss

how the implementation meets the requirements.

The method and the steps employed for validating my thesis are described in Chapter

5. Validation comprises three perspectives: the end-user perspective (actual visitors

interacting with the system in a public space); the manager perspective (authoring tool

users); and the developer perspective (software library users).

Finally, the dissertation concludes with final remarks and with possible opportunities

for future work.

1.6 Summary

Ubiquitous computing is definitely a promising solution for supporting occasional vis-

itors to public spaces, providing them with assistance in their activities. This thesis

is based on the statement, shared by many authors, that the best approach to make

ubiquitous computing truly transparent and natural to users is an activity-centered

one. For this, I ground my work on an activity analysis framework developed during

the twentieth century: Activity Theory. Activity Theory is still evolving and has been

applied in different activity-centered approaches in several computer science domains.

Besides the activity-centered character, I consider that ubiquitous computing solutions

should be grounded on distributed user interaction with everyday, elementary interac-

tion means (e.g., public screens, radio-frequency or magnetic cards, buttons, SMS, etc.),

rather than on scenario-specific devices (the device-dependent fully-fledged application

is the common example). Distributed interaction with simple devices is more similar

to our everyday interaction with physical artefacts and more appropriate to the needs

of occasional visitors to public spaces with no time for learning how to use a complex

system. An activity-centered approach also enhances or, at least, alleviates the task of

people who arrive to a public space and want support for the specific activity they have

in mind, rather than having to deal with a functional perspective that is presented to

22 CHAPTER 1. INTRODUCTION

every person, no matter what activity they are going to perform.

This vision poses several technical and conceptual challenges, with particular focus

on: a) the activity and user interaction models, i.e., how to abstractly represent human

activity and user interaction so that it can be effectively instantiated in any specific

activity scenario; b) what solutions to provide when considering that a ubiquitous com-

puting infrastructure in a public space must be manageable by staff people without

ubiquitous computing expertise; c) how to design a ubiquitous computing framework so

that it can evolve as the need for new solutions emerges, namely by allowing developers

to easily extends the infrastructure with the support for new actions.

This work intends to produce an activity-centered conceptual framework for design-

ing and deploying ubiquitous computing solutions for activities in public spaces. This

framework is used to develop a software infrastructure for running the support to human

activities and a set of tools for public space managers configuring that support and for

ubiquitous computing specialists for developing the support to new actions. All these

contributions are evaluated by user studies carried out for the three different frame-

work user perspectives: the end-user perspective (actual visitors interacting with the

system in a public space); the manager perspective (users of the authoring tool); and

the developer perspective (users of the software library).

Chapter 2

Related work

My work deals with research challenges that cover several infrastructure and user inter-

action aspects, acquiring a multi-disciplinary character with connections to a broad set

of the relevant research that has been done in the ubiquitous computing field.

This chapter is divided into eight main sections. The first one is dedicated to ubiq-

uitous computing systems aimed at supporting visitors to public spaces. Next, I dedi-

cate three sections to activity-based research, namely activity-based computing, activity

modelling, and applications of Activity Theory. I then explore connections with the user

interaction fields, with sections dedicated to distributed user interaction and end-user

programming in ubiquitous computing environments. I finally describe relevant generic

ubiquitous computing infrastructures and close the chapter with work on the integration

between the personal domain and local infrastructures.

2.1 Assistance to visitors

Several systems have been proposed and made publicly available for assisting visitors

in many different scenarios. Audio guidebooks for museum visitors are a pervasive

example, available mainly as an audio substitute for conventional guidebooks. Later,

multimedia guides were introduced and brought an additional sensory experience to

visitors. Multimedia guides still suffer from the shortages of audio counterparts – the

lack of context-awareness and personalization – and introduce the problem of excessive

23

24 CHAPTER 2. RELATED WORK

attention required from users manipulating the mobile multimedia device. Digital kiosks

are in principle more usable than an application in a mobile multimedia device. However,

due to its dimensions, they cannot follow visitors wherever they go and have to be shared

among users.

I present here a set of ubiquitous computing systems which I consider to be relevant

forward steps in enhancing visiting experiences. I divide them into three main groups:

context-aware mobile applications; universal interaction systems; and non-conventional

interaction models.

2.1.1 Context-aware mobile applications

By context-aware mobile applications I mean context-aware, rich client applications

running on a mobile device such as a PDA or a smart-phone. All the following systems

use some context variable (mainly location) to generate the information presented to

visitors.

Cyberguide

The initial prototypes of Cyberguide [Abowd 97] were designed to assist a very specific

kind of tourist – a visitor in a tour of the GVU Center Lab at the Georgia Institute of

Technology, during their monthly open houses. The prototype application was designed

to run on commercially available PDAs and pen-based PCs, in which context-awareness

simply means the current physical position and orientation of the Cyberguide unit.

Cyberguide users interact with a rich application, composed of menus, buttons, and

information panels dependent on the user location.

Cyberguide is divided into several independent components, personified in terms of

the people a tourist would like to have available while exploring unfamiliar territory:

cartographer (maps of the physical environments that the tourist is visiting); librar-

ian (realized as a structured repository of information – local to the device – relating

to objects and people of interest in the physical world); navigator (realized by a posi-

tioning module that delivers accurate information on tourist location and orientation);

messenger (realized as a set of wireless communications services).

2.1. ASSISTANCE TO VISITORS 25

Outdoor Cyberguide prototypes were also developed, assisting a tour of the Georgia

Tech campus and surrounding neighborhoods or assisting tourists in pursuit of refresh-

ment at neighborhood establishments in Atlanta.

The Conference Assistant

The Conference Assistant [Dey 99] is a context-aware application for assisting conference

attendees and presenters, namely by helping them to decide which activities to attend,

to provide awareness of the activities of colleagues, to enhance interactions between

users and the environment, to assist users in taking notes on presentations and to aid

in the retrieval of conference information after the conference concludes.

The Conference Assistant application runs on platforms such as laptops and handheld

devices. It uses several dimensions of context and personal data, namely identity, pref-

erences, time, location, and activity. For example, on the conference schedule, certain

papers and demonstrations are highlighted to indicate that they may be of particular

interest to the user. When the user enters the conference room, the Conference Assis-

tant automatically displays the name of the presenter and the title of the presentation,

allowing the user to create notes of her own to attach to the current slide or Web page or

to control the presenter’s display at the end of the presentation, bringing up a question

and allowing everyone in the room to view the slide in question.

GUIDE

GUIDE [Cheverst 00] is a rich, context-aware application specifically designed to assist

visitors to the city of Lancaster. The information presented to visitors is tailored based

on the visitor’s user profile and contextual information, including the physical location

of the hand-held unit where GUIDE is running.

The user interface to GUIDE is based around a modified browser metaphor. GUIDE

users can access location-aware information, access interactive services (e.g., booking of

hotel accommodation), send and receive textual messages, and create a tailored tour of

the city, which dynamically adapts to visit durations and schedules.

The network infrastructure that is used by the GUIDE system comprises a number

26 CHAPTER 2. RELATED WORK

of interconnected wireless cells. A single cell-server is associated with each cell and this

server is responsible for broadcasting information to GUIDE units as they enter the

cell-server’s zone of coverage.

Hermes

Hermes [Driver 04] is a software framework for mobile, context-aware trails-based appli-

cations targeted at visitors to public places. A trail can be thought of as a collection of

locations, together with associated information and activities, and a dynamically recon-

figurable recommended visiting order. The trail is a collection of connected locations

rather than a strict sequence since it may contain alternative sub-routes to cater for

such variables as different modes of transport or other user preferences. Trail activities

can be either mandatory or optional, and each activity has a priority value which is

used to rate its importance relative to other activities.

Hermes was evaluated as an application for student assistance in performing campus-

based activities in their first day at the college. Students used their Hermes application

to create a personalized route from the student registration point, to any library on

campus, and on to a specific lecture theatre. Each point on the trail has an associated

task (and subtasks) i.e., register, attend introductory lecture with course director. The

trail is presented on an augmented digital map of the campus with routes drawn be-

tween each activity point, and the user’s current location denoted. At all times, the

users personal and environmental context can dictate that the trail being followed is

dynamically reconfigured to reflect the relationship between their trail activities and

the current state of their environment.

2.1.2 Universal interaction

The purpose of universal interaction is to provide mobile users with a single interface

– a kind of universal controller – to all the ubiquitous computing services and devices

available in the physical environment, assuming that all these resources implement the

same type of interface. Visitors to public spaces using a universal interaction tool can

explore the ubiquitous computing environment for information and services needed for

2.1. ASSISTANCE TO VISITORS 27

their activity.

Universal Interaction System

The Universal Interaction System [Hodes 98] uses location-based services as the basis for

allowing a client device to function as a “universal interactor”, i.e., as a device that can

discover the control interface of any other devices in the environment and adapt itself to

control those devices. Universal interaction is addressed by avoiding assumptions about

the interface with devices, by allowing services to transfer an entire graphical user-

interface description to the client, and also through the use of a transduction protocol

that maps the control functions provided by the service into a user-interface supported

by the client device. The service interface specification is an XML document describing

the user-interface elements and how they map to service requests and responses. The

client interprets this specification and generates platform-specific user interface widgets.

Universal Information Appliance

The goal of the Universal Information Appliance (UIA) [Eustice 99] effort is to create an

environment in which a single device can serve as a person’s portal into the digital and

electronic domain. The user’s interface is presented by a wearable computer, which the

user presumably carries whenever he or she desires to be part of the electronic network.

In place of a platform-specific user-interface rendering, the UIA effort focuses on building

virtual machinery capable of rendering user interfaces on any device by translating a

common expression for user interfaces into a platform-specific implementation.

This approach is similar to the work of Hodes et al., though it includes additional

functionalities, such as providing local database access, storing the user’s profile infor-

mation, maintaining the soft state for the user’s current applications, and holding a

cache of knowledge to which the user wants immediate access. The UIA interface spec-

ification language – MoDAL – also differs in that it allows for flow control structures

and local variable assignment as well as allowing mobile clients to retrieve updates to

applications without having to retrieve a full copy of the updated application.

28 CHAPTER 2. RELATED WORK

Cooltown

The Cooltown project [Kindberg 00] adapts the web infrastructure to support nomadic

users, providing location-specific services in the places that such users visit and providing

interaction with the things that they encounter. Cooltown can be seen as a universal

interaction infrastructure, because it is based on a standard web browser, thus allowing

for universal access to web resources. Cooltown applies the notion of web presence

– being accessible over the web infrastructure – to people, places, and things. Things

become web-present by embedding web servers in them or by hosting their web-presence

within a web server. Places become web present by organizing web things into collections

under the management of a web service – a place manager. People become web present

by offering home pages with services to facilitate communications between individuals

and by offering information via location-specific place managers.

The typical user experience Cooltown seeks with web presence is that of collecting

links to points of web presence as users encounter them in the physical world. The usual

Cooltown scenario is a museum visit. As visitors tour the museum, their PDA receives

web URLs from wireless beacons – small infrared transceivers located close to pictures

or sculptures. The URLs link into a web of information about the items. Using the

PDA’s web browser, visitors can read or hear about the artist or the work and about

related art works in the museum. The URLs can also be used to select reproductions

of the artwork from the museum’s online store. The museum staff uses the same URLs

for inventory control as the URLs point to the object’s point of web presence.

2.1.3 Non-conventional interaction models

As seen in the previous sections, ubiquitous computing prototypes aiming at visitor

assistance are generally based on applications centralized in a hand-held unit. Regardless

of whether such applications are rich- or thin-clients, users usually interact with it by

focusing their attention on a small touch screen and controlling the application by

tapping in it with a stylus while holding the device with the other free hand.

Alternative interaction models have been proposed to support visitors, in which

mobile hand-held units are substituted by or combined with other interaction means,

2.1. ASSISTANCE TO VISITORS 29

such as head-worn displays, RFID tags, or public displays.

Touring Machine

The Touring Machine [Feiner 97] prototype assists users who are interested in the

Columbia University campus, overlaying information about items of interest in their

vicinity. Information is presented and manipulated on a combination of a head-tracked,

see-through, head-worn, 3D display, and an untracked, opaque, hand-held, 2D display

with stylus and track-pad.

As the user looks around the campus, his see-through head-worn display overlays

textual labels on campus buildings. At the top of the display is a menu of choices. When

selected, each of these choices sends a URL to a web browser running on the hand-held

computer. The browser then presents, depending on the choice, information about the

campus, the user’s current location, a list of departments, and a list of buildings.

Rememberer

The Exploratorium, an interactive science museum in San Francisco, was the test-bed for

a series of experiments with a ubiquitous computing application (part of the Cooltown

project) aimed at enhancing visits to a museum. Initially, it was a typical Cooltown

application: each exhibit had a set of associated web pages and point-of-information

station broadcasting beacons with URLs pointing to these pages; users were carrying a

PDA with which they picked up beacons and automatically presented (in a web browser)

information and suggestions related to that exhibit.

However, system evaluation reported user complaints about the interference of the

application in their activity. This led the research team shift to a simpler approach,

based on one of the functionalities provided in the previous prototype: a remembering

tool helping visitors build a record of their experiences, which they can consult after

their visit. The usage of the Rememberer tool [Fleck 02] has two moments: during the

visit, when users select objects they want to record and refer to later; and after the

visit, when users access a set of web pages containing their visit record (a list of exhibit

names in the order visited). Before starting, users visit a special base-station exhibit

30 CHAPTER 2. RELATED WORK

where a pseudonym is assigned to them. For remembering a specific exhibit, users bring

an RFID tag (some credit card shaped and some mounted in watches) within 10 cm of

the point of information reader, registering the exhibit under the user’s pseudonym and

briefly lighting up an LED. Moreover, to make the record more specific to the user’s

personal experiences of the exhibits, some exhibits were equipped with cameras which

captured snapshots of visitors when they triggered Rememberer with the RFID tag.

After the visit, visitors were given a URL where they could later view the visit record

and associated pictures.

The SUPIE airport assistant

The SUPIE airport assistant prototype [Stahl 05] aims at supporting navigation and

shopping tasks in an airport scenario. The navigation assistant, running on a PDA,

allows the user to query information on points of interest within a three-dimensional

navigational map. The user may formulate requests using combined speech and stylus

input. The navigation assistant finds a route from the starting point to the target and

creates situated presentations for each public display along the route to the target, which

gives incremental micro-navigational route instructions guiding users to the next display

until reaching their goal.

The shopping assistant provides product information and personalized advertise-

ments to the user and is composed of: an RFID-technology based infrastructure of

readers and labelled products to sense implicit user interactions, such as picking up a

product from the shelf or putting it into the shopping cart; a ceiling-mounted steerable

projector used to highlight products in the shelf; public displays; and a tablet PC-

equipped shopping cart. Upon entering the shop, the user picks up a shopping cart and

logs in to the system by a RFID customer card. As the user interacts with real products

on the shelf, their actions are recognized by a RFID reader and sent as events to the

application. In response, the assistant pro-actively serves product information to the

user, either on the tablet PC mounted at the shopping cart, or on any nearby public

display. The steerable spotlight helps the user to find certain products on the shelf, by

guiding their attention to the product in question.

2.2. ACTIVITY-CENTERED COMPUTING 31

2.1.4 Discussion

Most of the systems here described, specially context-aware mobile applications and

universal interaction systems, were designed for running on a PDA. Although PDAs excel

in assisting users with work-related tasks (e.g., agenda and contacts management, note

taking, etc.), they may hinder people visiting some new environment. As reported on the

Rememberer study, PDAs may distract users and interfere with their activities, because

users have to concentrate on the application and have to use both hands. The interaction

model proposed by universal interaction systems, namely those which generate user

interfaces on-the-fly based on service descriptions, is even more inadequate to visiting

experiences, because it implies an additional effort from users, by requiring them to

understand the semantics of interaction (the generated user interface is just a graphical

counterpart of the service syntactics). Moreover, most of the systems described in this

section require previous training from users.

All of these are critical aspects in the scenario I am dealing with and the reason

why my approach rather explores distributed interaction with simple devices embedded

in the physical environment or with personal devices requiring little or no attention to

be operated. A system like Rememberer is closer to my approach, by assisting visitors

while letting them focus on their activities.

2.2 Activity-centered computing

Activity-centered computing has been recognized as a fundamental concern in providing

optimal and distraction-free user experiences (see section 1.2.1). Placing human activity

at the core of a software system has been the major driver of several research projects.

This section describes the most relevant approaches to activity-centered computing,

either in desktop applications or in ubiquitous computing systems.

2.2.1 Desktop management systems

Although desktop screens have been improving in terms of resolution and dimensions,

the virtual space available for organizing ongoing activities (applications, documents,

32 CHAPTER 2. RELATED WORK

etc.) is never enough, specially when multiple activities are being carried out simultane-

ously. Several solutions have been proposed to deal with this issue, all of them employing

some sort of aggregation that encompasses applications, documents, and coordination

items supporting an activity. For example, the Rooms system [Henderson 86] allows

users to collect application and document windows that are part of the same activity

into screen-sized rooms, one for each activity. Users can then navigate between rooms

as they change their focus between activities. The Task Gallery [Robertson 00] is an-

other example, a kind of 3D version of Rooms, where the rooms are laid out along a 3D

hallway, with the current room on the wall at the end of the hall. When users want to

switch from one activity to another, they just have to navigate through the 3D hallway

and enter the desired room.

Similar to the above cited projects, the Kimura system [MacIntyre 01] aggregates

multiple related documents, tools, and exchanged messages as a single “working con-

text”. It separates the user’s desktop into two parts: the focal display on the desktop

monitor, and the peripheral displays projected on the office walls. The focal display

is used for the current working context, while peripheral displays are used to visualize

background activities as a montage of images garnered from the activity logs, helping

the user remind past actions and keeping him or her aware of updates to those working

contexts.

Finally, the UMEA system [Kaptelinin 03] represents a class of desktop management

systems that aggregate applications, documents, and other items into work projects

based on interaction histories. Whenever the user creates and selects a project in UMEA

as the current activity, the system starts to monitor user interactions (e.g., opening a

document, printing a file, sending an e-mail, etc.) and associate it to the current project.

The UMEA interface allows users anytime to browse their projects, manage sub-tasks,

set project deadlines in a calendar, move interaction histories from one project to another

(e.g., in the case the system associates an interaction to the wrong project), and open

respective documents, URLs, or folders.

2.2. ACTIVITY-CENTERED COMPUTING 33

2.2.2 Task mobility

Many users need to migrate their computing tasks from one computer to another. For

example, most would like to be working on a set of applications and documents at the

office and, when going home, moving them to their laptop, and keeping all their state

(open documents, window and cursor positions, etc.), all this with minimal effort. One

way of doing this is by redirecting a windowing environment to different computer dis-

plays – also know as teleporting [Richardson 94]. Assuming that the computer to which

the user moves implements the teleporting protocol, all the user has to do is to login to

the windowing server. The user’s computing environment of the last session (maybe at

another computer) is teleported to the new location, retaining all the applications and

documents in the state they were left.

Project Aura [Sousa 02] proposes another way of achieving task mobility, by captur-

ing user intent (e.g., through sensors or explicitly entered by the user) and mapping it

into a task corresponding to a set of abstract services. These services are further con-

cretized by the environment infrastructure (a desktop computer, a laptop, or a PDA)

providing continuous support to user tasks regardless of the environment in which the

user is. The Aura of each user represents the set of services required to accomplish a

task or activity and allows the user to move from environment to environment while

keeping the task in execution with the resources available in that environment. Unlike

teleporting, which requires homogeneous environments, Aura allows for tasks to be ex-

ecuted in heterogeneous environments provided the required services are available (e.g.,

editing a document in a laptop and continuing the same task in a PDA).

[Christensen 02] reported a pervasive computing system developed for supporting

collaborative activities within health-care settings. Nurses, physicians, etc., are equipped

with a PDA or use public displays in the patient rooms for carrying out their routine

activities. Task mobility is achieved by using the same principles employed by Aura,

i.e., user activities are described as an abstract composition of applications which are

instantiated in each computing environment the user is in. Unlike Aura, however, some

attention is paid to collaborative activities. For example, an activity snapshot can be

handed over to other users when there is a turn shift.

34 CHAPTER 2. RELATED WORK

2.2.3 Collaborative tools

The field of computer-supported cooperative work has produced a lot of activity-centered

computing research. Many approaches have been proposed for improving collaborative

activities management, by shifting the focus on the several applications used to carry

out collaborative work to the central unifying concept of activity. An example of such

approach is the ActivityExplorer [Muller 04], where the basic block for collaboration is

a shared object. Shared objects (e.g., message, chat, file, folder, screen-shot, or to-do

item) hold one piece of persistent information, and they define a list of people who

have access to that content. Users are allowed to combine and aggregate heteroge-

neous shared objects into structured collections as their collaboration proceeds. A set

of related, shared objects is called an activity thread, representing the context of a col-

laborative activity. The activity is carried out by inserting and editing shared objects.

As collaboration proceeds, users may include new members, or exclude old members

from selected shared resources in the activity thread.

Bellotti et al. [Bellotti 03] present the concept of thrask – threaded task-centric col-

lection – and the Taskmaster system as solutions for the problems of common e-mail

management tools that do not give enough relevance to the role of e-mail messages

in task and project management. In the thrask model, e-mail messages (individual or

message threads), files, and links can represent tasks. The Taskmaster automatically

groups together in a thrask any related incoming messages (replies in a thread, with

any attendant files or links) upon analyzing message data. Taskmaster lists thrasks

in its main pane together with incoming new (non-reply) messages, which appear as

single-item thrasks at the bottom of the list, rather like an email tool’s inbox. The two

other Taskmaster panes present thrask content (messages, attachments, and links) and

the content of individual selected items. Just as e-mail message content can quickly be

previewed, so can the contents of the other types of items such as web pages, spread-

sheets, presentations, and documents. In this way, Taskmaster feels less like a classic

application and more like a general task-management environment, handling a variety

of types of media.

2.3. ACTIVITY MODELLING 35

2.2.4 Discussion

Almost all the systems described in this section are, generally speaking, activity man-

agement systems. These systems were designed to assist users in effortless activity

switching or resuming, within a single computing environment or, in the case of task

mobility systems, between different, possibly heterogeneous computing environments.

A kind of activity-aware layer is added between the operating system and user appli-

cations. This acts like a substitute for a file explorer or an application menu in the

document- or application-centered perspectives. Furthermore, an activity is always exe-

cuted in the same environment or, at most, migrates from environment to environment,

but always running on a single device at a time.

In my work, the environment where activities are carried out goes far beyond the

personal computer: it is composed of multiple heterogeneous devices, with each device

assigned to specific actions within one or more activities. Instead of using the concept of

activity as an aggregation of applications and documents, I use it as a way to communi-

cate the user interaction model to users and to support integration of user interactions

with multiple devices within an activity.

2.3 Activity modelling

As an abstraction, the concept of activity has to be concretized into a machine-understan-

dable manner. Research on activity models has been done with several different goals.

This section describes those which are more closely related to my work, namely: a) defin-

ing the behavior of autonomous entities; and b) representing the way humans perform

an activity.

2.3.1 Directing autonomous entities

By autonomous entities, I mean artificially intelligent entities, such as software agents

or robots, that are able to behave autonomously, e.g., making decisions or reacting to

events in their environment. However, the level of autonomy of such entities is always

restricted by some human-defined plan or program describing, for instance, how the

36 CHAPTER 2. RELATED WORK

entity behaves in face of specific situations or what parameters are taken into account

when making a decision.

Most agent-based systems or robotics approaches [Simmons 98, Paolucci 99, Wise 00,

Look 03] adopt a solution for planning the behavior of autonomous entities that can be

summarized as follows. A global plan is defined to achieve some high-level goal. The

plan is decomposed in tasks and sub-tasks. Some tasks – simple tasks – correspond to

executable actions (run by some agent) while others are complex tasks made of several

simple tasks. In these systems, there is a component responsible for executing the plan,

by decomposing complex tasks into simple ones and delegating simple tasks to agents

for execution. Tasks are usually described as a set of parameters, inputs, outcomes,

resources needed, and constraints that should hold either before, after or during the

execution of the task. What the task actually does (e.g., computation, physical action,

etc.) is not part of the plan, but internal to the agent itself. Along the execution

of a plan, a monitoring component verifies that task constraints are being satisfied.

Exception handling and event-reaction mechanisms are also common in these systems.

2.3.2 Representing human activities

This category of activity modelling can be divided into user interface models and models

of work. In both models, human activities are oriented by some goal and are decomposed

into smaller units of abstraction (tasks, operations, etc.), which are realized by humans

in order to accomplish that goal.

In user interface models – most known as task models –, human activities are seen

from the point of view of user interface designers. These task models describe how activ-

ities can be performed by means of user interface widgets in an application (e.g., entering

password in a dialog box, clicking some button, etc.). Such models are used when people

have to understand how a system works or in usability evaluation where the purpose

is to evaluate how well the system task model supports users [Paternò 01]. Several

approaches to task modelling have been developed, namely: GOMS [Card 83], which

structures tasks as a set of goals, operators as elementary acts, methods to achieve those

goals through operators, and selection rules to indicate when to use a method instead

2.3. ACTIVITY MODELLING 37

of another one; User Action Notation [Hartson 92], which, in one part, describes task

decomposition and temporal relationships among tasks, and in the other part, associates

each basic task to interface feedback and system state; or ConcurTaskTrees [Paternò 99],

which uses a graphical notation to describe task decomposition, relationships among

tasks (enabling, concurrency, optionality, etc.), task allocation, and resources required

by tasks.

Another approach for representing human activity is by focusing on organizational

processes. Workflow systems [Medina-Mora 92, Georgakopoulos 95, Schäl 96] have been

widely used in organizations as ways of formalizing work procedures. Workflow spec-

ification languages use rules, constraints, and/or graphical constructs to describe task

structure, the ordering and synchronization of tasks in a workflow, task attributes that

describe the tasks (e.g., task duration or priority) and the roles to perform them, and

exception handling. Bardram [Bardram 97], influenced by the work of Suchman on sit-

uated actions [Suchman 87] as an alternative to the rigidness of workflow, proposed an

activity model based on plans. Plans are here seen as a resource for the work rather

than determining its course. An activity model is thus composed of action templates

(the actual plan) that give an orientation to work but that, when instantiated, can be

adjusted to the actual context of activity.

2.3.3 Discussion

Generally, robotics and agent-based approaches model activity at a rather detailed level,

specifying step-by-step the path of actions. Although these rigid approaches make sense

with robots or agents, who have no free will, an alternative is needed for specifying

human activity, which is rather unpredictable. Even within organizational processes,

where the boundaries of human activity are more defined, workflow models have been

criticized for their lack of flexibility [Suchman 87, Bardram 97]. Task models for user

interfaces, though effective in helping software designers for communicating and sup-

porting further development efforts, focus on the system’s view of activity rather than

on the user’s perspective.

The type of activities my work is aimed at have often an informal nature and thus

38 CHAPTER 2. RELATED WORK

cannot be modelled using a workflow-like approach. The activity model I propose in this

work is comparable to the more flexible approach followed by Bardram, whose model

provides a kind of guide for activity that is later instantiated and carried out at the will

of users. However, though employing an approach that differs from most of the above

presented models, my model shares with them the general structure and many concepts.

2.4 Applications of Activity Theory

Activity Theory has been in the last two decades recognized as a useful conceptual

framework for understanding human activity and for supporting the design of and re-

flection about information systems. It has influenced multiple fields, such as human-

computer interfaces [Bødker 91b, Nardi 96, Bannon 91], computer-supported coopera-

tive work [Kuutti 91b, Bardram 97, Christensen 02], and information systems design

and development [Kuutti 91a, Bødker 91a]. This new research direction has been fos-

tered by the recognition that the traditional rationalistic thinking is insufficient as a

theoretical basis for systems design [Bødker 91a, Bannon 91]. However, as a conceptual

framework rather than a formal theory in itself, most researchers have some difficulties

in concretizing Activity Theory concepts in their results [Constantine 06]. As Kaptelinin

et al. state, “these [Activity Theory’s] principles help orient thought and research, but

they are somewhat abstract when it comes to the actual business of working on a design

or performing an evaluation” [Kaptelinin 99].

Therefore, some efforts have been carried out to leverage the richness of Activity

Theory’s conceptual framework and developing tools that make Activity Theory more

practicable and, at the end, more useful. The first attempt is the Activity Check-

list [Kaptelinin 99], a guide to the specific points a researcher or a practitioner should

consider when trying to understand the context in which an activity takes place, and

consequently, in which a tool will be or is used. The checklist is divided into two ver-

sions: one targeted at system design and another to system evaluation (43 and 37 items

respectively). Some items are shared between the two versions, although rephrased to

meet the respective analysis goal. The checklist structure is composed of four sections

2.4. APPLICATIONS OF ACTIVITY THEORY 39

reflecting the main concepts of Activity Theory: means and ends; social and physical

aspects of the environment; learning, cognition, and articulation; and development. A

set of sample questions for each section is also provided.

Recently, Duignan et al. proposed the Activity Interview [Duignan 06] as an en-

hancement to the Activity Checklist. Their claim that the Checklist is too long and still

abstract and not accessible to practitioners unfamiliar with Activity Theory resulted in

a shorter, though comprehensive, set of questions made of everyday language, accessi-

ble to any human-computer interaction analyst. The checklist’s design and evaluation

versions were merged and some duplicate or closely related items were amalgamated.

Most of the Activity Theory jargon was removed, in order to enable fluid discussion,

and so that interviewers can quickly determine the relevance of the various items to the

current interview context, rather than having to first think about the meaning of some

concept. Both the Activity Checklist and Interview authors warn that, despite Activity

Theory’s holistic approach, these artifacts should not be used in isolation, but should be

complemented with other research methods that are more effective in uncovering other

system dimensions.

Finally, the most concrete and pragmatic application of Activity Theory is Con-

stantine’s Activity Modelling [Constantine 06], a method and set of notations for cap-

turing and representing salient information regarding activities that is most relevant

to interaction design. Activity Modelling provides a link between Activity Theory and

usage-centered design [Constantine 99], a model-driven process for user interface and

interaction design primarily focused on usage rather than on users per se. Specifically,

Activity Modelling adds to usage-centered design the concise constructs for representing

the contextual or collective aspects of work it lacked. The main additions to the usage-

centered design process are: the Activity Model, that defines and describes activities

and their interrelationships; the Role Profile, that describes the user roles, is modified

to connect roles explicitly to the activities within which the roles are embedded; and

the Task Model, that is elaborated to incorporate actions1 in relation to artifacts and

1In Activity Modelling, the term task is distinguished from action in that the former is relative to

activity in interaction with the system being analyzed, while the latter is relative to the activity in

general, without implying interactivity.

40 CHAPTER 2. RELATED WORK

participants and to connect task cases – particular tasks in a user role – explicitly to

activities.

2.4.1 Discussion

Activity Theory provides a deep understanding of the mental processes related to human

activity and of the contextual, historical, and social forces influencing it. Many of the

above cited works used Activity Theory as a conceptual framework for reasoning about

human activity, but had no concrete application of its concepts. In my work, I adopted a

pragmatic approach, by focusing my work on a subset of the theory. Given that my work

just proposes a generic interaction model and infrastructure for ubiquitous computing

solutions, the design of the actual support to specific activities can employ analysis

tools such as the Activity Checklist or the Activity Interview or design methods such as

Activity Modeling. The Activity Checklist and Interview are particularly comprehensive

regarding the whole range of Activity Theory concepts and should thus be recommended

for activity-based design.

2.5 Distributed user interaction in ubiquitous com-

puting environments

This work assumes that interaction with the ubiquitous computing environment in a

public place is distributed (in space and in interaction mean), i.e., visitors interact

throughout the space with many different devices, either personal or local, in order to

carry out their activities, instead of concentrating interaction in a single device, as is

usually the case of desktop or mobile computing. As introduced in section 1.3.2, the

major challenge of distributed interaction in a ubiquitous computing environment is

making the user feel that all the interactions, whatever device is used, are integrated

and part of the same activity. Most ubiquitous computing research has assumed that

interaction is made through a single device (usually a PDA or a mobile phone), but some

work has explored the fundamental problems of distributed interaction. The next sub-

sections present what has been done namely in design frameworks and implementations

2.5. DISTRIBUTED USER INTERACTION 41

of distributed interaction.

2.5.1 Design frameworks

Bellotti et al. [Bellotti 02] identified a set of typical design challenges to user interfaces

for ubiquitous computing environments. In contrast to familiar graphical user interface

mechanisms such as cursors, windows, menus, etc., that provide pre-packaged solutions

to nowadays basic user interaction problems, ubiquitous computing is still far from such

answers. Drawing on the theoretical framework of human-human interaction in social

science, they identify five main issues: address – directing communication to a system;

attention – establishing that the system is attending; action – defining what is to be

done with the system; alignment – monitoring system response; and accident – avoiding

or recovering from errors or misunderstandings. For each issue, corresponding familiar

graphical user interface answers are presented and detailed challenges and problems are

discussed along with related ubiquitous computing research. Although not attempting

to provide a systematic framework for dealing with those issues, the work of Bellotti et

al. is a source for reflection and discussion about the design of distributed interaction

in ubiquitous computing.

An additional contribution to distributed interaction design has been made by Kray

et al. [Kray 04], who propose a multi-dimensional model and a set of design issues

to characterize and reflect on user interaction in ubiquitous computing. Their design

model comprises: a user dimension, which distinguishes interaction based on the loca-

tion of users (collocated to distributed), group size, and degree of collaboration; device

properties, such as degree of privacy (public or private), shareability, affordance, or

sensing (passive or active); and an interaction dimension distinguishing direct (directly

manipulating a physical object) from indirect interaction (manipulating a virtual rep-

resentation). Regarding the design issues, these are grouped into three main categories:

management issues, e.g., user identification, device assignment, device control (when

multiple users share the same device), or load-limit; technical issues, e.g., synchroniza-

tion (when multiple devices are used for the same input/output), device interference,

device coverage, or system performance; and social issues, e.g., social rules or privacy.

42 CHAPTER 2. RELATED WORK

Again, this is a tool mainly for reflection and discussion as no concrete solutions to the

aforementioned issues are presented.

2.5.2 Implementations

Gaia [Román 02a] and BEACH [Tandler 01], both further detailed in section 2.7.2, are

ubiquitous computing infrastructures that deal to some extent with the problems of

distributed user interaction. Gaia is presented as a meta-operating system for managing

ubiquitous computing environments. The Gaia architecture is layered into several levels

of abstraction. The application-level functionality is based on a framework derived from

the Model-View-Controller [Krasner 88] pattern. It is composed of five components:

model, presentation, controller, input sensor, and coordinator. The fact that input

and presentation are separated from the application logic enables device-independent

applications and, therefore, scenarios in which users interact with the same application

through many different devices within a ubiquitous computing environment. One of the

paradigmatic examples of this interaction framework is the calendar application that,

when running in an ubiquitous computing-enabled office, may use a plasma display to

present the appointments for the week, a handheld to display the appointments for the

day, and may use a desktop PC to enter data. However, the same calendar running in a

vehicle may use the sound system to broadcast information about the next appointment,

and use an input sensor based on speech recognition to query the calendar or to enter

and delete data.

The BEACH infrastructure aims at supporting synchronous document-based collab-

oration with heterogeneous devices in a roomware environment. Like Gaia, the applica-

tion framework is based on the Model-View Controller pattern. However, BEACH does

not offer the same flexibility provided by Gaia, which is not restricted to collaborative

scenarios and allows for application bridging (e.g., automatically coupling the outcome

of an interaction with some device to the input of another device).

In contrast to Gaia and BEACH, which explore a generic architecture for distributed

interaction in ubiquitous computing environments, the Command Post of the Future

(CPoF) [Myers 02] is a system targeted at military environments. Military staff sat

2.6. END-USER PROGRAMMING AND CONFIGURATION 43

in front of large displays showing maps and military unit information can use multiple

modalities of input (speech, laser pointing, gestures) and presentation (wall displays,

PDAs, mobile phones) to monitor and control a military force in the field. Users can

switch between interaction modalities as required by conditions in the field (e.g., switch-

ing from speech to handwriting because a loud airplane is passing overhead). CPoF is

distinguishable from other multi-modal approaches due to its distributed character, al-

lowing the use of many different devices during a session (e.g., a PDA, a laser pointer,

and speech recognition attached to a wall display).

2.5.3 Discussion

Similarly to Gaia and BEACH, and in contrast to CPoF, my work aims at a generic ar-

chitecture for supporting distributed interaction in ubiquitous computing environments

and thus leveraging the advantages that flexible device usage brings to visitors. In order

to achieve this goal, I use the same principles of abstraction and separation of concerns,

i.e., separating application logic from input and presentation, that those infrastructures

implement.

The design frameworks presented in section 2.5.1 are a valuable source of reflection

and offer guidelines upon which I base the distributed interaction model I propose in

chapter 3. I particularly focus on the address-attention-action-alignment, and to a lesser

extent, accident dimensions of the design framework suggested by Bellotti et al.

2.6 End-user programming and configuration

In a near future, ubiquitous computing environments are going to be as common as

electrical systems are. Nowadays, when we want to shutdown or turn on electrical supply

in some room or floor in a building, we do not need an electrical engineer or a technician:

we just know there is a switch board where we can easily perform these actions. Likewise,

ubiquitous computing environments need similar tools so that common users, without

ubiquitous computing expertise, can configure or program an environment, e.g., at their

home or office. This section presents some efforts that have been dedicated to end-

44 CHAPTER 2. RELATED WORK

user programming and configuration toolkits for ubiquitous computing environments.

These toolkits can be classified from many perspectives. The perspective I chose for

presenting and comparing these approaches with mine is whether the toolkit is used

for programmed context-aware behavior or for configuration of system components. In

the former case, the user programs the system to perform some action as a result of

some context change, whereas in the latter case, the user configures existing system

components to build new behavior out of it.

2.6.1 Context-aware programming

The general model for end-user context-aware programming is the following: the user

identifies a set of situations that are going to trigger some noticeable user-defined action

in the environment. Situations are detected through context sensors available in the

environment, whereas actions are performed by actuators attached to ubiquitous com-

puting devices. The approaches described below follow quite close this model, differing

mainly in the programming paradigm and user interface abstractions.

SiteView [Beckmann 03] and iCAP [Dey 06] are both end-user programming toolk-

its targeted at defining rules for context-aware system behavior. The main difference

between both approaches is the user-interface: SiteView is based on a tangible user

interface, while iCAP is a visual programming tool. In SiteView, users create rules

by manipulating tangible interactors, physical objects that represent sensed conditions

such as monday or rain and automated actions such as light on or increase temperature.

Interactors are manipulated on top of a table divided into two areas: the condition

composer, on top of which conditional interactors are placed to form a conjunction; and

a world-in-miniature, a small-scale representation of the physical environment, where

the user places interactors representing a spatially defined action. Additionally, two dis-

plays provide some feedback about the programmed behavior: an environment display

showing photographs of what the environment will look like when a rule is activated;

and a rules display showing the rule (close to human natural language) as it is created

and other rules applicable for the given set of conditions.

iCAP shares the conceptual model with SiteView, aggregating all the programming

2.6. END-USER PROGRAMMING AND CONFIGURATION 45

tasks into a single graphical user interface, divided into two main areas: a tabbed window

on the left that is the repository for user-defined elements (people, artifacts, etc.); and,

on the right, a rules area where elements from the repository can be dragged to construct

a conditional rule. The rules area is split into two sub-areas: one for conditions and the

other for actions. For example, for specifying a rule “when John is in the kitchen then

play music”, the users drags from the repository to the conditions area the elements

representing John and the kitchen location and drags to the actions area the element

representing the music player. After a rule has been defined, it can be tested using the

iCAP rules engine.

The aCAPpella system [Dey 04] allows for the creation of context-aware programs

by exploring the programming by demonstration paradigm. In this system, the user

first demonstrates a context-dependent behavior that includes both a set of conditions

and an associated action, then tells the system which portions of the demonstration are

relevant and repetitively trains aCAPpella on this behavior over time by giving multi-

ple examples. Once trained, aCAPpella performs the demonstrated action whenever it

detects the demonstrated conditions. The aCAPpella system is composed of: a set of

sensors (video camera, microphone, RFID readers, etc.), with which the user demon-

stration is captured; a graphical user interface with which the relevant sensor data and

time interval for the behavior are selected by the user; and a machine learning system

that is used for training aCAPpella recognition capabilities.

The CAMP [Truong 04] tool is aimed at end-user programming of context-aware

activity capture and playback. CAMP is based on an infrastructure for capture and

later access that uses sensors (generally cameras and microphones) deployed in, e.g,

a domestic environment. The captured content can later or simultaneously be played

back for remembering or following a particular activity (for example, remembering last

week-end party or monitoring a baby while she is playing). The CAMP graphical user

interface is based on a magnetic poetry metaphor: users combine individual words to

form a poem in almost natural language. A CAMP poem instructs the system about

the context and object of a capture. Each word represents one of the following: who

(e.g., “I”, “everyone”, “Joe”, etc.); what (e.g., “conversation”, “picture”, etc.); where

46 CHAPTER 2. RELATED WORK

(e.g., “kitchen”, “everywhere”, etc.); when (e.g., “always”, “A.M.”, “hour”); and other

general concepts (“record”, “display”, “view”, “keep”, etc.). For example, the poem

“when Jim Jane and Billy talk record and remember for 20 minute” would be interpreted

by the system as “whenever a microphone senses Jim, Jane, or Billy’s voice, start audio

recording and keep the record for 20 minutes”.

2.6.2 System configuration

System configuration is here understood as the combination of elements of the ubiquitous

computing infrastructure in order to produce a desired behavior, much like writing a

script with a series of commands or assembling components to obtain a new artifact.

Alfred [Gajos 02] is a multi-modal macro recorder for a ubiquitous computing in-

frastructure. Upon a user’s request, the system begins recording all of his commands

(primarily spoken) and, when the recording is done, the user assigns one or more spo-

ken names (the macro name) to the recorded sequence. The user can also add hardware

triggers (e.g., pressing a button) to the macro. A command sequence can be made of,

e.g., “turn on the main lights”, “open the drapes”, or “turn on my desk lamp” spo-

ken commands. Whenever the user says the macro name (e.g., “Good morning”), the

infrastructure executes the corresponding command sequence.

The approach employed in the AutoHAN infrastructure [Blackwell 01] for program-

ming home appliances is the usage of the Media Cubes programming language. A Media

Cube is literally a cube made of wood, containing a variety of sensors, transducers, and

a microprocessor, and communicating with home appliances through infra-red ports.

Each Media Cube represents an appliance function category, with each face represent-

ing a specific function. Media Cubes are used much like generic remote controls. Media

Cubes programming is done by invoking, over the infra-red channel, specific functions

in an appliance by holding a cube or a set of connected cubes against the front of that

appliance. Media Cubes users can employ two different programming paradigms: the

ontological paradigm, in which each cube represent a category of functions (e.g., a cube

for events like “go”/“stop” or “on”/“off”, another cube for indexes like TV channels or

messages in an answering machine, etc.); and the linguistic paradigm, in which cubes

2.6. END-USER PROGRAMMING AND CONFIGURATION 47

represent words in a language and can be combined to form commands (e.g., combining

a “remove” face of the “list” cube with the “3” face of the “index” cube to remove the

third message of the answering machine).

The Jigsaw Editor [Humble 03] also provides end-users with high-level abstractions

for system configuration. This tool is based on a simple jigsaw pieces assembling

metaphor, with each jigsaw piece representing a ubiquitous computing device (e.g., a

display, a grocery alarm in the fridge, a doorbell, etc.). The editor’s graphical user inter-

face is composed of two panels: a list of available components (shown as jigsaw pieces)

and an editing canvas. Jigsaw pieces can be dragged and dropped into the editing can-

vas. By combining the outputs and inputs of the available devices, i.e., coupling in a

left to right fashion compatible jigsaw pieces, the users can configure the environment

to produce a desired behavior. When a user places two devices close to each other, they

snap together if the property types for the underlying devices input and output match.

For example, by combining, in this strict order, jigsaw pieces representing a doorbell,

a web camera and a PDA would produce an information flow resulting in signaling the

web camera to take a picture whenever the doorbell is pushed and directing the picture

to the PDA.

The Equip Component Toolkit (ECT) [Greenhalgh 04] aims at facilitating the job of

ubiquitous computing application designers and administrators by providing graphical

tools which provide various representations of the running environment, plus facilities

for monitoring, configuration, scripting and learning by example. The toolkit supports

distributed applications running over multiple hosts by the creation, configuration and

interconnection of software components and components representing physical devices

and sensors. Toolkit users manipulate graphical representations of components and

interconnect them to build new applications. This approach is similar to Jigsaw’s,

though employing metaphors with a lower level of abstraction – based on component-

based models – for representing system components.

48 CHAPTER 2. RELATED WORK

2.6.3 Discussion

In the solutions to end-user programming and configuration described above, the target

users are mainly the actual users of a ubiquitous computing environment. Although my

approach is aimed at public space administrators, the need for user interface abstractions

adequate to users with no technical expertise is the same. The tool I propose can

be classified as context-aware system configuration, because it allows administrators

to assemble a set of input/output devices and software components available in an

environment to support specific actions and activities, with the possibility of taking

context into consideration for constraining the availability of actions and activities to

visitors. Therefore, context is not used by administrators to define the outcome of

actions or activities, as is the case of the systems described in section 2.6.1, but is

rather used to enable or disable specific actions or activities.

Although all the tools described above can be used to support specific activities,

users do not think primarily of activities when interacting with the tool, but rather

think of input/output devices or sensors in a certain situation. The metaphors, symbols

and concepts employed in these tools are essentially for abstracting devices or device

functionality rather than higher level concerns. Even in CAMP, where users do not

have to necessarily think of specific devices, they think of situations rather than of

activities. In my approach, system administrators primarily define the activities and

actions visitors are going to be provided with and then configure the interaction devices

and software components supporting those activities and actions and the context in

which they are going to be enabled.

2.7 Ubiquitous computing infrastructures

Ubiquitous computing research has produced along the years many infrastructures char-

acterized by specific architectures and programming models. Some research efforts have

been targeted at extending the personal computer’s operating system model to ubiqui-

tous computing environments, while others have just provided basic middleware services

upon which applications are developed or configured.

2.7. UBIQUITOUS COMPUTING INFRASTRUCTURES 49

2.7.1 Speakeasy

The Speakeasy project [Newman 02] explores the concept of recombinant computing

as a solution to deal with the diversity and heterogeneity of resources users may find

in their physical environment. The recombinant computing approach is similar to the

philosophies of encapsulation and reuse behind component-based frameworks. However,

these concepts are extended in the way that entities are exposed to end-user to be used

and configured in highly dynamic and ad-hoc ways, such that components can interact

and interoperate with each other even though they were built with no prior knowledge

of one another. This requires the use of semantically-neutral interfaces (e.g., for data

exchange, discovery, user interaction, representation of contextual information), so that

entities interact in a very basic way without needing to rewrite code. Developers thus

focus on writing individual components and ensuring their compliance to the agreed

interfaces, leaving the task of application composition for users.

It is assumed that users have knowledge about the resources they encounter in the

environment and that they are able to manipulate and compose them in order to fulfill

their needs. Basically, the Speakeasy system allows users to discover, through a web

browser, devices available in the environment and combine them to achieve some func-

tionality (e.g., combine a presentation file with a presentation viewer and a projector

control). Besides this basic mode of operation, for some recurrent activities, templates

are provided (or created by users themselves) for the composition and manipulation of

available resources. For example, a “give a presentation” template would be instantiated

in an environment using the available resources matching the required resource types.

This approach is similar to the philosophy of the Aura project (see section 2.2.2).

2.7.2 Gaia

Gaia [Román 02b] is a component-based middleware infrastructure for ubiquitous com-

puting applications offering a meta-operating system – GaiaOS – that provides a generic

computational environment for ubiquitous computing and an application model that de-

fines a standard mechanism to build applications. Gaia converts physical spaces and

their ubiquitous computing devices into a programmable computing system called “ac-

50 CHAPTER 2. RELATED WORK

tive space”. GaiaOS is analogous to traditional operating systems. GaiaOS manages

the computational resources within a physical space and mediates interaction between

the active space and ubiquitous computing applications. GaiaOS is composed of two

main parts: the Unified Object Bus and the Kernel. The Unified Object Bus provides

tools to manipulate uniformly heterogeneous components running in the system. The

GaiaOS Kernel includes essential services implementing the core functionality of the sys-

tem (entity discovery, component repository, event distribution, naming, data storage

and manipulation, and security).

Furthermore, Gaia proposes an application model for ubiquitous computing scenar-

ios. This application model is based on the traditional Model-View-Controller paradigm,

augmented with extensions to account for the characteristics of ubiquitous comput-

ing environments. The Model-Presentation-Adapter-Controller-Coordinator (MPACC)

model is the implementation of the application’s central structure, which normally con-

sists of data and a programmable interface to manipulate the data. The Presentation

is the physical externalization of the model that allows users to perceive it visually, by

voice, etc. The Controller exports mechanisms to modify the state of the model, either

through user input or through sources of context that can affect the application. The

Adapter is the component responsible for adapting the format of the model to the char-

acteristics of output devices. The Coordinator is a meta-level component that manages

the application composition and applies adaptation policies, based on functional and

non-functional properties.

2.7.3 Interactive Workspaces

The general goal of the Interactive Workspaces [Johanson 02] project is similar to Gaia’s:

constructing a higher level operating system, called iROS, for ubiquitous computing

environments – particularly collaborative workspace environments. However, their focus

is on augmenting widely deployed legacy applications such as web browsers and desktop

productivity tools with collaborative behaviors and the ability to handle multi-modal

input. They also focus on the use of PDAs as remote controllers for logical or physical

entities in the workspace.

2.7. UBIQUITOUS COMPUTING INFRASTRUCTURES 51

The iROS meta-operating system is composed of three main sub-systems: the Event

Heap, a tuple-space-derived mechanism by which entities in the ubiquitous computing

infrastructure communicate indirectly; the Data Heap, a data store facilitating data mi-

gration among heterogeneous computing platforms, including data conversion between

different formats; and iCrafter, a system for service advertisement and invocation, along

with a user interface generator for services that generates the interface according to

device characteristics.

2.7.4 BEACH

BEACH [Tandler 01] provides the software infrastructure for ubiquitous computing

meeting-room environments supporting synchronous collaboration with many different

devices, building on shared documents accessible concurrently via multiple devices. The

BEACH architecture is organized in four layers (module, generic, model, and core layers)

and specific models separating concerns within each layer. The module layer provides

tailored functionality to distinct tasks. It can be used to extend the functionality defined

by the generic layer, which contains generic components that provide the basic function-

ality for teamwork. The model layer specifies the basic structure for the two top layers

by defining interfaces to the system model (documents, tools, etc.). Finally, the core

layer mainly provides multi-user event handling, device and sensor management, and a

shared-object space to allow distributed access to the model from multiple computers.

The model layer comprises interfaces for five models: document, tool, user interface,

interaction, and physical environment. The document model defines the base classes and

functionality of all objects that can be part of a document. The tool model describes the

elements that are directly attached to the user interface, providing additional function-

ality to the documents. The user interface model is needed to define an alternative user

interface concept suitable for different devices. Furthermore, multiple-computer devices

require that the user interface elements are part of the shared-object space. This en-

ables user interface elements to be distributed among several computers. The physical

model is the representation of relevant parts of the “real” world. To be able to support

different styles of interaction the interaction model specifies how different interaction

52 CHAPTER 2. RELATED WORK

styles can be defined.

BEACH application developers comply to the above described architecture by reusing

components from the generic or module layers and implementing additional functionality

structured according to the BEACH models.

2.7.5 ACCORD

The ACCORD project [Humble 03] aims to develop a framework that allows a user-

centered reconfiguration of domestic ubiquitous computing environments. The user-

oriented framework exploits a component model based on JavaBeans [Sun 03] and shares

bean properties across a distributed data-space. The shared data-space allows real-world

devices to make information about the nature of the physical environment digitally avail-

able. Devices can use this data-space to become aware of their context, represent this

contextual information to other devices, and to make this manifest in the physical world.

Each component of the system is implemented as a digital/physical transformer, i.e.,

a component that take digital/physical events and transforms them into physical/dig-

ital representations. The properties of each transformer are published in the shared

data-space.

ACCORD developers just have to concentrate on developing transformers for their

devices and publishing information about their characteristics and state into the shared

data-space, leaving the task of application configuration to users, very much like the

Speakeasy approach (see section 2.7.1). In this case, ACCORD provides users with

a simple editing metaphor, based on the notion of assembling simple jig-saw pieces,

described in section 2.6.2.

2.7.6 Discussion

All the above described systems provide some sort of generic computational infrastruc-

ture for developing pervasive applications. Some infrastructures, like Speakeasy and

ACCORD, provide only a minimal support to application development and usage: only

a distributed communication middleware and generic device interfaces are available and

the applications are eventually composed out of the available devices by end users. Oth-

2.8. INTEGRATION WITH PERSONAL RESOURCES 53

ers, especially Gaia and Interactive Workspace, are more ambitious and reproduce a kind

of conventional operating system for ubiquitous computing environments. While the in-

frastructure I propose aims at reducing the efforts of both end users and developers and,

as such, cannot be as simple as Speakeasy and ACCORD are, it is not intended to be an

operating system. It rather shares some of the goals of BEACH, i.e., providing a generic

programming model and a set of middleware services and reusable components. But

the major distinctive characteristic of the infrastructure I propose is its activity-centered

conceptual model that is present in all the levels of abstraction of the system: from the

lower level interfacing with ubiquitous computing devices to the highest level of user

interaction modelling; and this latter aspect is unique, because no other infrastructure

clearly proposes a generic user interaction model, being the decision left to application

developers.

2.8 Integration with personal resources

The support to an activity performed by occasional visitors requires the combination

of several components from the personal and the local domain that cannot be provided

solely by the ubiquitous computing infrastructure or by the personal domain. Therefore,

local and personal domains have to integrate with each other in order to achieve both

a user-centered support and a thorough exploration of the local resources (see section

1.3.5). This section describes some of the research that has been done to make the

several facets of the personal domain available to ubiquitous computing infrastructures,

so that the integration between both becomes possible.

The VADE project [José 03] introduces the concept of Value ADded Environment as

an administrative and physical domain where the locally available computing facilities

can be combined with the personal environment of visiting users. The common sce-

nario of a personal environment is a mobile portal that, after the user enters a VADE,

provides functionality that corresponds to the dynamic combination of predefined pref-

erences, currently active applications, current user context and locally available services

and applications. The local applications are dynamically integrated into the personal

54 CHAPTER 2. RELATED WORK

environment by means of Web Services for Remote Portlets (WSRP) [OASIS 03].

The User Virtual Space concept [Hess 02], which has been used in the Gaia project

(see section 2.7.2), is an abstraction to represent the user’s data, tasks, and devices in

a ubiquitous computing environment. The User Virtual Space is implemented as a set

of personal file servers which may be running in different hosts. The local environment

has a mount server which obtains from a user’s handheld device the mount points

corresponding to the User Virtual Space. The mount server then merges such mount

points and presents data to the user, in a file browser, as if it came from a single source.

The Personal Server [Want 02] is a mobile device designed to enable interaction with

a user’s personal data through the surrounding computing infrastructure (screens, key-

boards, etc. of nearby computers with a short-range wireless link). Whenever users

need to access their personal data, they just have to find a nearby display and keyboard

with wireless connection. In addition, the personal server contains enough storage and

processing capabilities to serve a user’s mobile computing and storage needs. Therefore,

the personal server is not only a storage device but is able to host applications inside.

The personal server model addresses two major problems associated with mobile infor-

mation access: the inherent difficulty of using small user interfaces on handheld devices,

and the limited access to personal digital information afforded by public access points.

The Pendle [Villar 05] proposes a mixed-initiative approach for user interaction with

ubiquitous computing environments. It assumes the existence of an environment that

provides a set of adaptive services and a personalized wearable device – the Pendle,

realized as a pendant on a ribbon worn around the neck – that serves as mediator

between user and the proactive environment. In the mixed-initiative approach, two

interaction modes are considered: implicit and explicit. In the implicit mode, the Pendle

sends to the local environment, every five seconds, the user profile (under the user’s

control), giving the environment access to personal data for adaptation of its services

(e.g., playing music according to the user’s preferences). In the explicit mode, it provides

a set of controls with which the user can modify or override the behavior of the adaptive

services (e.g., controlling music sound volume).

The Mobile Service Toolkit (MST) [Toye 05] is a client-server framework exploring

2.8. INTEGRATION WITH PERSONAL RESOURCES 55

mobile phones as a means for accessing site-specific services. The MST client performs

three primary functions: connection establishment to an MST server, after recognizing

on-site 2D codes representing Bluetooth or IP addresses; data entry and display for sup-

porting interaction with site-specific services; and personal information management.

Regarding this latter aspect, the MST client manages a repository of personal informa-

tion (owner name, address, phone number, etc.) that can be supplied on server request

and after owner’s disclosure, to MST servers.

2.8.1 Discussion

The integration between the local infrastructure and the personal information domain

requires necessarily some compromise between both parties, generally in the form of

agreed protocols for communication and privacy. The less widespread and generic these

protocols are, the more obstacles to successful integration show up, particularly if in-

tegration requires specific software or hardware on the user side. Requiring visitors

to carry additional cumbersome devices or to install specific software in their personal

devices is contrary to a lightweight visiting experience.

Almost all the above described integration mechanisms require specific hardware

or software from users. In some cases, these requirements do not hinder a visiting

experience (e.g., the Pendle or the User Virtual Space). However, all these mechanisms

are based in proprietary integration protocols that would have to strive to impose itself

in the marketplace. The exception is the VADE system, which is based on standard

web technologies. However, it is restricted to the usage of a mobile browser, which is

not the user-friendliest approach for supporting a visiting experience.

Although not aiming to propose a solution for the local-personal integration issue,

this work explores simple integration mechanisms based on widespread technologies,

much in the line of the user interaction approach, also based on simple, widespread de-

vices. My approach for integration, though somehow limited in the depth of information

that can be shared with the local environment, has the advantage of not requiring from

visitors extraordinary software or devices.

56 CHAPTER 2. RELATED WORK

2.9 Summary

This chapter provided an overview of the multi-disciplinary character of my work, cover-

ing subjects from ubiquitous computing infrastructures to user interaction issues, with

particular emphasis on activity-centered research. In every covered subject, I demon-

strate how my work relates to others and also what makes it a distinct research effort. In

summary, my contribution is unique in that it explores the usage of widespread, simple

interaction technologies for supporting visitors to public spaces in a way that requires lit-

tle or no attention from users, which is strengthened by an activity-centered perspective

of user interaction, in which activity is the main concept supporting the user interaction

model and the integration of user interactions with multiple devices within an activity. I

propose a ubiquitous computing infrastructure based on an activity-centered conceptual

model that is present in all the levels of abstraction of the system: from the lower level

interfacing with ubiquitous computing devices to the highest level of user interaction

modelling. This infrastructure is complemented by a management tool allowing admin-

istrators to assemble and configure a set of ubiquitous computing devices and software

components available in an environment to support specific actions and activities.

Chapter 3

Modelling activities and user

interaction

Modelling human activity and user interaction in ubiquitous computing environments is

a challenging matter, one for which a definitive, comprehensive solution is very hard to

achieve (see sections 1.3.1 and 1.3.2). Two decisive characteristics of the scenarios this

work deals with, i.e., visiting experiences to probably unknown environments, determine

my approach to activity and user interaction modelling: on the one hand, human behav-

ior is unpredictable and profoundly influenced by context in which it occurs (personal

situation, physical environment, other people, etc.); and, on the other hand, occasional

users of a ubiquitous computing system are not willing to invest time in learning a

system that probably is not going to be used again and thus demand straightforward,

simple user interfaces. Therefore, my research on activity and user interaction model is

driven by the fundamental principle of simplicity. When designing for an activity, over-

all simplicity in features play a prominent role [Abowd 00]. A simple conceptual model

is not just an advantage for end users – the simpler the provided model, the faster and

easier they will be using the system – but brings also benefits for application developers

and system administrators, in terms of development and administration costs. This

model is thus aimed at embracing all the major concerns of a ubiquitous computing

infrastructure: from system architecture and administration to user interaction.

I decided to ground my research on theoretical frameworks of human activity, namely

57

58 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

the Activity Theory framework, because it provides an agreed set of terms to describe

human activity and concepts that drive the construction and evolution of systems that

intend to support human activity [Constantine 06]. I also followed a simplistic analysis

of user interaction, reducing it to elementary concepts and, most importantly, assuming

the usage of simple, everyday devices.

This chapter is divided into three main sections. The first two sections intend to

describe the characteristics that have to be considered when modelling human activity

and user interaction in ubiquitous computing environments and to present the theoreti-

cal foundation for the ActivitySpot conceptual model that is finally described in section

3.3 and that bases the remainder of my work.

3.1 Modelling activity

The activities that can be carried out in a ubiquitous computing environment have to

be modelled according to several characteristics, such as activity structure, physical

space, tools, context, among others. This section begins with an overview of Activity

Theory, which provides the theoretical foundation for activity modelling in this work.

The section further relates activity to several dimensions and closes with a discussion

of the implications of Activity Theory and all the activity modelling dimensions in the

ActivitySpot conceptual model.

3.1.1 Activity Theory

Activity Theory [Leontiev 78, Vygotsky 78, Leontiev 81, Wertsch 81, Engeström 87,

Engeström 99b] was chosen as the background for this work, among several theoreti-

cal frameworks for studying human activity, produced mainly by the fields of psychol-

ogy and philosophy (e.g, situated action [Suchman 87], cognitive science [Norman 88,

Sierhuis 97], or Actor-Network Theory [Law 99]). Activity Theory originated in the

former Soviet Union’s school of psychology, mainly through work done by Vygostsky

and Leontiev. Although its origins come mainly from the first half of the twentieth

century, Activity Theory is still evolving. Much recent thinking in Activity Theory has

3.1. MODELLING ACTIVITY 59

been influenced by the work of Engeström [Engeström 87, Engeström 99a], who con-

tinues to develop the theory, methods and practice of what has come to be known as

Cultural-Historical Activity Theory. The following paragraphs expose the major fea-

tures of Activity Theory, supported by examples of everyday human activities.

Activity is understood as the unit of life that is mediated by mental reflection. The

real function of this unit is to orient the subject in the world of objects [Leontiev 81].

Activity Theory is fundamentally based on the notions that human activity: a) is ana-

lyzed at different levels; b) is goal-oriented; c) is mediated by tools; d) has an historical,

cultural, and genetical basis; e) is based on social interaction; and f) is assimilated by

individuals through internalization. These fundamental concepts are further developed.

Human activity can be analyzed at three distinct levels: activities, at the uppermost

level, are distinguished on the basis of their motive and the object toward which they are

oriented; actions are distinguished on the basis of their goals; and, finally, operations,

on the basis of the conditions under which they are carried out (see figure 3.1). For

example, an activity motivated by food is composed of several goal-oriented actions (e.g.,

collecting ingredients, following a recipe, etc.) and operations which vary in function

of conditions (e.g., the action of collecting ingredients may be composed of different

possible operations, such as going to the kitchen-garden, picking vegetables, taking a

piece of meat from the fridge, etc.).

Figure 3.1: Activity Theory model

However, the structure of activity is not just a simple decomposition of activity

into lower level elements. An important feature of the activity structure in Activity

Theory is that it is relatively content free in the sense it is not tied to a particular

set of structurally defined steps [Wertsch 81]. This functional approach, contrasting to

the traditional western structural approach, means that a link (e.g., an action or an

60 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

operation) in an activity can be replaced by another one that is functionally equivalent,

i.e., that fulfills the same motive or goal. For example, it may happen that someone does

not have time to cook and decides to buy food at some take away restaurant. In this

case, a set of actions was replaced by another that realizes the same activity motivated

by food. An activity may thus be carried out in a variety of ways by employing different

goals (with their associated actions) under different conditions (with their associated

operations).

As human activity is inherently goal-oriented, the process of goal formation is an

important psychological issue. The subject performing an activity has to select the

goals that are going to contribute to achieve the results necessary to satisfy its motive.

In this process, the consciousness of the subject regarding motive and goals within an

activity is dynamic. It may happen that an activity loses the motive that inspired it,

whereupon it is converted into an action (with its own goal) that may have a quite

different relation to the world, i.e., implement a different activity. For example, one

subject performing an activity motivated by food at the week-end can think of it as an

action during the week, just because she is a restaurant manager, for whom procuring

ingredients and cooking are not actions motivated by food but are now motivated by

profit. Cooking may not even be an action for the restaurant manager, but become an

operation, because it does not contribute directly to realize the motive of profit.

Conversely, an action can acquire an independent, energizing force and become an

activity in its own right. One of the actions involved in an activity in one situation

may be considered to be an entire activity in another situation. For example, procuring

ingredients is an action for a domestic cook preparing the dinner for her family, but can

become an activity in its own if we think of the procurement department in a restaurant

chain.

An action may also be part of different activities. The goal of the action is exactly

the same, but it serves a different motive. For example, following a recipe can serve

the motive of food when cooking for the family or the motive of fame and professional

recognition in a cook world contest.

Apart from its intentional aspect (what must be done), the action has its operational

3.1. MODELLING ACTIVITY 61

aspect (how it can be done), which is defined not by the goal itself, but by the objective

circumstances under which it is carried out (operations). If we imagine a case in which

the goal remains the same and the conditions under which it is given change, then only

the operational composition of the action changes. Finally, an action can be transformed

into a means of attaining a goal, i.e., into an operation capable of supporting the ac-

complishment of one or more actions. This generally happens when an individual ceases

to execute an action consciously, doing it “mechanically” (e.g., shifting gears in a car,

in which case the action would afterwards be changing the car’s speed) or delegating it

to a machine.

A particular characteristic of human activity is that it is mediated by tools – psy-

chological (e.g., speech, arithmetics, mental plans, etc.) or physical (e.g., an axe, a pen,

a computer, etc.). Each operation may require some tool to be executed. When a tool

executes an operation automatically, it allows the individual to concentrate on actions

and activities, freeing her/him from low-level efforts. This is known in Activity Theory

as the process of internalization. It is generally the fate of operations that, sooner or

later, they become a function of a tool. Tools are both resources for, and products of,

human activity, i.e., humans tend to adapt existing tools, or to build new tools, in order

to better support an activity.

The process of externalization, opposed to internalization, occurs when an operation

regains the subject’s consciousness. For example, the driving instructor has to external-

ize driving operations in order to teach them or, when a breakdown occurs during the

execution of an operation, the subject has to externalize it in order to understand what

went wrong.

An activity naturally evolves over time, influenced by cultural and historical forces.

Furthermore, humans constantly search better means to attain their motives, learning

with errors, and correcting the way by which their activities are performed. Another

aspect of human activity is that it is a result of social interaction, i.e., beyond supporting

specific activities, social interaction influences activity and allows people to share their

experiences and therefore spreading the knowledge about how to perform activities (e.g.,

when adults teach children).

62 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

Although Activity Theory provides a rich framework for explaining human activity

from different perspectives, its concrete application has not been abundant. Even if

some research claims to use or to be influenced by Activity Theory, it is not clear how

the results have been actually shaped by Activity Theory (see section 2.4). This can be

explained by its lack of formality – Activity Theory comprises a collection of concepts

and categories for communicating about activity coupled to diverse assertions about the

nature of human activity that are largely untested [Constantine 06].

3.1.2 Physical space

The close relationship between activity and physical space has been recognized by ar-

chitects [Alexander 77], anthropologists [Hall 66], and computer scientists [Harrison 96,

Koile 03]. In this work, I am particularly interested in activities that have a strong

relationship with physical space. The physical space determines what activities can or

cannot be performed and influences the way they are performed. When modelling an

activity, details such as the plan of the area or building and the location of furniture,

equipment, and interaction devices are of crucial importance. For example, actions that

are usually executed at the initial steps of the activity should primarily be supported in

entrance zones (e.g., a lobby or hall); a zone of the building that is usually crowded may

not be a proper place for allowing voice-based interaction; the lack of wide, clean walls

may hinder the installation of large public displays. Therefore, the activity model must

include details about the locations in the physical space where actions and activities are

to be executed and the type of interactions with the ubiquitous computing environment

that are allowed in each location.

3.1.3 Tools

A computer-supported activity may require several computer tools. The computer tool

is here understood as any hardware/software computing artifact: a physical device,

an information service, a digital document, etc. Tools required by an activity may

come from different domains: personal, local, and global. Personal tools provide an

individualized experience to users, either by using their own personal devices or by

3.1. MODELLING ACTIVITY 63

introducing a personal dimension to the logical/physical artifacts they use (e.g., through

identification, personalized adaptation of contents, personalization of device color and

shape, etc.). Personal tools are either brought to the local environment by the visitor

(e.g., mobile phone, PDA, etc.), made available as remote services (e.g., a URL to a

personal profile service), or be temporarily lent to visitors (e.g., an RFID tag for user

location purposes).

Local tools are those which are owned or managed by the local infrastructure, pro-

viding visitors with access to the physical environment or representations of it (e.g., a

light control service, a local map, etc.) or with access to scarce or not easily portable

computing means (e.g., a public display, a printer, etc.).

Global tools are those which are not managed by the local infrastructure nor associ-

ated to the visitor. Global tools provide impersonal information access in any place and

to any user, generally through an Internet service (e.g., a portuguese-english translation

web service or a weather forecast web site).

The model of a particular activity must thus include a reference to the local, personal,

and global tools that are required for carrying out the activity. The actual local and

global tools needed for an activity are likely known in advance, either because they are

managed by the provider of the support to the activity (local tools) or are previously

contracted (global tools). However, personal tools are unknown and dynamic by nature

– occasional visitors come and go and no assertions about the type and ownership of

personal tools can be made. Anyway, the activity model must at least make an abstract

reference to the tools that the local infrastructure expects the visitor to own.

3.1.4 Context

Activities depend on context at two distinct situations: when a visitor has just entered

the ubiquitous computing environment and the system has to check which activities

are available or to infer which activity may the visitor be interested to accomplish; and

when the activity is being performed, influencing how it is unrolled.

When activity selection is explicitly done by visitors, context factors are used to

filter the set of possible activities (e.g., visiting the exhibits in a museum can only be

64 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

done within a certain time range or ice skating can occur only within adequate weather

conditions). Implicit activity inference occurs when the ubiquitous computing infras-

tructure pro-actively selects the activity the visitor is likely to initiate. This inference

is partially based on context factors, such as time, location (e.g., if the visitor entered

the hospital by the patient entrance, she is likely coming for a consultation), number of

grouped visitors (e.g., two adults and children entering a museum are likely coming for

a regular visit), among others. In either case – explicit or implicit activity inference –,

the activity model includes expected values for the different context factors that can be

measured in the environment.

During activity execution, context plays also an important role, by influencing the

availability and outcome of actions. For example, when visiting a shopping mall, check-

ing the restaurant’s menu makes sense only within a certain time range or when looking

for a particular product, results can be ordered by proximity. The role of context lays

here at two different levels of the activity model: at the action level, where context in-

fluences the availability of actions; and at the operational level, where context influences

the outcome of actions and the tools that can be used to execute the action (e.g., voice

interaction cannot be used in a momentarily noisy environment).

3.1.5 Personalization

An important aspect of the support to activities is the level of personalization offered

to visitors. As it happens with context, personalization can occur at the moment of

activity selection (e.g., a museum visitor interested in sacred art will likely be offered

a sacred art tour by the system) or during activity execution, by influencing the way

actions are performed and their outcome (e.g., elderly or disabled people have to perform

an activity possibly in a very different manner).

Personalization can also be useful in the case a visitor returns to a previously visited

the environment. The same previous activity can be suggested to the visitor or some

preference can be taken into account during activity execution. For example, a confer-

ence participant that repeatedly selected a vegetarian menu in the last conference held

in the same place will by default be assigned the same menu when registering at the

3.1. MODELLING ACTIVITY 65

conference.

Personalization is inherently attached to privacy issues. Visitors have to be aware

that the infrastructure is gathering information about themselves and have to be given

control over personal information disclosure [Abowd 00].

3.1.6 State and history

Interruptions between activities are quite common, even if, in a visit scenario, the set

of possibly overlapping activities is smaller than in office or home scenarios. Hence,

an activity model must cater for activity interruption and further resumption. This

requires the representation of activity state at the moment of interruption. Activity

state should be modelled in a way that is both machine-processable (for resumption

by the system) and easily convertible to human language (for resumption by visitors).

Activity state includes both actions and respective operations executed until the moment

of interruption, as well as additional information such as the state of any local object

(physical or virtual) used by the visitor.

The same mechanisms used for activity state management can also support activity

history, another important aspect of the activity model. Activity history can not only

be used for computing the activity state or helping the user remember the point at

which the activity was left, but also for reviewing activity performance (for example,

remembering how the visit to the cultural center was or what relevant actions were

done during a conference), for remembering a previous activity when visiting the same

environment after some time, or for sharing our own experience with other people.

3.1.7 Discussion

Most of the concepts proposed by Activity Theory, though not immediately evident

for application in ubiquitous computing, are extremely valuable as a foundation for

activity modelling in the context of this work. The levelled approach for analyzing

human activity (activity, actions, and operations), although not radically different from

other approaches (e.g., cognitive science), provides a simple and yet essential model

for structuring activities. Conscious and “mechanical” behavior are clearly separated,

66 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

helping in the identification of the elements of activity that should place little or no

mental overhead to visitors. For example, system designers should model activities being

aware that the only tolerable effort from visitors should be in quickly identifying available

activities and actions. Everything regarding operations should be easily executed by

visitors, requiring only little or peripheral attention. Therefore, modelling activities

with the visitor’s motives and goals in mind, helps in identifying the right terminology

to use in the support to those activities. The ultimate result of this approach is gradually

contributing to the internalization of activity, i.e., helping visitors to concentrate on the

higher level concerns of activity without thinking of or being disturbed by the usage of

tools, achieving a performance with the minimum required level of attention. This is

the ultimate goal of ubiquitous computing, as stated by Weiser [Weiser 91]: whenever

people learn something sufficiently well, they cease to be aware of it.

From the systems engineering point of view, Activity Theory interestingly supports

the principles of modularity and reuse. The same activity can be carried out by ex-

ecuting a diversity of actions and operations, depending on context and on personal

characteristics. Furthermore, the same action or operation can be employed in different

activities, contributing to achieve respectively different goals and motives.

The concept of tool mediation helps understanding the role of technology in the way

activities are carried out. Tools are not only fundamental in the support to human

activity but are as well drivers in the creation of new activities that were impossible

before [Wertsch 81]. Likewise, ubiquitous computing tools are not only effective means

for supporting human activities but are decisive in the creation of new forms of carrying

out activities or may even originate entirely new activities. Furthermore, tools evolve

over time, as a result of both technological improvements and evolution of praxis (people

introduce changes to tools that improve activity performance). A model of activity

should thus facilitate evolution and adaptability to technological change.

The dimensions of activity state and history described in section 3.1.6 can be inter-

related with the concepts of externalization and cultural and historical development of

Activity Theory. A kind of externalization process is occurring when the execution of

activity is tracked by a ubiquitous computing infrastructure in order to keep the activ-

3.2. MODELLING USER INTERACTION 67

ity state. What is done consciously (from the level of activity) or unconsciously (to the

level of operations) by the visitor is transformed into an explicit representation by the

system. This system externalization of activity can also lead to externalization by the

visitor himself, when he accesses the activity history or is given hints for resuming ac-

tivity. The activity history is also a means of contributing to the cultural and historical

development of activity: on the one hand, cultural development can occur when activity

history is handed to other people in order to share experiences; on the other hand, the

transmission and remembrance of activity history contributes to the historical develop-

ment of activity by supporting collective learning and the introduction of improvement

into the activity praxis.

In summary, I propose an activity model that, yet simple, is able to support the

comprehensive analysis of Activity Theory and all the relevant dimensions of an activity.

For such a model to be possible, I have to deal with a compromise between simplicity

on one side and comprehensiveness and completeness on the other side. The solution I

propose is further described in section 3.3.

3.2 Modelling user interaction

This work assumes that visitors to a ubiquitous computing environment are going to

find a possibly vast array of local devices, tending to be blended with the environment

or, at least, easy to use. These devices may be as diverse as the specificities of each

activity (e.g., cameras, displays, microphones, speakers, LEDs, buttons, joysticks, RFID

readers, etc.). Moreover, the support to an activity may allow visitors to employ their

own personal interaction devices (e.g., a mobile phone). Therefore, a designer of the

support to an activity must take into account these disparate media and integrate them

into a unifying concept of interaction, easying both visitors’ and developers’ task, by

making the interaction transparent, despite the differences that exist between each type

of medium. Another challenge is to deal with the many different interaction devices the

same person may use within the course of an activity and to make that person feel that

all interactions, whatever device is used, are integrated and all part of the same activity.

68 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

These user interaction issues implicitly include many others, which are common to

ubiquitous computing and general human-computer interface issues. The following sub-

section provides an overview on previous research on user interaction design, which I

next base on to discuss the user interaction problems my work aims to deal with.

3.2.1 User interaction design models

According to Norman [Norman 88], user interaction designers must recognize the im-

portance of leading users to clearly discern the effect of their input in the system and

to control it. He proposes the Gulfs of Execution and Evaluation as a model of the in-

teraction between users and computer tools. The Gulf of Execution corresponds to the

mental process from goal formation to actual action execution: users begin to identify

system capabilities that enable them to achieve their goal, then specify which operations

must be executed, and finally execute them. During the Gulf of Execution, users should

easily know what actions are possible, determine mapping from intention to physical

movement, and perform the action.

After action execution comes the Gulf of Evaluation, when the user compares the

system outcome with her goals. The action (and respective operations) executed on the

system produces changes on its physical or virtual state. After perceiving the system

state, the user interprets it and evaluates whether the outcome has realized her goals.

During the Gulf of Evaluation, users should easily tell what state is the system in,

determine mapping from system state to interpretation, and tell if the system is in

desired state.

Norman summarizes this with a set of requirements:

• good conceptual model – the user’s model of interaction with the system, i.e., how

the user perceives interaction with the system, is coherent with the design model,

i.e., what interaction with the system actually is;

• visibility – the user can easily tell the state of the system and the alternatives for

action;

• good mappings – the user easily determines the relationships between actions and

3.2. MODELLING USER INTERACTION 69

results, between the controls and their effects, and between the system state and

what is visible;

• feedback – the user receives full and continuous feedback about the results of

actions.

Bellotti et al. (see section 2.5.1), following Norman’s work, propose a design model

for novel interaction mechanisms, such as ubiquitous computing, with a focus on the

joint accomplishments of the user and the system that are necessary to complete in-

teraction. This approach is based on the assumption that users interact, for example,

with ubiquitous computing systems, much like they interact with other humans, manag-

ing accomplishments such as addressing, attending to, or politely ignoring one another.

They identify five basic issues for interaction design, inspired by Norman’s stages of

execution and evaluation, but with the emphasis being on communication rather than

on cognition. Each issue and respective detailed challenges are here enumerated:

• address – what mechanisms does the user employ to address the system, how to

disambiguate signal-to-noise, how to disambiguate intended target system, how to

not address the system;

• attention – making users know whether and when the system is attending to them,

how to direct feedback to the zone of user attention;

• action – how users effect a meaningful action, control its extent and possibly

specify a target for that action (corresponding to Norman’s Gulf of Execution);

• alignment – monitoring system response (corresponding to Norman’s Gulf of Eval-

uation);

• accident – avoiding or recovering from errors or misunderstandings, how to control

or cancel system action in progress, how to disambiguate what to undo in time.

Kray et al. (see section 2.5.1) identify a set of design issues of multi-user multi-

device interfaces in general, which are as well common issues in ubiquitous computing

environments. Those issues are divided into management, technical, and social ones.

70 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

I focus here on management and technical issues, given that social issues go beyond

the aim of the interaction model I am considering here, which is concentrated on the

problems of interaction itself. Management issues regard:

• user registration, identification, and verification as users enter and leave a ubiqui-

tous computing environment, in order to assess the current needs and capabilities

of the system and to provide information about the user population characteristics

(e.g., user location, group membership, preferences, etc.);

• device assignment, because multiple users may use the same device to access sev-

eral services at the one time, and a single service may require the use of multiple

devices to operate at another time; furthermore, device assignment may be influ-

enced by user location and surrounding conditions;

• device control, when users compete for the same non-shareable device or which

one user does not want to share; device control conflicts may also arise when the

type of interactions in a shared device are not compatible (e.g., viewing a movie

with a high sound volume combined with Internet surfing);

• load-limit, determined by the ratio between the number of users and the number

of available devices.

Among the technical issues, I point out:

• synchronization, when interaction simultaneously spans multiple input or output

devices;

• interference, when multiple output devices are simultaneously presenting contents

to different users (e.g., interference between public audio channels in a small space);

• coverage, as users can only interact and communicate if they are in range of

an adequate device; the level of coverage depends on device properties, physical

placement, and density of users;

• system performance, specially when the overall complexity of an environment

grows through increased multiple user and multiple device interactions.

3.2. MODELLING USER INTERACTION 71

3.2.2 Discussion

User interaction design for ubiquitous computing environments, beyond involving issues

that are common to traditional desktop interfaces, brings many other issues that turn

it into a much more complex design problem. In order to better understand what is

involved in modelling user interaction in the ubiquitous computing scenarios my work

is targeted at, I analyze here the issues and concepts enumerated above in the context

of activities performed by occasional visitors.

People visiting some place for the first time have no idea of the ubiquitous computing

support to the activity they intend to perform there. They may have some cues learnt

from past experiences in similar places (e.g., past visits to airports taught them that

public displays provide flight information), but still they do not know in detail the

available ubiquitous computing means and the activities and actions they allow them

to perform. For example, an airport visitor may not know that the system is able to

automatically check her in and guide her to the departure gate after recognizing her

frequent flyer card. Moreover, since it is the first time the visitor is interacting with the

local system, it will be unable to identify further user interactions with other devices until

some initialization action is performed (e.g., voice-based interaction requires previous

training for later identification of the user’s voice pattern). This initial contact problem

aggregates the above mentioned issues such as user registration, addressing the system,

or the first step of the Gulf of Execution. Presenting the visitor with a conceptual model

that is coherent with the user’s model of the intended activity is key in facilitating

initial contact. However, a good conceptual model alone is not enough: interaction

devices are distributed all over the physical space and most of their capabilities are not

self-explainable. For example, desktop user interfaces rely on a screen to provide users

with indications on how to use the system. However, a ubiquitous computing system

may not have a screen at all. Like in a desktop computer without a screen, where the

mouse and the keyboard cannot convey usage information to users, microphones, video

cameras and other input devices in a ubiquitous computing system must rely on external

means to convey usage information. Visitors have therefore to be provided throughout

the physical space with visible, comprehensive anchors to system usage, e.g., in the form

72 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

of public displays, posters, flyers, and so on.

Fundamental in capturing visitors’ attention for system usage are some principles

for immediate usability identified in [Kules 03]: immediate attraction – using the most

attractive content to demonstrate the system and invite usage; immediate learning –

support zero-trial learning; immediate engagement – encourage users to immediately

interact with content by providing immediate reward and avoid interruption; and im-

mediate disengagement – when a user departs, immediately prepare the system for the

next visitor. Although these principles were defined for interactive kiosks, most of them

can be applied to the context of this work.

After visitors become aware of the support to their activity, they begin the actual

interaction. Some issues identified in the previous sub-section come into play at this

phase: determining if the system is attending to the user; addressing the system; and

then, acting, i.e., carrying out the remaining steps of the Gulf of Execution.

Given that the same interaction device may be used by multiple visitors for multiple

different purposes, a significant issue is visitor and action identification. Visitor iden-

tification requires previous registration at the system and as many identifiers as many

interaction device types are available (e.g., face recognition for video camera-captured

gestures, phone number for SMS interaction, etc.). Action identification depends on the

content of the actual interaction (e.g., different voice commands for different actions), on

the context of activity (e.g., the same gesture may trigger a different action for different

activities) or on the activity history (e.g., the same SMS command may trigger different

actions if executed at the beginning or later in the activity).

After identifying the input author and intention, the system has to process it and

generate a response or, at least, some feedback. From the user perspective, this leads

to the alignment or Gulf of Evaluation issues. But before the user is presented with a

response or feedback, other issues arise. Multiple output devices can be available for

providing a response (e.g., public display or speakers for responding to a gesture inter-

action). A decision has to be made regarding the output device that is best suited to

the visitor context and to the response content. For example, choosing a public display

may be the wisest decision if the environment is noisy or if the response has to contain

3.2. MODELLING USER INTERACTION 73

an image to be more effective. Moreover, after selecting an appropriate device, comes

the issue of content adaptation to device characteristics. This is not a problem when

the device belongs to the local environment, because device characteristics can be antic-

ipated at development time, but it becomes a difficult issue when the response is sent to

some visitor’s output device. Personal device characteristics cannot be anticipated for

many output modalities (e.g., screen resolution, supported sound formats, etc.), unless

they are communicated to the local infrastructure after an initialization procedure.

Management and technical issues, such as device assignment and control, load-limit,

or device coverage are also important at this stage of interaction. When choosing a

suitable output device, the infrastructure must take into account whether the device is

already being used by other visitors or if the device coverage is enough for reaching the

user’s attention.

Finally, one of the most important issues is making the person feel that all inter-

actions are part of the same activity, regardless of the interaction devices they are

employing. Key aspects in achieving this are not only a coherent interaction model

but also coherent symbology on signage displayed throughout the physical space and

coherent language and signs on the interaction content. Providing regularly visitors

with information about their activity state through different interaction means is also

determinant in transmitting that feeling of integrated interactions.

In summary, supporting occasional interaction with a ubiquitous computing envi-

ronment faces many issues that can be divided into communicative – making the visitor

know that there is something there to support her and enabling immediate usage – and

technical ones – accessing personal data, identifying interactions, or selecting appropri-

ate device for response. The interaction model I propose in the next section represents

mainly technical issues, though its simplicity can contribute to facilitate communication

of the system capabilities to visitors.

74 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

3.3 The ActivitySpot conceptual framework

The ActivitySpot conceptual framework aims to provide a simple model of activity and

user interaction for visitors to a ubiquitous computing environment. This framework

intends to support designers and developers of new ubiquitous computing solutions

to human activities and is concretized by the ActivitySpot infrastructure described in

chapter 4. The following sub-section describes the ActivitySpot conceptual framework

and is followed by a discussion about how the framework deals with the issues identified

in sections 3.1 and 3.2.

3.3.1 Concepts

Activity Theory provides a rich and comprehensive framework for analyzing human ac-

tivity. However, the need for a simple and objective approach for modelling human

activities in ubiquitous computing environments results in a partial application of Ac-

tivity Theory. Among its concepts, I am particularly interested in the different levels

of analysis of an activity – activities, actions and operations –, in the flexibility of the

activity structure – opposed to a rigid set or sequence of actions – and in the reuse at the

level of actions and operations that can be respectively part of multiple activities and

actions. Ubiquitous computing devices are seen as tools used for the execution of oper-

ations. A ubiquitous computing device can be employed in the execution of operations

that are part of different actions.

The diagram in figure 3.2 illustrates the application of Activity Theory to a ubiq-

uitous computing environment – for instance, a museum – supporting two different

activities: visiting, by regular, general public visitors; and inspecting, performed by

security inspectors. Each activity is composed of a set of possible actions. Visitors can

orient themselves, view information about some artwork, or make recommendations.

Likewise, inspectors may also need to orient themselves, make recommendations, and

view information about equipment. None of these actions is mandatory neither a se-

quence has to be followed. Some actions can be executed in both activities, with the

same goal in mind (e.g., orient) or with different aims (e.g., make recommendation).

3.3. THE ACTIVITYSPOT CONCEPTUAL FRAMEWORK 75

Operations include user interactions with a ubiquitous computing device, a sensor read,

a web-service request, a database query, etc. Only user-facing devices are represented,

which are the most visible part of operations. The same user interaction operation can

be done within different actions (e.g., looking at a public display for orienting or for

viewing artwork or equipment information), while other user interactions are restricted

to a single action (e.g., using joystick, SMS, hardware button, or RFID card).

Figure 3.2: Example of an activity-centered model of a ubiquitous computing environ-

ment

The concepts of activity and action are thus part of the ActivitySpot conceptual

model (see figure 3.3). Operations are omitted from the model for two reasons: 1)

they are executed unconsciously by visitors and therefore are not as relevant as other

concepts; and 2) as many operations correspond to user interactions, they are implicitly

represented by the user interaction concepts described below. The model considers

furthermore that activities or actions depend on local and personal context, either as

an execution condition or as a variable influencing the outcome of an action. Some

activities and actions can only be executed within certain conditions. For example,

the visiting activity can only take place within a specific time schedule or the “make

recommendation” action can only be executed if the visitor has previously provided his

name to the system. Context can also determine the outcome of actions. For example,

the outcome of the “view artwork” action may depend on the lighting level in the room,

being the content format adjusted to amount of light near the public display.

76 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

Visitors are also a first class entity in the ActivitySpot model. Their identification,

personal data, and preferences have to be taken into account either as a condition

for activity execution or as information determining the outcome of actions, while the

activity is being carried out.

Figure 3.3: The ActivitySpot conceptual model

For modelling user interaction, I also followed an approach based on simple concepts.

Given that user interaction with a ubiquitous computing system is done through mul-

tiple, heterogeneous devices and, in many cases, with little common characteristics, I

reduced user interaction analysis to basic human-computer interaction concepts: stim-

ulus and response. When a visitor uses an interaction device to provoke a stimulus to

the system (e.g., handing her personal RFID card to a reader), she is doing it in order

to execute some action. Therefore, the logic associated to that action is going to react

to the stimulus, process it, and then generate a response to the visitor through some

other device. When a response is directed to more than one device (e.g., simultaneously

presenting some content in a public display and sending an SMS to the visitor’s phone),

it is composed of several response items.

Given that user interaction is partitioned among multiple, heterogeneous devices, it

has to be decoupled from the logic supporting the activity and its respective actions,

so that changes in the interaction means do not considerably affect how the support

3.3. THE ACTIVITYSPOT CONCEPTUAL FRAMEWORK 77

for an activity is implemented. Therefore, the interaction model I propose is informed

by works such as Model-View-Controller [Krasner 88] or Model-Presentation-Controller-

Coordinator [Román 02a], which are driven by the need of separating interaction con-

cerns from logic and data.

Another distinctive characteristic of the interaction model I propose is the relation

between interaction and the dimensions of time and space. According to Fitzmaurice

[Fitzmaurice 95], there are time-multiplexed devices and space-multiplexed devices. The

most well known example of a time-multiplexed device is the mouse. The same device is

multiplexed over time to control different graphical user interface widgets. On the other

hand, the space-multiplexing model is based on the idea of associating specific physical

objects to specific functional aspects of the application. The objects become dedicated

functional manipulators. An example of space-multiplexed device is an audio mixing

console, where each slider is associated to a specific music channel. The interaction

model I propose combines both concepts and corresponds to a time-space-multiplexed

model. Some interaction devices can be employed for executing many different actions

along the time while others can be dedicated to a specific action. In the example

illustrated by figure 3.2, the button is space-multiplexed, while the public display is

time-multiplexed.

3.3.2 Discussion

The ActivitySpot conceptual model does not pretend to cover all the issues identified in

the previous sections. Yet, it deals with the most important ones, while still preserving

the required simplicity of concepts individually and of the model as a whole.

Regarding activity modelling, the application of Activity Theory is centered on the

structural aspect of human activity. Other aspects, such as goal formation, tool media-

tion, externalization-internalization, or cultural-historical development are not explicitly

represented in the model. The focus on the activity structure, besides contributing to

the simplicity of the model, by pruning out less familiar concepts, emphasizes the as-

pects that are closer to the common perception of activity. Presenting visitors with

a model of activity that is centered on the motive for their visit and on the actions

78 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

they can execute to carry out that activity provides significative advantages in terms

of rapid perception of the support provided by the ubiquitous computing environment.

Furthermore, the structural aspect of activity is a catalyzer for modularity and reuse.

In a software engineering perspective, actions are seen as loosely-coupled units of activ-

ity with self-contained behavior, implementing a simple contract based on reactions to

stimuli and generation of responses, which enables action reuse among multiple activi-

ties.

Due to its abstract nature, the application of this framework into concrete scenarios

must be preceded by a field analysis of activity, its decomposition into actions and op-

erations, and contextual elements influencing activity execution, using tools such as the

Activity Checklist or the Activity Model (see section 2.4). This analysis is comparable

to task analysis [Diaper 03], which is performed in cognitive science approaches to user

interaction design.

By decoupling activity logic or, more precisely, operational logic from the interac-

tion devices used by visitors, i.e., separating input, logic, and output, the ActivitySpot

framework facilitates the seamless substitution of interaction possibilities as well as the

introduction of new, unanticipated devices, thus supporting evolution. The ActivitySpot

model makes no assumptions about interaction devices other than being able to produce

stimulus and response events.

The ActivitySpot framework does not pretend to provide solutions for the user in-

teraction issues identified in section 3.2.2. However, it provides the basic abstractions

needed for representing interaction at different moments and thus hiding the lower level,

device-dependent concerns. The stimulus and response concepts, their association to in-

teraction devices and, indirectly, to visitors, can be employed during:

• the initial contact stage, namely at registration, which can be done through a

stimulus to the system, identified as a registration step (for instance, a registration

SMS);

• addressing and acting on the system – actions are executed by stimulating the

system through available devices;

3.4. SUMMARY 79

• action and visitor identification, by inspecting the type and content of a stimulus;

• alignment – responses are generated as a consequence of stimuli, taking into ac-

count that a response may be directed to multiple devices or that a choice may

have to be done between multiple alternatives for output (e.g., choosing the output

device that is closer to the visitor).

Furthermore, since all stimuli and responses are framed into some action and, con-

sequently, into an activity, the model enables the communication to visitors of a feeling

that all their interactions are integrated into their activity. For example, for each re-

sponse, if suitable, the system can convey activity status information based on previous

interactions and on further possible interactions.

Finally, the ActivitySpot model includes support for specifying activity and action

execution conditions, depending either on context (e.g., location, time, light, weather,

etc.) or on the visitor profile (e.g., role, preferences, etc.). Though visitors consciously

disclose access to their profile or are aware of context information gathering, execution

conditions are not necessarily published to visitors. This part of the model is rather

targeted at system designers or administrators for configuring the support to activities.

The context and visitor profile models are intentionally abstract, i.e., no assumption is

made about their structure. The concretization of context and visitor profile models are

left to ActivitySpot implementations.

3.4 Summary

The ActivitySpot framework intends to provide occasional visitors to public spaces with

a simple, activity-centered interaction model that facilitates rapid perception of how

the ubiquitous computing environment can support their activities. Furthermore, the

framework intends to provide system designers and administrators with simple and yet

comprehensive abstractions for developing and managing ubiquitous computing sup-

port to activities. The ActivitySpot model is informed by Activity Theory, a theoretical

framework for analyzing human activity, and by several user interaction models, some

of them specific to ubiquitous computing interaction. Most of the issues and concepts

80 CHAPTER 3. MODELLING ACTIVITIES AND USER INTERACTION

identified by those models and frameworks are incorporated into the ActivitySpot model

or adapted to the scenario this work is targeted at, resulting in an activity and user in-

teraction model that combines simplicity and comprehensiveness. The following two

chapters describe how the ActivitySpot model is put in practice into a ubiquitous com-

puting infrastructure – the ActivitySpot infrastructure – and in a ubiquitous computing

environment modelling and development toolkit – the ActivitySpot toolkit.

Chapter 4

The ActivitySpot software

framework

The realization of the conceptual model described in the previous chapter into concrete

solutions for human activities in public places requires four major elements: 1) deploy-

ment of interaction devices throughout the physical space; 2) development of the logic

and content for the actions supported in that place; 3) configuration of supported ac-

tivities and actions; and 4) a runtime software infrastructure managing user interaction

and activity execution. While the first element is out of the scope of this thesis, the

remaining elements are the subject of this chapter.

This chapter describes the ActivitySpot software framework, a set of software tools

and a run-time infrastructure supporting the deployment of ubiquitous computing so-

lutions for public places. The deployment of an ActivitySpot solution comprises three

phases, each served by a specific component of the ActivitySpot software framework:

the development phase consists in the creation of action controllers that implement the

logic associated with actions – a software library is available for facilitating the rapid

development of new action controllers (see section 4.3); the configuration phase consists

in the definition of which activities, actions, and interaction devices will be available at

a specific environment, and their interrelations – this phase is assisted by a GUI-based

authoring tool (see section 4.4); finally, in the deployment phase, the ActivitySpot in-

frastructure coordinates interactions with devices and manages the execution of actions

81

82 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

within each visitor’s activity (see section 4.2).

The first section of this chapter presents the ActivitySpot architecture, which is the

foundation for all the software composing the ActivitySpot framework. The next three

sections describe the run-time infrastructure, the software library, and the GUI-based

authoring tool. In each section, requirements analysis is presented and further discussed

against the proposed solution.

4.1 The ActivitySpot architecture

The ActivitySpot architecture implements the conceptual model defined in section 3.3.

The main component of the ActivitySpot architecture is the Activity Manager, a user

interaction and context management system that bases its decisions on a formal speci-

fication of the supported activities and devices. The class diagram in figure 4.1 depicts

the general perspective over the ActivitySpot architecture.

Figure 4.1: A class diagram overview of the ActivitySpot architecture

ActivitySpot is based on a local environment specification that describes the activi-

ties that are supported, actions composing it, and the devices available in the physical

space for carrying out activities. Furthermore, the environment specification details

what devices can be used for executing specific actions and what context dimensions

determine the available activities and actions. This environment specification can be

produced with the help of a GUI-based authoring tool described in 4.4. By following the

environment specification, the Activity Manager knows the characteristics of the local

setting, being able to manage user interaction and context-awareness.

4.1. THE ACTIVITYSPOT ARCHITECTURE 83

The following sub-sections detail the architecture of environment specification, user

interaction, and context.

4.1.1 Environment specification

In order to be independent of physical space and activities and thus support any activity

scenario, the ActivitySpot framework is based on a generic specification format for

activities, actions, and interaction devices available in an environment (see diagram 4.2).

Each environment supported by ActivitySpot has a specification of: a) which actions can

be executed – name, description, supported stimulus and response types, a reference to

the components implementing actions (action controllers), and execution conditions; b)

which activities are available – name, description, execution conditions, and references

to the actions composing it; c) which local devices can be used – stimulus or response

type, physical location, and references to other devices which have some physical or

logical association; and d) which context dimensions can be used for specifying execution

conditions.

Figure 4.2: Class diagram for the ActivitySpot environment specification

In the environment specification, context is represented only from the perspective of

execution conditions, whereas the general architecture also considers the role of context

from the point of view of action outcome.

84 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

An action may be employed for initializing an activity (initializer attribute set to

true). An action can be set as initializer if it implements all the necessary logic for ini-

tializing an activity. Typically, this logic involves processing stimuli that are associated

to the execution of initialization steps that may be generic (e.g., selecting an activity)

or activity-specific (e.g., populating the visitor profile database with initialization data,

such as name, phone number, etc.).

Actions may require or not the activity to be initialized beforehand (requiresInit

attribute). All the actions that require initialization steps (e.g., feeding the visitor profile

with information) or that belong to multiple activities (the action must be framed in the

intended activity) should require an activity to be previously initialized. The exceptions

to this are, for example, initializer actions, which do not require an activity to be

previously initialized because they are actually going to initialize the activity. Another

typical scenario for not requiring activity initialization is one in which the place supports

a single activity which does not require specific initialization steps. Finally, although

the activity model assumes that actions are always part of an activity, some actions may

be configured for allowing execution isolated from activity. For example, a place that

supports the submission of suggestions by visitors may allow that action to be executed

without requiring the visitor to engage into a particular supported activity – the visitor

may even be performing an activity that is not anticipated by the space manager.

Stimuli and responses are notified to ActivitySpot components by means of a shared

data-space. The data-space supports tuples and several types of events. Interaction or

context devices produce and may consume data-space events of a given type and with

a given set of parameters. For example, an RFID reading is a simple event having as

parameters the reader id and the tag id; a voice response is an event having as single

parameter the sentence to reproduce in the sound system.

Stimuli and responses define which stimulus types a particular action is reacting to

and, for each particular stimulus type, what response type is going to be generated.

Furthermore, a particular response can be generated for multiple recipients (e.g., an

RFID stimulus can generate multiple display responses for different displays in the

same room).

4.1. THE ACTIVITYSPOT ARCHITECTURE 85

Please refer to appendix A for an example of each environment specification element.

4.1.2 User interaction architecture

The ActivitySpot user interaction system is based on a device-independent middleware

for representing and processing interaction events (see diagram 4.3). Interaction devices

are integrated into the ActivitySpot infrastructure by means of device-specific gate-

ways. These gateways implement device-specific protocols for data input/output and

bridge communication with the ActivitySpot data-space. Stimulus are converted by the

gateway into an ActivitySpot data-space event, while data-space response events are

converted to device-specific output data.

Figure 4.3: Class diagram for the ActivitySpot user interaction system

The Activity Manager listens for interaction events and uses the respective device

controller for identifying the visitor. The Activity Manager converts a low-level event

into a stimulus and triggers the action controller to which the stimulus is directed. The

action controller eventually produces a response, which is sent to the respective output

device, through an event at the data-space.

86 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

4.1.3 Context architecture

Context-awareness in ActivitySpot comprises an open set of context dimensions. Some

context dimensions require a device for capturing context changes (e.g., a temperature

sensor) while others can be measured at run-time with system data (e.g., time of day).

For the context dimensions that require a sensing device, the architecture is similar to

user interaction (see diagram 4.4), with a device gateway generating events at the data-

space, which are consumed by the Activity Manager. The Activity Manager then feeds

the respective context dimension into the context repository.

Figure 4.4: Class diagram for the ActivitySpot context-awareness system

Whenever an action or activity execution pre-condition has to be checked, the Activ-

ity Manager uses the respective context controller for evaluating whether the condition

is met. Context controllers can also be used by the Activity Manager for providing

context information during action execution.

4.2 Run-time infrastructure

The ActivitySpot run-time infrastructure provides the run-time mechanisms for manag-

ing activity execution supported by ubiquitous computing devices. Its main component

4.2. RUN-TIME INFRASTRUCTURE 87

is the Activity Manager, which coordinates user interaction and context changes and

manages how it contributes to activity execution. Personal information obtained from

visitors is also used in this activity management process.

4.2.1 Requirements

The requirements for the ActivitySpot infrastructure can be aggregated into activity

management, user interaction, and personalization.

Activity management

The requirements for activity management include issues such as activity structure,

activity initialization, activity status, context-awareness, and solution deployment:

1. Simultaneously support multiple activities performed by multiple visitors.

2. Allow action reuse among different activities.

3. Allow both implicit and explicit activity inference, after the first user interaction,

providing the necessary activity initialization operations.

4. Keep the status of activity execution, by recording activity history.

5. Allow activity interruption and later resumption.

6. Provide context-awareness at the activity and action levels.

7. The context-awareness model can be easily extended to new context dimensions.

User interaction

The user interaction requirements are related mainly to the expected device heterogene-

ity and multiplicity of interaction possibilities provided by an ActivitySpot environment:

1. Make no assumption about supported interaction devices types.

2. Facilitate rapid integration of new interaction devices.

88 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

3. Hide the low level details of interaction device usage from developers and admin-

istrators.

4. Correctly identify a visitor interacting with a device as well as the intended action.

5. Address a response to a stimulus to the correct output device.

6. When multiple output devices are available for a response, select the most appro-

priate one.

7. Allow for multiple responses for a single stimulus (e.g., complementary responses

through different devices).

8. Inform visitors about execution exceptions (e.g., temporarily unavailable actions).

9. Allow the possibility of undoing an action.

Personalization

Personalization requirements are targeted mainly at maintaining visitors’ personal in-

formation, either to support the ActivitySpot infrastructure (e.g., for user interaction

identification) or to influence the outcome of actions:

1. Keep visitors profile, fed at initialization or during activity execution. The profile

is kept for further visits.

2. Keep a record of executed actions, in order to profile visitors regarding activity

habits (e.g., for making suggestions).

3. Provide support for representing personal context possibly captured by local de-

vices.

It is assumed that visitors are aware of personal information capture and that they

can opt for not disclosing access to that information.

4.2. RUN-TIME INFRASTRUCTURE 89

4.2.2 Solution

This section shows how the architecture described above is concretized into a run-time

infrastructure for supporting activities performed at a particular place. The run-time

infrastructure is composed of four nuclear elements: the Activity Manager, interaction

devices, the data-space, and action controllers. The details of each element are provided

along with the description of the infrastructure behaviour. The following diagram de-

picts the instantiation of the ActivitySpot run-time infrastructure in a concrete scenario.

Figure 4.5: An instantiation of the ActivitySpot run-time infrastructure (arrows indicate

data flow)

The Activity Manager is a service process that, when started, reads the environment

specification (see sub-section 4.1.1) and loads all the information regarding available

interaction devices, action controllers, activities, and context dimensions. Action, de-

vice, and context controllers are initialized, as well as the connection to the visitor profile

database. The environment specification is implemented as a set of XML [W3C 06] doc-

uments: one for devices, another for context dimensions, and another for activities and

90 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

actions specifications1. The last step of Activity Manager initialization is registering, at

the data-space, for interaction events notification.

The data-space is implemented by an EQUIP data-space developed as part of the

EQUATOR project [Greenhalgh 02]. EQUIP was written with reliability and perfor-

mance as major requirements. At the time of ActivitySpot implementation, EQUIP was

fully available only in Java, being determinant in the choice of the language for imple-

menting all the remaining components. EQUIP provides support for tuple-oriented and

event-oriented coordination. Tuples and events are both structures defined by a name,

a unique id, and a set of data items. EQUIP supports a wide array of data item types,

from primitive types (e.g., integer, string, long, byte, etc.) to more complex ones (e.g.,

date and time, text messages, mouse input, etc.). The difference between tuples and

events is that tuples are kept at the data-space until someone removes them whereas

events are not persistent. When an event is posted to the data-space, it is immediately

disseminated to all the entities that registered for that type of event notification and

is removed from the data-space memory. Entities that register for a given event type

cannot be notified of past events. On the contrary, when a tuple is added to the data-

space, it is kept on the data-space memory, being interested entities notified of that

tuple addition and of subsequent operations on it (updates and removal). Entities that

register for a given tuple type have access to tuples previously added to the data-space

and that were not yet removed.

It is assumed that, for every supported interaction device, there is a corresponding

device gateway complying with the user interaction architecture. i.e., generating and

consuming interaction events at the data-space. When an interaction device is added

to the ActivitySpot infrastructure, a description (name and data items) of the events or

tuples it consumes or generates is added to the environment specification. The Activity

Manager registers at the data-space for notifications of all the interaction events that

are supported by the environment.

Each event or tuple posted to the data-space or consumed by a device gateway has

a name and specific data items that describe the interaction details. Whenever a visitor

1Please refer to appendix A for an example of each environment specification document.

4.2. RUN-TIME INFRASTRUCTURE 91

generates a stimulus through an interaction device, a corresponding stimulus description

is sent to the data-space. The Activity Manager senses this stimulus and initiates the

stimulus processing, composed of the following steps:

1. loading device controller – based on the event or tuple name, the respective device

controller is loaded;

2. stimulus author identification – this is done by invoking the identifyVisitor method

on the device controller, which uses, for example, a mobile phone number, a MAC

address, an RFID code, etc. to perform visitor identification.

3. checking current user activity – this is done by checking the user profile (at a local

user profile database) for any ongoing activity; it is assumed that the user had

previously initialized an activity, e.g., at registration or by executing an activity

initialization action, or that the Activity Manager has previously automatically

assigned an activity to that visitor (implicit activity inference).

4. checking activity execution conditions – this is done by evaluating the execution

conditions at the activity specification; each condition is evaluated through the

evaluate method of the respective context controller.

5. (if the current user activity is not set) analyzing all the available activities in order

to check whether any can be carried out, i.e., whether it meets its respective execu-

tion conditions; an additional condition for automatically assigning an activity to

a visitor is obtaining a response from an action as a consequence of that stimulus.

6. (for the current user activity or for each possible activity – see previous step)

triggering all the action controllers that react to that type of stimulus and that

meet the conditions to be executed, by invoking the trigger method – the stimulus

description is passed as parameter.

7. collecting results from action controllers, which can be of the following types:

no reaction, no response (i.e., the stimulus was processed but no feedback was

92 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

produced), and response2.

8. (in the case no reaction or no response was produced by any controller) executing

the default response behaviour defined at the device controller; for example, for an

SMS stimulus, sending an SMS stating that the stimulus could not be processed

by the system (no reaction) or that the stimulus was processed successfully (no

response).

9. (in the case multiple output alternatives were provided in the response description)

selecting the most suitable output device – this is done by selecting the first device

that is available and that is co-located with the device where the stimulus was

made; for example, if an RFID tag carried by the user is intentionally brought

near a reader, the user is expecting to see the response in a nearby display, not in

a display elsewhere.

10. finally, converting response descriptions into data-space items and posting them

to the data-space, which routes the output data to the respective device gateway.

The stimulus reaction behavior is similar to what happens for an event generated

by a context sensor. Actions that are sensible to context changes may thus generate a

response to an interaction device or, if a response is not suitable, execute some logic

without producing any response. Every executed operation (either as a consequence of

a stimulus or a context change) is recorded in the Activity Manager user profile and

may be later retrieved to check the activity state or to influence the outcome of other

operations.

The only requirements of the ActivitySpot infrastructure are a Java Virtual Machine

and EQUIP-compliant adapters for each interaction device or context sensor available

in the environment. The interaction device and context types supported by the infras-

tructure are unlimited, given that the infrastructure can be extended (without needing

recompilation) to support new types.

2though in a well-designed system only a single action controller is going to react to a given stimulus,

the infrastructure does not avoid reactions from multiple action controllers

4.2. RUN-TIME INFRASTRUCTURE 93

4.2.3 Discussion

The ActivitySpot architecture was designed to meet the requirements of supporting the

development and configuration of ubiquitous computing solutions for public spaces. In

this section, I discuss how those requirements are met by ActivitySpot.

Activity management

A fundamental research problem of activity-based computing is the inference of the

activity the user is willing to accomplish or the user intent. ActivitySpot supports

both implicit and explicit activity inference. Implicit inference should however be an

option only when the inference error probability is very low. This is true for places

where only a few activities can be carried out or where each interaction possibility is

associated to a specific activity. At the first interaction, ActivitySpot infers the visitor’s

activity by analyzing all the possible activities, i.e., all the activities that meet their

respective execution conditions, and triggering their action controllers that may react

to the stimulus made by the visitor. It is assumed that only a single action controller

instance is going to react to the stimulus. The inferred activity is the one to which the

action controller belongs to.

Explicit activity inference is achieved after a registration step, which may be achieved:

1) by means of an initialization action, in which the visitor explicitly tells ActivitySpot,

through some interaction device, which activity she is engaging in3; or 2) at a registration

desk, where visitors interact with local staff.

Though explicit activity inference may seem a contradiction with the goal of pro-

viding distraction-free, activity-centered support to visitors, it is many times the most

appropriate, error-free approach (implicit activity inference is highly prone to inference

errors and thus to compromise the overall user experience). The sporadic nature of ac-

tivities performed by occasional visitors reduces the urgency of automatically inferring

activity, because of the low cost of manual, explicit inference. It is a simple task that

3ActivitySpot deals with this registration mechanism exactly like it does with implicit inference;

only the activity initialization action controller is expected to react to the first stimulus made by a

visitor

94 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

visitors have to execute, e.g., only at the moment they enter the public space. Neverthe-

less, explicit activity inference should be based on simple and non-obtrusive mechanisms

that do not drive away users at the first contact.

ActivitySpot is able to simultaneously support multiple activities performed by mul-

tiple visitors, assuming that the available local interaction devices do not require exclu-

sive, time-consuming usage by a particular visitor. The same interaction device can be

used by different visitors for executing distinct actions within distinct activities. The

Activity Manager identifies the author of the interaction and triggers the appropriate

action for the activity the visitor has registered for. For example, swiping an RFID card

over a reader can trigger a ”show participant list” for a conference participant and, a

few seconds later, a guest of the hotel where the conference takes place can use the same

RFID reader for executing a ”show restaurant menu” action.

Furthermore, flexibility and reuse in the activity structure, a fundamental character-

istic of ActivitySpot, is made possible by the loose coupling between action controllers

and the Activity Manager (as well as the environment specification it follows). Different

activities may include the same action and thus reference the same action controller

(the most typical form of action reuse). But it may also happen that different actions

reuse the same action controller. For example, a security inspector is likely to make a

recommendation by means of the same operations than a museum visitor would employ

to make a comment to an artwork.

ActivitySpot records every interaction made by visitors. Data about stimulus author,

type and content, triggered action, response type and content, and date and time of

interaction are recorded in an interaction history database. Interaction history serves

several purposes: keeping an activity state – some actions may depend on activity

state information (e.g., show the restaurant menu only if the visitor has not yet ordered

something for lunch) or may be specially targeted at providing activity state; supporting

activity interruption and resumption – visitors can later check the state their activity had

before interruption; providing activity history – visitors can later remember what they

accomplished during their visit; analyzing system usage – public space administrators

can mine interaction history data for finding system usage patterns.

4.2. RUN-TIME INFRASTRUCTURE 95

Context-awareness is provided both at the activity and action levels. At the activity

level, public space administrators can specify execution conditions based on context

variables. For example, in an art gallery, people can only visit Bosch paintings from

January 24th to March 21st. At the action level, action execution conditions can also be

context-based and action controllers can include context-aware logic. The ActivitySpot

infrastructure can be easily extended with new context sources, given that they are

provided with controllers complying to the ActivitySpot context controller interface.

The extensible character of ActivitySpot – new actions and new context sources can

be easily integrated into the framework – and the loose coupling between activities spec-

ifications and their logic support is fundamental in enabling evolvable ubiquitous com-

puting systems, which is particularly important in spaces as dynamic as public places,

where new social practices are sooner introduced than in other places and where new

sensing technologies are sooner put into play. Furthermore, ActivitySpot’s agility in face

of change facilitates rapid configuration and deployment of new ubiquitous computing

solutions for supporting user activities.

User interaction

ActivitySpot is not tied to any particular interaction device. Instead, its user interaction

model just assumes that an input device produces stimuli and an output device (which

can be the same that produces stimuli) receives responses. This assumption embraces

most of the current and future user interaction solutions, because stimulus and response

are basic, established user interaction concepts. Furthermore, following the extensible

character already described in the previous sub-section for actions and context sources,

ActivitySpot facilitates easy and rapid integration of new interaction devices into the

local infrastructure. These new devices only have to be provided with EQUIP gateways

and controllers enabling the ActivitySpot stimulus-reaction process, including stimulus

author identification.

The identification of stimuli authors assumes that visitors, previous to the system us-

age or during the activity execution, provide the infrastructure with information about

their interaction devices, such as providing the mobile phone number through an ini-

96 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

tialization message or associating RFID tags or a Bluetooth address to a visitor at a

registration desk.

The remaining steps of the stimulus-reaction process, described in section 4.2, in-

clude: correct identification of the intended action (assuming the environment is con-

figured so that only a single action produces a response to each stimulus); addressing a

response to the correct output device (based on the environment specification); select-

ing the most appropriate device (e.g., the one that is closer or handier) when multiple

alternatives are available for a response; and generating multiple responses for a single

stimulus (e.g., complementary responses through different devices).

Interaction mistakes or temporary unavailability of a device, for example, are ex-

pected. The ActivitySpot infrastructure enables the implementation of action un-

do/redo, based on user interaction history. Furthermore, if some action is not avail-

able (e.g., because it does not have required conditions), ActivitySpot informs visitors

about those exceptions. All output device controllers implement generic methods for

generating exception responses.

Personalization

Personalization depends heavily on the degree of integration between the personal do-

main (e.g., visitor profile, personal devices, etc.) and the ActivitySpot infrastructure.

To some extent, ActivitySpot is able to provide a personalized experience to visitors, by

keeping a visitor profile, fed, e.g., at registration or during activity execution or by keep-

ing a record of executed actions, which enables visitor profiling regarding activity habits

(e.g., for later making suggestions to visitors or to adapt action responses). Given the

extensibility of the context source infrastructure, ActivitySpot can support the addition

of new personal context sources, such as a heartbeat meter, personal agenda, etc.

4.3 Software library

The ActivitySpot software library is targeted at ubiquitous computing developers for

the implementation of new actions, either for a specific activity or for any activity for

4.3. SOFTWARE LIBRARY 97

which that action may be executed. The development of the support for a new action

involves user interaction – capturing stimuli and generating responses – and action logic

– executing operations according to a specific stimulus.

4.3.1 Requirements

The requirements for the ActivitySpot software library include requirements that are

common to software libraries in general and requirements that are specific to this work.

Software libraries in general should obey to a set of fundamental principles described in

[Cwalina 05, Myers 00], namely:

• support to the most common development goals – developers should be able to

implement the support for the most common types of action, i.e., interactive ac-

tions (with or without a response) and reactive actions (actions that react to some

change in the local context, capable to generate an output if appropriated);

• low barrier to entry – developers willing to learn by experiment with the software

library should not find obstacles that, to be solved, require a deep knowledge of

the library.

• simple development of simple scenarios – the development of simple actions should

not require complex initializations;

• self-documenting object models – self-descriptive class, method, attribute and pa-

rameter names;

• layered architecture – providing different abstraction layers for different levels of

complexity, ideally in different library packages.

• low or no proneness to development errors – the library architecture and devel-

opment model themselves avoid development errors, by enforcing correct develop-

ment.

Other requirements are specific to ActivitySpot scenarios:

98 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

• extensibility to new interaction/sensing device types – the inclusion of new types

of interaction devices in a local environment should not require a new version of

the software library.

• abstraction from interaction/sensing device details – developers should not have

to know the details of stimulus or context event capture and response submission

of a specific device; instead, these details should be abstracted by the library.

4.3.2 Solution

The ActivitySpot architecture described in section 4.1 provides the foundation for the

ActivitySpot software library I describe in this sub-section. The software library is

exclusively targeted at the development of new action controllers, which implement the

behavior of each action available in a place, no matter what activity it belongs to.

The implementation of an action controller requires programming the reaction logic to

the stimuli and context events to which that action is able to react. The reaction to

an event may result in the modification of the system state (e.g., modifying data in a

visitor profile) or in the generation of a response directed at the author of the stimulus.

Action controllers must implement a common interface – the ActionController in-

terface – defining three methods:

Listing 4.1: Java definition for the ActionController interface

public interface Act ionCont ro l l e r {

public void load (St r ing act ionId ,

P rope r t i e s gener icParameters ,

P rope r t i e s spec i f i cParamete r s ,

ActivityManager am) ;

public Response t r i g g e r (St imulus s t imulus) ;

public boolean checkCondit ions (S t r ing v i s i t o r I d) ;

}

4.3. SOFTWARE LIBRARY 99

The load method implements initialization tasks and is executed when the Activity

Manager is initiated and loads into memory all the action controllers for the available

actions. The load method is invoked with parameters read in the environment speci-

fication, namely: the action identifier, generic parameters (common to all instances of

the same action controller), and parameters specific to a particular action. An example

of a parameter can be, for example, the URL of a web service or the number of items

to include in the response. A reference to the Activity Manager is also passed, in the

case the action controller requires, for example, access to the visitor profile or to the

Activity Manager logging sub-system.

The trigger method implements the actual reaction to a stimulus. The method

receives a Stimulus object describing the stimulus type and content – a stimulus can be

an interactive stimulus or a context event – and returns a Response object describing

the generated response (if any).

The Stimulus object is created by the Activity Manager, after sensing an EQUIP

event, reading low-level data from it, and converting it into a higher-level representation.

Its attributes represent the stimulus type (e.g., “rfid”, “sms-in”, etc.), the stimulus pa-

rameters (e.g., a tag id, an phone number, a message, etc.), and the visitor identification

in the local profile database.

Listing 4.2: Java definition for the Stimulus class

public class Stimulus {

private St r ing stimulusType ;

private Hashtable parameters ;

private St r ing v i s i t o r I d ;

}

A Response object is created and returned by the action controller reacting to a stim-

ulus. This object is then converted by the Activity Manager into a low-level EQUIP

representation and posted to the EQUIP server. Its attributes represent the response

result (either NO REACTION – the action controller did not react to the stimulus –,

NO RESPONSE – the action controller did react to the stimulus, by executing some

operation, but did not generate a response –, or RESPONDED – the action controller

100 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

reacted and responded to the stimulus), the action identifier (as defined in the environ-

ment specification), an array of response items (different response alternatives or several

responses targeted at the same or different visitors), and a flag indicating whether all the

response items are to be posted to their respective device (non alternative) or whether

only a response item is to be chosen among the alternatives.

Listing 4.3: Java definition for the Response class

public class Response {

public stat ic f ina l int NO REACTION = −1;

public stat ic f ina l int NO RESPONSE = 0;

public stat ic f ina l int RESPONDED = 1;

private int r e sponseResu l t ;

private St r ing ac t i on Id ;

private ResponseItem [] i tems ;

private boolean a l t e r n a t i v e ;

}

ResponseItem objects represent the actual response to be posted to an output device.

A response type (e.g., “screen”, “speaker”, etc.), parameters (e.g., content URL to

display at the screen, content to play at the speaker), and the id of the visitor at who

the response is targeted.

Listing 4.4: Java definition for the ResponseItem class

public class ResponseItem {

private St r ing responseType ;

private Hashtable parameters ;

private St r ing v i s i t o r I d ;

}

Finally, and optionally, the checkConditions method is used to implement any action-

specific execution conditions that cannot be specified by means of the standard condi-

tional operators provided by ActivitySpot. For example, an action controller may need

4.3. SOFTWARE LIBRARY 101

to access an external service in order to authorize execution by a particular visitor. This

method requires only the visitor id and returns true whether the action can be executed

and false otherwise.

Given that a reference to the Activity Manager is passed to the action controller

at initialization, developers can access lower-level features in order to implement more

sophisticated action logic. For example, they can access the local visitor profile, the

EQUIP data-space, and some details of the environment specification, such as supported

activities, actions, and devices.

4.3.3 Discussion

The software development tasks required by solutions implemented with ActivitySpot

are exclusively centered on the development of the support for new actions. Developers

focus on writing action controllers, i.e., writing the logic for reacting to stimuli and,

whenever appropriate, producing responses. Though having to think, to some extent,

of interaction devices, developers do not have to worry about the low-level details of

capturing stimuli from devices or of producing responses.

Developing an action controller requires an effort that depends exclusively on the

complexity of the action being implemented. The contract defined by the ActivitySpot

library is simple: action controllers have to implement a common interface with only

three methods, being one of them optional. The method that deals with the actual

interaction has a clear, self-descriptive signature: it receives an object representing a

stimulus – either an interaction or a context event – and returns an object representing

a response. This simplicity facilitates the development of simple scenarios and does not

pose any relevant barrier to developers willing to learn by experiment. Furthermore,

the obligation to implement a pre-defined interface and the focus on reacting to stim-

uli clearly delimitates the scope of development and thus reduces development error

proneness.

Advanced developers needing to write more complex action controllers have the

means to do so. A reference to the Activity Manager is passed in the load method that

allows for accessing lower- and higher-level functionality and data. However, at this

102 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

level of abstraction, proneness to development errors increases.

The extensibility to new interaction/sensing device types is facilitated by the fact

that the ActionController interface and the Stimulus and Response classes do not refer

any dependency on a particular type of device. Instead, Stimulus and Response classes

contain a string attribute used to identify any device types. The device types supported

in a particular place are defined in the environment specification and can be changed

anytime.

Finally, as the same action can be part of different activities, the same action con-

troller can be also reused in different activities. Reuse is potentiated, not only within

the software developed for a specific public place, but as well at a broader marketplace

perspective, for instance, by creating an action controller market, where one could find

the support for actions common to many different scenarios.

4.4 GUI authoring tool

The ActivitySpot GUI authoring tool is targeted at public space managers for setting

up the support for activities. With the help of a drawing canvas, icons, and a set of

forms, this tool enables public space managers to configure: how user interaction and

sensing devices are installed throughout the physical space; what actions can be executed

and how the available devices enable these actions; and, finally, what activities can be

carried out and what actions do compose them. The result of this configuration is an

environment specification (see sub-section 4.1.1) that is then used by the ActivitySpot

run-time infrastructure for managing user interaction and activity execution.

4.4.1 Requirements

The main requirement for the GUI authoring tool is to facilitate rapid configuration

and deployment of new activities and actions. Its interface has to be quickly learnable

and effective in helping public space managers to quickly achieve their goals. Most

requirements for this tool are similar to those of end-user programming systems [Dey 06,

Ko 04], and, although being targeted to a different user population, it also shares with

4.4. GUI AUTHORING TOOL 103

the software library some general requirements:

• low barrier to entry – the tool should be simple enough to allow public space

managers to learn by experiment, i.e., it should not intimidate them with an over-

complex interface, populated with multiple windows, buttons, or menu options.

• rapid configurations – the tool should facilitate rapid configuration tasks, by pro-

viding a simple and clear configuration workflow and hiding from users low level

details of devices or actions.

• no proneness to configuration errors – the tool should enforce correct configurations

by binding user interaction validations (e.g., form input validation) to the required

configuration workflow and configuration scheme.

• extensibility to new interaction/sensing device types – the inclusion of new types

of interaction devices in a local environment should not require a new version of

the tool.

4.4.2 Solution

The ActivitySpot authoring tool is a Java Swing-based GUI application used for gen-

erating environment specifications (see sub-section 4.1.1) for the ActivitySpot run-time

infrastructure. The tool is composed of three editors (described in detail in the following

sub-sections), each of them corresponding to a step of the configuration workflow (see

figure 4.6 for an overview of the tool interface):

• space editor, for drawing the plan of the physical space and positioning interaction

or sensing devices in specific locations;

• actions editor, for specifying which actions can be executed and how they are

executed, regarding conditions, action-specific parameters, and possible user in-

teraction combinations.

• activities editor, for specifying which activities can be carried out, possible condi-

tions, and what actions compose them.

104 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

Figure 4.6: An overview of the ActivitySpot authoring tool

The configuration workflow is flexible, i.e., users decide the order of the configura-

tion steps at will and not all the steps have to be executed in each configuration task,

except for the first-time configuration, when space, actions, and activities have all to be

configured. The space configuration is likely to stabilize soon, because the space and

device settings (building plan and devices location) are less prone to changes. The envi-

ronment specification resulting from a configuration task – in the form of an XML file –

is then deployed by the public space manager to the ActivitySpot run-time infrastruc-

ture. This deployment process is manual (copying the file to the ActivitySpot run-time

base directory), though an ideal solution would be a transparent action executed in the

tool (for example, an ”update specification” menu or button that would transfer the

specification to the run-time environment).

For the sake of extensibility, some resources needed for the authoring process –

available action controllers and supported device types and context dimensions – are

only attached to the tool at run-time, after processing the authoring tool configuration.

This approach is similar to the one adopted in the iCAP authoring environment [Dey 06].

4.4. GUI AUTHORING TOOL 105

Space editor

The space editor (see figure 4.7) creates a representation of space that reflects the distri-

bution of interaction and sensing devices throughout the physical space. This editor has

two panels – devices and plan. The devices panel lists all the device types supported by

the physical space4. This information is obtained from an XML configuration document

that details all the supported devices: input/output, interaction/sensing event param-

eters, and a run-time reference to the device controller. This document is manipulated

each time the infrastructure is extended with a new device type. Nevertheless, this

low-level configuration is transparent to the authoring tool user; only the device type is

visible, as well as an associated colored shape that eases device recognition in the plan.

Figure 4.7: The space editor view of the ActivitySpot authoring tool

The plan panel is used to represent the physical plan of the building or outdoor

area. It is implemented as a free-drawing canvas, based on the SATIN [Hong 00] toolkit,

where users can employ basic sketching techniques for representing the physical space:

4This does not necessarily correspond to the actual number of devices, because, for each device type,

zero or multiple devices may have been installed in the physical environment.

106 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

dragging the mouse over the canvas for drawing a line, clicking over a line for selecting

it, dragging the mouse over a selected line for moving it, or clicking over a selected line

and pressing the delete key for erasing it.

Devices are added to the plan panel by double-clicking on it or by selecting it and

then clicking on the add button on the toolbar. Devices can be moved in the plan panel

just by dragging it and can also be deleted by selecting it and clicking on the delete

button.

The tool allows for the specification of device associations. An association between

devices establishes a strong interaction workflow, typically between input and output

devices. For example, associating a particular RFID reader to a display informs the

ActivitySpot infrastructure that, whenever a stimulus is detected for that particular

RFID reader and the resulting action produces a display response, this response has to

be routed to that particular display. Associations are created by selecting the respective

devices in the plan panel and then by clicking on the link button. Associations can as

well be deleted. Figure 4.8 represents an example of a device association.

Figure 4.8: An example of device association

4.4. GUI AUTHORING TOOL 107

Actions editor

The actions editor allows for the specification of the actions that an ActivitySpot-enabled

place supports. The actions editor has an actions panel listing the actions that the user

has specified for a particular configuration. This panel has three buttons (see figure

4.9), allowing respectively for creating a new action, copying and deleting an existing

action.

Figure 4.9: The actions editor view of the ActivitySpot authoring tool

When a particular action is selected, the action properties panel is activated. This

panel is a form where the user specifies general properties, action parameters, supported

stimulus-response pairs, and action conditions5. Some notes on the action properties

editor are nonetheless worth of mention:

5Refer to sub-section 4.1.1 for details on action properties.

108 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

• In the general properties section, the action controller class is selected among a

library of previously installed action controllers. The action controller library can

be extended anytime.

• Action-specific parameters (such as a file system path for a photo repository),

which are passed at run-time to the action controller, can be specified by adding

name-value pairs.

• In the stimuli section, where users add stimulus-response pairs, several entries can

be made for the same stimulus type provided that the response types are different.

• The action-specific marker, in the conditions section, means that the ActivitySpot

infrastructure has to invoke (or not) the checkConditions operation onto the ac-

tion controller in order to evaluate whether the environment fulfills action-specific

conditions (e.g., the availability of a particular web service).

• Context-dependent conditions (added by the user in the conditions section) are

based on the context dimensions that the infrastructure is able to support. The

only context dimension that is native to the infrastructure is the date/time one. All

other dimensions are extensions to the infrastructure and depend on the provision

of context controllers and, in many cases, sensing devices providing context data.

Therefore, the condition combo box is loaded at run-time with the supported

context dimensions (read from an XML configuration document). In the example

shown in figure 4.9, a capability condition is set, meaning that the “submit photo”

action can only be executed if the visitor profile indicates that some personal device

is Bluetooth-enabled. When more than one context-dependent condition is set,

the default logical operator is and.

Activities editor

The activities editor allows for the specification of the activities that a place supports.

Activity specification comprises generic properties, the actions composing it, and execu-

tion conditions. The activities editor is composed of an activities panel, a devices panel,

4.4. GUI AUTHORING TOOL 109

and a physical space panel. The physical space panel is just a frozen visualization of

the plan drawing and device locations specified in the space editor.

The devices panel is again based on the device types that are supported by the

infrastructure, but is here used just as a legend for the physical space panel. The

check boxes associated to each device type are just device visualization selectors – when

enabled, that specific device type is visible in the physical space panel; when disabled,

every instance of that device type is hidden. By using device selectors, the space manager

can evaluate more clearly how and where a particular device type is going to be used,

disabling the visualization of all other devices.

The activities panel has five buttons allowing for generic operations on activities or

on its actions, respectively: create a new activity; add an action to a selected activity;

copy a selected activity; remove a selected activity or action; and edit the properties of

a selected activity or action. When adding an action to an activity, the user is presented

with a combox box containing all the actions specified in the actions editor, except those

that have already been added to that activity.

Figure 4.10: The ActivitySpot activities editor and the activity properties box

110 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

The activity properties box (see figure 4.10) allows for the specification of general

properties – name and description – and execution conditions. An activity may require

to be initialized before being carried out (e.g., it may need some initialization procedure

to be accomplished before actual actions are executed). As detailed in the previous

sub-section for actions, activity execution may also be context-dependent.

The action properties box (see figure 4.11) allows for the specification of action

properties that are specific to the activity in which the action is executed, i.e., these

properties have no effect if the action is employed in another activity. All properties are

inherited from the generic specification made in the actions editor. Some properties,

such as the action controller or supported stimuli and responses, cannot be specialized,

because they are strongly dependent on the action controller implementation, which

is common to all instances of that action. However, action parameters and execution

conditions support further specialization.

Figure 4.11: The ActivitySpot activities editor and the action properties box

4.4. GUI AUTHORING TOOL 111

4.4.3 Discussion

The ActivitySpot authoring tool provides public space administrators with a high-level,

simple, and comprehensive interface for specifying how an environment instrumented

with ubiquitous computing devices supports its visitors. Its activity-centered character,

common to the whole ActivitySpot framework, keeps users focused on the activities

enabled by the infrastructure. They only manipulate higher level concepts and, though

working with device representations, they do not have to know their technical details.

Moreover, the tool concepts are coherent with those employed in other components

of the framework, facilitating communication between public space administrators and

action controller providers.

The simplicity of the user interface facilitates learning and exploration by users with

little computer expertise. Furthermore, it makes rapid configurations possible with only

a few steps. However, this simplicity necessarily comes along with limitations: tool

users compose available resources (devices, action controllers, and contextualization

mechanisms) but have little influence on the response of the environment to visitor

interactions. This power is almost completely on the action controllers’ implementation.

The ActivitySpot authoring tool can be easily extended with new devices, action

controllers, or context dimensions. All that is required is to edit configuration documents

(for devices and context dimensions) or to copy/download action controllers to a specific

directory. Extensibility is nowadays a major feature: new technologies come in to the

market at high pace and need to be integrated with existing infrastructures. Moreover,

public spaces and buildings are evolvable and thus require management tools that adapt

to changes in the physical environment and in the activities there supported [Rodden 03,

Tolmie 02].

The tool has clear user interface limitations, regarding the general look and feel and

some details in functionality (e.g., more logic operators and combinations for context-

dependent conditions and validation of action parameters and conditions values). Al-

though the simplicity of its interface contributes to reduce the tool’s proneness to usage

errors, more could be done for assuring error-free environment specifications (e.g., en-

forcing a complete specification of the three dimensions – space, actions, and activities

112 CHAPTER 4. THE ACTIVITYSPOT SOFTWARE FRAMEWORK

– or alerting the user for interaction devices that are not employed in the specified ac-

tions). General user interface concerns were certainly not the focus of this work, but

would surely be a matter of extreme importance in case this tool is released to public

usage.

4.5 Summary

The conceptual model described in chapter 3 was realized into the ActivitySpot soft-

ware framework for supporting activity-based ubiquitous computing solutions in public

spaces. ActivitySpot is composed of a run-time infrastructure for managing user inter-

action and activity execution, along with a software library for developing the support to

new actions, and a GUI-based authoring tool, targeted at public space administrators,

for specifying which devices, actions, and activities the space is providing to visitors.

This chapter described those three components of the framework, eliciting for each

one its requirements, providing all the details of the proposed solution, and concluding

with a discussion of the solution.

Chapter 5

Evaluation

The ultimate goal of this work is to validate the thesis stated in section 1.2.3. The

validation of my thesis involves evaluating how far the proposed model of activity and

user interaction: a) can be implemented in a ubiquitous computing infrastructure; b)

enhances the visitor experience, making the visitor feel effectively assisted in the activ-

ity in hands, without distracting him or her; c) provides public space administrators

with productive and manageable means for deploying or reconfiguring the ubiquitous

computing support to human activities; and d) eases the task of ubiquitous computing

specialists in developing the support for new assistance features.

The evaluation strategy addresses these four evaluation goals in three different stages:

1. implementation of the ActivitySpot run-time infrastructure – this stage demon-

strates that the proposed model of activity and user interaction is implementable

in an effective ubiquitous computing infrastructure.

2. evaluating user experience in ActivitySpot-enabled environments, by conducting

several end-user studies, based on real ubiquitous computing scenarios – this stage

demonstrates that the ActivitySpot framework is able to enhance the visitor expe-

rience without additional, dispensable distractions, and that little effort is required

for the development of the support for new activities and actions.

3. evaluating ActivitySpot environment management with the GUI authoring tool,

by conducting a user study with several subjects – this stage demonstrates that

113

114 CHAPTER 5. EVALUATION

the proposed model is fundamental in facilitating the task of public space admin-

istrators in deploying and managing a ubiquitous computing infrastructure and

supported activities.

The details and the discussion of the implementation of the ActivitySpot run-time

infrastructure, described in section 4.2, by itself characterize the first evaluation stage.

The following two sections detail and discuss the remaining evaluation stages. A com-

plete repository of surveys, reports, results spreadsheets, and materials (flyers, posters,

instructions, etc.) that supported each evaluation stage can be found on-line [Pinto 08].

5.1 User experience in ActivitySpot-enabled envi-

ronments

The evaluation of the end-user experience with ActivitySpot-enabled environments takes

into account whether the conceptual model and the user interaction I propose is ade-

quate to the cognitive challenges faced by occasional visitors to public spaces. The

occasional nature of this interaction – many visitors are probably going to interact with

that ubiquitous computing environment only once – implies a very short learning time.

Moreover, visitors should not be distracted from the activity that brought them to that

particular place. Preferably, the ubiquitous computing environment should provide vis-

itors with an interaction model that requires little cognitive effort. The reasonability of

this effort strongly influences how well the ubiquitous computing environment integrates

with the visitor activity and the time required for learning how to use the system.

An additional aspect that must be taken into account in this evaluation is the amount

of personalization perceived by visitors, how much it meets their expectations, and the

effort visitors are willing to commit for a higher personalization.

With these high-level concerns in mind, and based on the user interaction and ac-

tivity modelling challenges described earlier (see section 1.3) and on several reference

evaluation models [Compeau 95, Kaptelinin 99, Venkatesh 03, Scholtz 04], the following

evaluation goals were defined (each evaluation goal is met by a set of premises):

• compatibility of the conceptual model:

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 115

– (C1) visitors understand the assistance that is being offered to their activity,

i.e., they understand what the ubiquitous computing environment is provid-

ing them and how it can support their activity;

– (C2) visitors find that the conceptual model of the provided assistance is

compatible with their own mental model of the same activity;

– (C3) visitors understand that all interactions are integrated into their ac-

tivity, i.e., every interaction with the ubiquitous computing environment is

understood as being part of the interaction flow of their activity.

• user interaction:

– (I1) visitors are able to successfully execute actions without any previous

training or help other than the concise visual instructions provided to them;

– (I2) visitors consider that the system responds to their stimuli in a timely

and predictable manner;

– (I3) visitors consider that the effort required by the system does not divert

them from their activity;

– (I4) visitors consider that the steps required for initializing their activity is

not disruptive.

• usefulness:

– (U1) visitors consider that the system helps them achieving the goals for their

activity, preferably more effectively when compared to alternative situations

(conventional assistance, single application in mobile phone, and interactive

kiosk);

– (U2) visitors consider that the personalization provided by the system is

adequate to their needs.

ActivitySpot was evaluated in three different user studies, collecting data from sur-

veys, observation, and log analysis. The evaluation method (sampling, survey items, and

collected logs) gradually evolved along the three user studies, either as a consequence

116 CHAPTER 5. EVALUATION

of the diversity of the evaluation scenarios or just with minor improvements in order to

better fit the evaluation goals. I further describe each of the user studies and conclude

the section by discussing the evaluation results.

5.1.1 PhD poster session

The first user study was conducted during a one-day PhD poster session integrated in

the Annual Engineering Week (October 2005) at the University of Minho. Two different

activities were supported by ActivitySpot: visiting the poster session and presenting a

poster. Both activities took place in the poster exhibition area. Although in both cases

many users were university members or students, the scenario, as an extraordinary event,

provoked the situation that characterizes this work: novelty of activity, physical setting,

and infrastructure support.

ActivitySpot was evaluated by 15 users (4 women and 11 men), with ages ranging

between 24 and 44. As this work explores how people deal with a system that they not

anticipated, I limited awareness of the system itself before the evaluation took place.

This compromised in advance user sampling, because subjects would inevitably antic-

ipate the system. Therefore, user sampling was not controlled, waiting for evaluation

subjects to naturally use ActivitySpot, as it happens in a real setting. Leaflets describ-

ing ActivitySpot and the supported activities were left all over the poster exhibition

area and people just dropped by the registration desk to volunteer. At registration,

participants were given an evaluation survey (see appendix B.1 for details on the survey

design) to be returned at the end of the poster session.

Interaction means and activity initialization

The proposed interaction means explored participants’ mobile phone capabilities (SMS,

Bluetooth, and infra-red connectivity), public displays, and RFID. An SMS gateway

(based on jSMSEngine [SMSLib 08]) was listening to a GSM modem for SMS input

and used the same modem for SMS responses to visitors. Within the exhibition area,

two interaction spots were available, each with a computer running a public display

(overhead-projecting to the walls) and equipped with an RFID reader and Bluetooth

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 117

and infra-red sensors. The content presented in the display was run by a Situated

Portal [José 04], a platform for context-ware public displays. Close to interaction spots,

small posters advertised how to use the available sensing technologies to interact with

ActivitySpot. Each participant was lent two RFID tags – keyring-like and credit-card-

like.

Participants who enrolled in the user study had to explicitly choose their activity

by sending an initialization SMS message to the ActivitySpot SMS center (see next

sub-section). Then, they went to the registration desk in order to obtain their pair of

RFID tags that later allowed them to execute particular actions. Each RFID tag was

explicitly associated by the registration staff to the mobile phone number used in the

initialization step.

Proposed actions

The same leaflets used for inviting people to use ActivitySpot provided short instructions

about the proposed activities and actions:

• initializing activity – participants send an SMS with the syntax init <vst—apt>

(e.g., init vst for visiting the poster session and init apt for presenting a poster).

The same stimulus registers the participant into the system and initializes the

activity. The response to this stimulus is a welcoming message and a password for

authenticating in the ActivitySpot web site.

• having an overview of the exhibition (for both activities) – at an interaction spot,

participants swipe their RFID card over the reader and see the response in the

wall-projected display. The response content includes an exhibition plan, a listing

of the three most popular posters (a combination of the most voted and most

bookmarked), a picture randomly selected among those shared by the participants,

and activity-specific information: the next event in the Engineering Week program

(for poster visitors) or a request for voting (for poster presenters who did not yet

vote).

• commenting a poster (for both activities) – participants send an SMS with the

118 CHAPTER 5. EVALUATION

syntax cmt <poster id> <comment>. Each poster has a unique identifier. The

response to this action is a confirmation message1.

• voting for a poster (only for poster presenters) – participants send an SMS with

the syntax vot <poster id>. Each participant is allowed to vote only once. The

response to this action is a confirmation message.

• sharing a photograph (for both activities) – participants owning a camera- and

Bluetooth- or infra-red-enabled mobile phone send a photograph to the Bluetooth

or infra-red sensors located at an interaction spot. The response to this action –

a confirmation message along with the shared photograph – is presented in the

wall-projected display.

• bookmarking a poster (for both activities) – participants send an SMS with the

syntax mrc <poster id>. The response to this action is a confirmation message.

• viewing my run (only for poster visitors) – at an interaction spot, participants

swipe their RFID keyring over the reader and see the response in the wall-projected

display. The response content includes a listing of bookmarked posters, comments

made to posters, and a reference to posters sharing keywords with the posters

bookmarked or voted by the visitor.

• viewing my poster (only for poster presenters) – at an interaction spot, partici-

pants swipe their RFID keyring over the reader and see the response in the wall-

projected display. The response content includes the comments to the poster made

by other participants, the number of votes, and how many times the poster was

bookmarked.

Participants could later log into the ActivitySpot web site and view the same content

that could be seen in the wall-projected displays as well as details of bookmarked posters

(author e-mail and a link to the poster file). The web interface could be very useful

particularly for poster presenters who could feel embarrassed to see the reaction to their

poster in the wall-projected displays.

1ActivitySpot automatically responds with a warning message if participants mistype their SMS

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 119

5.1.2 Cultural center

In this scenario, a six week long study held in the first trimester of 2006, at the Vila Flor

Cultural Center, in Guimarães, ActivitySpot was deployed to assist spectators at three

different moments of the shows: before, at the interval, and afterwards. ActivitySpot

was run in a total of 19 shows taking place at two different theaters in the cultural

center. A single activity was proposed, composed of actions allowing spectators to

obtain detailed information or give feedback about the current show.

During the period ActivitySpot ran in the Cultural Center, a total of 24 partici-

pants (18 men and 6 women), with ages ranging between 21 and 39, volunteered for

participating in the study. In order to engage participants, their effort was compen-

sated with tickets for shows. Most visitors spontaneously addressed themselves to the

ActivitySpot registration desk after reading leaflets or looking at public displays’ ad-

vertisements. Some other participants knew ActivitySpot by other means (local press,

Vila Flor Cultural Center web site, etc.) and pre-registered at the ActivitySpot web

site, where they could provide, besides general personal data, information about their

entertainment preferences.

Participants could choose between using ActivitySpot only once or as many times

as they attended shows in the Cultural Center. In the latter case, registration to Ac-

tivitySpot was made only once. At registration, participants were given a survey (see

appendix B.2 for details on the survey design) that they returned after the last show

they attended to.

Interaction means and activity initialization

Besides the SMS gateway already used in the previous study, three interaction spots

were installed at the entrance hall of two theaters (two interaction spots in the Grande

Auditório theater and another in the Pequeno Auditório one). Each interaction spot

was equipped with a computer running a public display (using the LCD wide screens

available in the entrance halls) and connected to an RFID reader and a Bluetooth sensor.

A 2D-code reader application (based on the TRIP project [de Ipiña 02]) was provided

on request to visitors owning a Bluetooth- and camera-equipped, Java-compliant mobile

120 CHAPTER 5. EVALUATION

phone. This application was used to capture 2D-codes stuck to the entrance hall walls

and pillars and to send the code over Bluetooth to a 2D code gateway. Each 2D code

was associated to a specific action.

Figure 5.1: ActivitySpot being used at the Cultural Center

At registration, visitors were asked to provide their name, mobile phone number,

and were given a pair of RFID tags (keyring-like and credit-card-like) and a leaflet

describing what actions were available. Short instructions about system usage were

spread near the interaction spots. Visitors owning a compliant mobile phone could also

receive (through Bluetooth push) the 2D-code reader application and install it in their

mobile phone. This process made possible the association of a visitor identity to the

respective Bluetooth MAC address.

Since there were no simultaneous shows and, consequently, only a single activity

was supported at each time, ActivitySpot implicitly inferred the intended activity, i.e.,

the activity was automatically initialized for the current show after the first interaction

made by the visitor.

Proposed actions

Visitors had different interaction alternatives for executing the actions composing their

activity:

• viewing details about the current show – at an interaction spot, participants swipe

their RFID card over the reader and see the response in the wide screen above.

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 121

The response content includes general information about the show (cast, cred-

its, duration, a picture, etc.) and information resulting from visitor interaction

(comments made by visitors and vote average).

• commenting the current show – participants send an SMS with the syntax men-

sagem <comment>. The response to this action is a confirmation message.

• voting for the current show – participants can either send an SMS with the syn-

tax vota <a value between 1 and 5> or capture a 2D-code corresponding to the

intended vote. Each participant is allowed to vote only once. The response to this

action is a confirmation message (either through SMS or in the 2D-code reader

application interface).

• sharing a photograph – participants owning a camera- and Bluetooth-enabled

mobile phone send a photograph to the Bluetooth sensor located at an interaction

spot. The response to this action – a confirmation message along with the shared

photograph – is presented in the wide screen above.

• viewing my show – at an interaction spot, participants swipe their RFID keyring

over the reader and see the response in the wide screen above. The response

content includes comments made the participant herself, suggestions about other

actions (based on the personal interaction history for that specific activity), a

list of other participants attending to the show that share preferences with the

participant, and the next scheduled show of interest (again based on personal

preferences).

• viewing details about an upcoming show – at an interaction spot, participants cap-

ture a 2D-code corresponding to the intended upcoming show and see the response

in the wide screen above. The response content includes general information about

the show (cast, credits, duration, a picture, etc.).

Participants could later log into the ActivitySpot web site and view contributions

made during the shows, such as comments and vote average for each show, shared pho-

122 CHAPTER 5. EVALUATION

tographs, and the top ten rated shows. They could also view their own show attendance

history.

5.1.3 Conference

The last user study was held during a three day conference on human-computer interac-

tion (October 2006). Three different activities were supported, depending on the goals

of conference participants: authors presenting their work, conference organizers, and

conference participants who were not presenting any work (as main authors).

Some improvements were introduced in this study, based on lessons learned in the

two previous studies. The major goal of these improvements was to achieve a better

interaction design, looking for understanding visitor needs. Prior to the study itself, I

made an activity analysis, by submitting surveys to people who usually participate in

conferences, in order to obtain their view of the activity, i.e., which goals they establish

and which actions they execute in order to accomplish those goals. This information

helped me identifying the actions that could better meet user needs. After this phase,

a prototype description (interaction details for each available action) was evaluated by

a human-computer interaction expert, who identified some minor interaction problems.

A total of 8 participants (7 men and 1 woman), aging between 25 and 42, used the

system and answered the surveys (see appendix B.3 for details on the surveys design).

A second group of participants (6 people) was selected as the control group, in order to

assess how the ActivitySpot assistance contributed to achieve activity goals, compared

to the conventional assistance available in conferences.

Conference participant data was obtained beforehand in order to build a basic profile

(name, institution, and work authorship) that was used as a source for the content of

some actions responses and for speeding up visitor registration.

Interaction means and activity initialization

The interaction means available for this study comprised an SMS gateway and two

interaction spots installed at the conference reception hall, where coffee breaks also took

place. Each interaction spot was equipped with a computer running a public display

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 123

(using a 17” LCD screen) and connected to an RFID reader and a Bluetooth sensor.

During the conference, participants were asked to enroll in the study, by registering

at the ActivitySpot desk. This registration step lasted about a minute – just the time for

asking the participant name, intended activity, mobile phone number, research interests,

and delivering two RFID tags. If a participant was using a Bluetooth- and camera-

enabled mobile phone, an additional step – obtaining automatically its Bluetooth MAC

address – was required2.

Proposed actions

The actions available for the supported activities were:

• viewing the conference program (for all activities) – at an interaction spot, par-

ticipants swipe their RFID card over the reader and see the response in the LCD

display. The response content includes the next three events in the conference

program, with events matching personal research interests highlighted, as well

as suggestions for executing other actions, based on the personal activity history

(sample response in figure 5.2).

Figure 5.2: A sample response for the conference program view action

2Unlike previous studies, participants sending photographs over Bluetooth could be identified by

the system

124 CHAPTER 5. EVALUATION

• commenting a paper or poster (for all activities) – participants send an SMS with

the syntax comentar <paper or poster id> <comment>. Papers and posters have

a unique identifier. The response to this action is a confirmation message. The

comment is immediately delivered to the paper or poster main author through

SMS.

• viewing the participant list (for all activities) – at an interaction spot, partici-

pants swipe their RFID keyring over the reader and see the response in the LCD

display. The response content includes a random selection of three participants

(participants matching personal research interests have more chances to be pre-

sented and matching interests are underlined) and a summary of past executed

actions (sample response in figure 5.3).

Figure 5.3: A sample response for the participant list view action

• rating a paper or poster (not available to conference organizers) – participants

send an SMS with the syntax votar <paper or poster id> <a value between 1

and 5>. Each participant is allowed to rate each paper or poster only once. The

response to this action is a confirmation message.

• sharing a photograph (for all activities) – participants owning a camera- and

Bluetooth-enabled mobile phone send a photograph to the Bluetooth sensor lo-

cated at an interaction spot. The response to this action – a confirmation message

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 125

along with the shared photograph – is presented in the LCD display.

• rating a conference day (not available to conference organizers) – participants send

an SMS with the syntax avaliar <a value between 1 and 5>. Each participant is

allowed to rate each conference day only once. The rating is assigned to the

conference day corresponding to the SMS reception date. The response to this

action is a confirmation message.

• check paper or poster ratings (available only to authors) – participants send an

SMS with the syntax consultar. The response to this action is a message with

information about the rating average earned by the author’s work. Authors could

only check their work rating after having rated at least another work.

• check conference ratings (available only to conference organizers) – participants

send an SMS with the syntax consultar. The response to this action is a message

with information about the rating average earned by each conference day.

• broadcasting an advertisement (e.g., a change in the conference program) to con-

ference participants (available only to conference organizers) – participants send

an SMS with the syntax avisar <advertisement text>. The response to this action

is a confirmation message. The advertisement is immediately delivered through

SMS to all participants registered at ActivitySpot.

• undoing the last action (for all activities) – participants send an SMS with the

syntax anular. The last undoable action (only photograph sharing and paper/-

poster/conference ratings) is then rolled back. The response to this action is a

confirmation message.

5.1.4 Results

In all the three studies, ActivitySpot evaluators used a ubiquitous computing system

without previous training or even previous awareness of it. The first contact with

ActivitySpot was generally made after reading advertisements spread throughout the

physical space where the activities were available, mainly near the interaction devices.

126 CHAPTER 5. EVALUATION

These advertisements contained short instructions about registration and device usage.

Due to this approach of not hiring people to use the system, few people volunteered for

using ActivitySpot, when compared to the universe of visitors in each scenario.

All evaluators responded a survey, composed mainly of 4-point Likert scale answers

(1 – totally disagree – to 4 – totally agree). The option for an even number of possible

answers was made to reduce ambiguity and make participants definitely adopt a position

instead of hiding themselves within an intermediary, uncommitted answer. In order to

simplify the presentation and analysis of results, responses are aggregated into two

categories: positive answers, i.e., meeting evaluation goals, and negative answers. I

consider that a particular goal premise is met when the number of positive answers

is above the third quartile. The statistical significance of the results is assessed by a

Chi-square test attempting to reject, for each question, the null hypothesis that positive

and negative answers had equal proportions, with at least a 95% confidence interval.

I next describe the results for each premise of each evaluation goal (please, refer to

the introduction to this section for the details of premises), mentioning the proportion

of positive answers and respective Chi-square results3, and conclude the sub-section

with complementary remarks. The documentation on the online repository details how

survey items relate to each evaluation goal.

Compatibility of the conceptual model

Table 5.1 summarizes the results for each premise composing this evaluation goal (the

results for each study are numbered from 1 – PhD poster session scenario – to 3 –

conference scenario):

In all the three studies, participants clearly understood the assistance that was being

offered to their activity. This result was particularly expressive in the last two studies

(96% and 100% respectively, ρ<0.005). It also appears evident to participants that all

interactions were integrated into their activity (100%, ρ<0.005, in the cultural center

study, and 100%, in the conference study). There was trouble in evaluating the compat-

3When no ρ value is provided, this means that the null hypothesis could not be rejected, though

this could in most cases be achieved with a larger sample.

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 127

Table 5.1: Results for the compatibility of the conceptual model

Premise Pos. (1) ρ (1) Pos. (2) ρ (2) Pos. (3) ρ (3)

C1 86% < 0,01 96% < 0,005 100% < 0,005

C2 N/A N/A N/A N/A 82% < 0,05

C3 N/A N/A 100% < 0,005 100% –

ibility of the conceptual model of the provided assistance with the participants’ mental

model of the same activity, because the first two scenarios offered activity structures

that visitors normally were not used to deal with. For example, when someone goes to

the cultural center, he is not used to vote for a show, publish a comment, or share a

photograph. In the PhD poster session and cultural center studies, an activity analy-

sis prior to the system implementation would not be of much value, because these are

very simple activities. Evaluating this type of ubiquitous computing systems in a real

scenario that totally meets the evaluation requirements is very difficult. Visitors are

offered actions that, though being interesting and useful, are not part of the everyday

structure of the particular activity. It seems that work activities are more suitable to

achieve conceptual compatibility, as is the case of the conference study, where proposed

actions were more compatible with the conventional conference activity structure (82%,

ρ<0.05).

User interaction

Table 5.2 summarizes the results for each premise composing the user interaction evalu-

ation goal. Due to variations in the setting and evaluation strategy in the three studies,

premise I1 had to be divided into several sub-premises partially evaluated in the different

studies:

• I1.SMS – how easy was using SMS;

• I1.RFID – how easy was using RFID;

• I1.display – how easy was interacting with public displays;

128 CHAPTER 5. EVALUATION

• I1.camera – how easy was using the mobile phone camera for sending pictures over

Bluetooth or infra-red;

• I1.instructions – whether the provided instructions were sufficient for an under-

standing of the interaction with ActivitySpot;

• I1.help – whether ActivitySpot would be easier to use if more help was available;

• I1.easiness – how easy was using ActivitySpot in general.

Table 5.2: Results for user interaction

Premise Pos. (1) ρ (1) Pos. (2) ρ (2) Pos. (3) ρ (3)

I1.SMS 93% < 0,005 100% < 0,005 N/A N/A

I1.RFID 57% – 95% < 0,005 N/A N/A

I1.display 64% – N/A N/A N/A N/A

I1.camera 33% – 70% – N/A N/A

I1.instructions N/A N/A 79% < 0,005 75% –

I1.help N/A N/A 63% – 100% –

I1.easiness N/A N/A N/A N/A 88% –

I2 N/A N/A 96% < 0,005 75% –

I3 N/A N/A 96% < 0,005 88% –

I4 80% < 0,025 N/A N/A 100% < 0,005

The choice of grounding user interaction on basic, everyday interaction devices seems

suitable to a walk-up-and-use ubiquitous computing system such as ActivitySpot. Given

their previous experience in using some of the technology the studies were based on,

participants had no trouble in interacting with ActivitySpot without previous training,

particularly using SMS. Furthermore, participants generally were satisfied with the pro-

vided usage instructions, even if these were written very concisely, and did not find the

initialization procedure (at the registration desk) cumbersome (80%, ρ<0.025 in the

poster session study and 100%, ρ<0.005 in the conference one).

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 129

Regarding predictability and response time, participants of the last two studies were

satisfied (respectively 96%, ρ<0.005 and 75%). In the poster session study, this issue

could not be evaluated, due to technical problems.

Participants in general considered that using a system like ActivitySpot does not

distract them from the activity they are carrying out (96%, ρ<0.005 in the cultural

center study and 88% in the conference one).

Usefulness

Table 5.3 summarizes the results for each premise composing the usefulness evaluation

goal. Premise U1 is decomposed in the following sub-premises:

• U1.useful – ActivitySpot helps visitors achieving the goals for their activity;

• U1.conventional – ActivitySpot helps achieving goals better than conventional

assistance;

• U1.mobile – ActivitySpot helps achieving goals better than an application in a

mobile phone;

• U1.kiosk – ActivitySpot helps achieving goals better than an interactive kiosk.

Premise U2 is sub-divided into U2.personalized (participants recognize that the sys-

tem provides them with personalized information) and U2.adequate (participants con-

sider that ActivitySpot provided them with an adequate level of personalization).

We adopted different evaluation strategies in each study for this evaluation goal. In

the first two studies, we inquired participants for their general satisfaction regarding the

system. Participants were generally satisfied with their experience (86%, ρ<0.01 for the

poster session study, and 88%, ρ<0.005, for the cultural center one) and considered it

more interesting than if it was carried out without system support (87%, ρ<0.005, for

the poster session study, and 88%, ρ<0.005, for the cultural center one).

In the conference study, we introduced a control group, that was used to compare

satisfaction regarding goal completion between system users and non-users. However,

due to low participation at the conference and low response rate, we could not collect

130 CHAPTER 5. EVALUATION

Table 5.3: Results for usefulness

Premise Pos. (1) ρ (1) Pos. (2) ρ (2) Pos. (3) ρ (3)

U1.useful 86% < 0,01 88% < 0,005 75% –

U1.conventional 87% < 0,005 88% < 0,005 13% –

U1.mobile N/A N/A N/A N/A 82% < 0,05

U1.kiosk N/A N/A N/A N/A 91% < 0,01

U2.personalized N/A N/A 88% < 0,005 75% –

U2.adequate 40% – 33% – 38% –

enough responses from the control group to obtain statistical significance. Therefore,

we restricted usefulness evaluation in this study to the experimental group. Results

showed that participants considered that the system support helped them in achieving

the goals for their activity (75%), and that it was more effective than if it was provided

over a single application on a mobile phone (82%, ρ<0.05) or an interactive kiosk (91%,

ρ<0.01). However, participants interestingly stated that they could perfectly achieve

their goals without ActivitySpot or any other computer system support (87%).

In the last two studies, all participants recognized that the system was providing

them with personalized information (88%, ρ<0.005, for the cultural center study, and

75% for the conference one). However, the same participants considered that for per-

sonalization to be more useful, the system should have access to more personal data

(about two thirds for all studies). This is an expected consequence of the current lack of

solutions for the seamless integration between the local infrastructure and the personal

domain.

Closing remarks

This series of user studies has allowed to demonstrate that visitors to public spaces can

easily understand the type of activity-centered support provided by ActivitySpot and

that they do not find obstacles in using the provided interaction means for carrying

out their activity. Previous experience in using the basic interaction devices on which

5.1. USER EXPERIENCE IN ACTIVITYSPOT-ENABLED ENVIRONMENTS 131

ActivitySpot is grounded was fundamental for these results. However, it is not always

possible to provide an activity model compatible with the visitors mental model, due

to the nature of the activity itself, which, with the introduction of pervasive computing

support, may become somehow artificial. This, along with the more or less compelling

assistance that may be provided, which does not depend on the ActivitySpot infrastruc-

ture, may affect usefulness of the system. As noted by Edwards et al. [Edwards 03],

infrastructures can only be evaluated in the context of use and thus must be evaluated

indirectly through applications built on top of it, thus incurring in the risks of supporting

unattractive applications or getting distracted by the demands of application develop-

ment and to lose sight of the real purpose of the effort, which is purely to evaluate the

infrastructure. Finally, usefulness is also influenced by the current lack of mechanisms

for automatic integration between the local infrastructure and the visitors’ domain, key

to providing more effective personalization.

System usage log analysis and some observations provided some additional intriguing

results:

• Participants tended to interact predominantly with the public displays, mainly

with RFID tags (half of the interactions in the cultural center study and more

than 75% in the conference study), probably due to ease of use and immediacy of

response.

• Some participants complained about the cost of SMS usage, which ultimately

resulted in a barrier to usage. This may be due to the lower SMS habits of our

population sample (around the 30s).

• The importance of entertainment and engagement in this kind of system, reflected

by the notorious pleasure that some participants demonstrated when sharing their

own photographs with the system and watching them being displayed in the public

screens to all other people.

The implementation of the various user studies has also been very useful in assessing

the flexibility and ease-of-use of the ActivitySpot development framework. In partic-

ular, the simplicity of the stimuli-response paradigm, has proven to be very adaptive

132 CHAPTER 5. EVALUATION

to multiple interaction artefacts and situations. All that developers need to do is to

implement an action controller interface and write the logic for processing the stimuli

of a given type and for producing a response. Both stimuli and responses are wrapped

by a device-independent abstraction, which facilitates programmatic manipulation and

speeds up learning and development time. All the code for the several actions that

composed the activities in the various scenarios was written in a very short time. Each

action required approximately one or two hours to be implemented. Furthermore, func-

tional operations (e.g., specific database queries) were reused between different actions,

also contributing to a shorter development time.

Action developers do not have to care about low-level details of interaction devices

neither about activity-level concerns. They just focus on implementing the reaction

to stimuli events. Furthermore, as demonstrated by the diversity of user studies, the

ActivitySpot framework allowed for the development of heterogeneous actions, some of

them supporting multiple interaction devices.

5.2 ActivitySpot environment management with the

GUI authoring tool

The evaluation of the ActivitySpot authoring tool assessed whether: a) its interaction

model is compatible with the user’s mental model; b) it eases configuration tasks, not

having to think of low level issues such as how input or output are captured or produced;

c) it allows for rapid configuration of an ActivitySpot environment; d) it allows config-

uration of new interesting applications; and e) it helps anticipating end-user interaction

problems. The following sub-sections detail the evaluation method and the results that

were obtained.

Method

The typical user of the ActivitySpot authoring tool is a public space facilities manager,

likely having basic end-user experience with computer tools. Therefore, the population

of the user study had to be selected among a universe of people that usually perform

5.2. ACTIVITYSPOT ENVIRONMENT MANAGEMENT 133

such management tasks or, at least, have some sensibility for those tasks. The user

sample was thus selected mainly among university staff matching that profile. The user

study was set up with 13 volunteers (8 men and 5 women), aged between 25 and 46,

and with varying computer science and physical space/facilities management expertise.

The user study was composed of individual evaluation sessions, being carried out

along two weeks. An evaluation session had the following structure:

I. introduction – volunteers were given a short tutorial about the tool (main concepts,

interface structure, and usage). Next, they were introduced to the scenario with

which they worked: modelling activities taking place at the university campus.

The scenario was simulated and therefore users did not deal with real interaction

devices. For evaluation purposes, a simulated scenario was sufficient. The sce-

nario included pre-configured interaction devices (e.g., gesture recognition, public

displays, RFID readers, etc.) and action controllers common to different possible

activities taking place at the university campus. Examples of such actions were

“requesting directions to somebody’s office”, “viewing the university restaurant

menu”, “make a complaint”, etc. A pre-sketched building plan was also loaded

into the tool.

II. activity analysis – users were asked to imagine one activity (and respective actions)

that would be interesting to support with the available interaction devices. Each

user would later use this activity description in further evaluation steps.

III. training – users were asked to use the tool to accomplish several tasks with different

complexity levels. Completion time and task success were measured for every task.

Users were also videotaped and the environment specifications they produced were

saved for further analysis. The required training tasks were as follows:

1. positioning five different interaction devices in the physical space;

2. specifying an action: name, action controller, and two stimulus-response

pairs;

3. specifying a second action: name, action controller, one stimulus-response

pair, and a time-based execution condition;

134 CHAPTER 5. EVALUATION

4. specifying an activity: name, associated actions – the actions specified in

the previous tasks –, an action-specific parameter, and a time-based activity

execution condition;

5. specifying a third action: name, action controller, and a single stimulus-

response pair;

6. specifying a second activity: name, associated actions – second and third

actions –, an action-specific parameter, and a role-based, action-specific exe-

cution condition;

7. adding an action to an activity;

8. removing an action from an activity;

IV. execution – users were asked to use the tool for designing the activity specification

they had described in the activity analysis step. Completion time was measured,

users were again videotaped and the resulting environment specification saved.

Furthermore, the think-aloud technique was used during this evaluation step.

V. interview – users were interviewed for feedback regarding the tool. The interview

also included a visual analysis of the designed activity specifications, in order to

evaluate if the tool was helping users in identifying possible end-user interaction

problems in the scenario they designed.

Results

In the activity analysis step, all the volunteers comfortably used the concepts of activity

and action for designing a new activity. Everybody thought of activities that usually take

place at the university and employed mainly SMS stimuli and responses for supporting

the actions composing their activity.

The training tasks were mainly targeted at measuring task completion time. Al-

though the results did not have a normal distribution – standard deviations and co-

efficients of variation were high –, all the users performed their tasks in a reasonably

short time. Action specification had a mean time of 80 seconds, with second and third

action specification tasks with shorter times. Activity specification had a mean time

5.2. ACTIVITYSPOT ENVIRONMENT MANAGEMENT 135

of 150 seconds, with the second activity specification task with a shorter time. Men

and computer science expert groups achieved shorter task completion times. Table 5.4

details the training tasks results.

Table 5.4: Completion time for each training task T (in seconds), for each subject (S),

with mean, standard deviation, and coefficient of variation

S M/F Expert T1 T2 T3 T4 T5 T6 T7 T8

1 M yes 105 106 108 170 80 165 85 15

2 M yes 53 105 43 154 57 89 18 6

3 M yes 27 51 63 93 28 68 22 12

4 M no 101 89 62 134 73 146 18 16

5 M yes 73 99 67 143 39 121 12 13

6 M yes 62 113 72 114 50 102 9 10

7 M no 123 75 64 139 33 141 15 10

8 F no 198 163 130 322 81 177 10 11

9 F no 105 136 65 256 32 130 11 8

10 M yes 62 78 78 145 67 203 9 12

11 F yes 58 45 46 152 35 89 6 8

12 F no 113 245 74 182 60 147 10 14

13 F no 62 226 73 246 77 182 137 18

µ 88 118 73 173 55 135 28 12

σ 43,6 61,2 23,3 64,3 19,8 40,6 38,7 3,4

CV 49,6% 52% 32,1% 37,1% 36,2% 30% 139% 29,3%

In the execution step, results did not follow again a normal distribution (see table

5.5). The fact that volunteers specified heterogeneous activities, with variations in the

number of devices, actions and stimulus-response pairs employed in the activity, affects

even more the statistical relevance of these results. However, all the volunteers could

completely configure the activity they specified in the introductory step with a mean

time below 8 minutes. Configuring in 8 minutes an activity that employs an average of 8

136 CHAPTER 5. EVALUATION

devices, 3 actions, 6 stimulus-response pairs, and 2 execution conditions, is incontestably

a short time.

Table 5.5: Completion time for the execution step (in seconds), for each subject (S),

with mean, standard deviation, and coefficient of variation

S M/F Expert Task

1 M yes 738

2 M yes 372

3 M yes 434

4 M no 366

5 M yes 384

6 M yes 535

7 M no 567

8 F no 390

9 F no 462

10 M yes 436

11 F yes 253

12 F no 609

13 F no 358

µ 454

σ 128

CV 28,3%

These short configuration times demonstrate how simple the tool concepts are and

the productivity such a tool can provide to ubiquitous computing solutions adminis-

trators. However, videotape observations and interviews reported some user interface

issues that hindered the performance of some users. The user interface problems were

due to the lack of experience and care in developing a usable interface and were not

related to the activity-based conceptual model proposed by the tool.

5.3. SUMMARY 137

5.3 Summary

The validation of this thesis was composed of three evaluation stages, each contributing

to achieve one or more validation goals. The first stage – implementation of the Activi-

tySpot run-time infrastructure – demonstrated that the proposed model of activity and

user interaction is implementable in an effective ubiquitous computing infrastructure.

The second stage, in which three end-user studies were carried out based on real

ubiquitous computing scenarios, demonstrated that visitors to public spaces can easily

understand the type of activity-centered support provided by ActivitySpot and that

they do not find obstacles in using the provided interaction means for carrying out their

activity. Previous experience in using the basic interaction devices on which Activi-

tySpot is grounded was fundamental for these results. This stage also evaluated how

easy and rapid it is to develop the support for new activities and actions. All the code

for the several actions that composed the activities in the various scenarios was writ-

ten in a very short time. Each action required approximately one or two hours to be

implemented. Action developers do not have to care about low-level details of interac-

tion devices neither about activity-level concerns. They just focus on implementing the

reaction to stimuli events.

The final stage – a user study with the GUI authoring tool – demonstrated that the

proposed model is fundamental in facilitating the task of public space administrators in

deploying and managing a ubiquitous computing infrastructure and supported activities.

All the subjects performed configuration tasks with ease and in a reasonably short

time, despite some usability problems in the tool, that were due mainly to my lack of

experience in developing GUI tools.

Chapter 6

Conclusions

A major challenge to ubiquitous computing system designers is the provision of walk-

up-and-use solutions for supporting activities performed by occasional visitors to a par-

ticular place. When arriving for the first time to a particular place, occasional visitors

have little or no idea about what the local environment is providing to support their

activity. Furthermore, this support has to be self-explainable and quickly learnable, as

occasional visitors are not prepared to interact with an unknown system and do not

have time to spend understanding and learning how to use new tools.

Although ubiquitous computing has the potential for greatly enhancing the experi-

ence of occasional visitors to public places, there is still much to do to achieve the vision

of a computing system that requires little or no attention at all, so that humans can

use the computer unconsciously. Ideally, people should perform an activity requiring

computing tools as they perform any other activity, by focusing on the activity itself,

and using the computing tool as naturally as other tools.

This work follows an activity-centered approach to ubiquitous computing and has

as main goal the development of ActivitySpot, an activity-centered conceptual and

software framework targeted at supporting occasional visitors to public spaces. The

conceptual framework, described in chapter 3, is intended to model human activity

and user interaction with the ubiquitous computing system. Undertaking an activity-

centered approach to ubiquitous computing system design requires an understanding

of how humans think about and carry out their activities. Therefore, this research

139

140 CHAPTER 6. CONCLUSIONS

is grounded on previous work on human activity analysis, namely Activity Theory,

a conceptual framework for analyzing human activity developed during the twentieth

century. Activity Theory has matured along several decades and provides a set of simple

and solid concepts, particularly those related to the structure of human activity (the

levels of activity, actions, and operations), which form the basis of the activity model I

propose.

For modelling user interaction, I assumed that interaction media are elementary

ones, such as voice input/output, gesture recognition, RFID tag reading, SMS, public

screen display, etc. Given that user interaction with a ubiquitous computing system is

done through multiple, heterogeneous means and, in many cases, with little common

characteristics, I reduced user interaction analysis to basic human-computer interaction

concepts: stimulus and response. I assume that, for a given stimulus through a given

interaction medium, a response is produced through the same medium or through other

medium or set of media.

The software framework, described in chapter 4, includes a ubiquitous computing

infrastructure for providing the actual support to occasional visitors, tools for deploying

ubiquitous computing solutions by non-computer-expert public space administrators,

and a software library for developing the support to new activities.

Chapter 5 details the method and the steps employed for validating my thesis. The

ActivitySpot framework is validated from three perspectives: the end-user perspective

(actual visitors interacting with the system in a public space); the manager perspective

(authoring tool users); and the developer perspective (software library users). Three

end-user studies with the ActivitySpot infrastructure deployed in real scenarios and a

user study with the authoring tool provided the means for successfully completing the

thesis validation.

6.1 Contributions

This work contributes to the area of ubiquitous computing by proposing a conceptual

and software framework that facilitates the development and deployment of effective

6.1. CONTRIBUTIONS 141

walk-up-and-use ubiquitous computing solutions targeted at supporting activities per-

formed by occasional visitors.

6.1.1 Contributions of the conceptual framework

The conceptual framework is composed of an activity model and a user interaction model

aiming at easing and enhancing the activity of occasional visitors to public spaces. The

conceptual framework offers several theoretical contributions. It provides researchers

with a concrete and practical application of Activity Theory concepts, enriching the

corpus of experimentation with Activity Theory with an original approach. This ap-

proach, though centered on the aspect of activity structure, explores it deeply enough

to provide practitioners with a relevant reference. The concepts of activity structure are

explored both from software engineering and user interaction perspectives.

The activity-centered character of the proposed framework emphasizes the aspects

that are closer to the common user perception of activity. Presenting visitors with a

model of activity that is centered on the motive for their visit and on the actions they can

execute to carry out that activity, rather than the usual model based on applications,

provides significative advantages in terms of rapid perception of the support provided by

the ubiquitous computing environment. This contribution is backed by the results of the

end-user studies, which showed that the ActivitySpot framework is effective for walk-up-

and-use systems, turning user interaction with a ubiquitous computing system almost as

natural as interacting with other everyday tools. The majority of users clearly reported

that ActivitySpot fostered learnability and usability. The choice of using elementary,

everyday interaction means with a simple stimulus-response interaction model was also

fundamental in the success with end-users.

From a software engineering perspective, the structural aspect of activity is a cat-

alyzer for modularity and reuse, in line with fundamental software engineering practices

and patterns. Actions are seen as loosely-coupled units of activity with self-contained

behavior, implementing a simple contract based on reactions to stimuli and generation

of responses, which enables action reuse among multiple activities. Furthermore, by de-

coupling activity logic or, more precisely, operational logic from the interaction devices

142 CHAPTER 6. CONCLUSIONS

used by visitors, i.e., separating input, logic, and output, the ActivitySpot framework

facilitates the seamless substitution of interaction possibilities as well as the introduc-

tion of new, unanticipated devices, thus supporting evolution. The development of the

support for the several scenarios where end-user studies took place demonstrated the im-

pact in productivity and software manageability brought by action/operation reuse and

separation of logic from interaction. The implementation of that support was achieved

in a few days of work for each scenario, a critical factor in any software development

initiative.

6.1.2 Contributions of the software framework

The software framework is composed of a run-time infrastructure implementing the

conceptual model, an authoring tool for public space managers, and a software library for

developers. All these components showed that the conceptual framework can be realized

into a concrete, end-to-end implementation of a ubiquitous computing framework.

The run-time infrastructure successfully ran several end-user studies, with varying

usage loads and diverse, heterogeneous interaction means. The infrastructure requires

only a Java virtual machine environment and a Java-based tuple-space, along with gate-

ways for each interaction device. It does not avoid the chores of ubiquitous computing

device deployment, but strongly alleviates the challenge of user interaction coordination

and activity management. Due to its lightweight deployment and management charac-

teristics, the ActivitySpot infrastructure was used in several occasions outside the scope

of this work, such as public events at the University of Minho or technology fairs.

The GUI authoring tool was evaluated by several users, demonstrating that it fa-

cilitates the configuration of the support to ActivitySpot-enabled environments. This

tool is based on the proposed conceptual model, representing activities, actions, inter-

action devices, and physical space. Its users can assign actions to activities, devices to

actions, and represent device distribution over the physical space. Further configuration

is also possible, such as defining context-based execution conditions for activities and

actions. With this tool, public space managers with common computer knowledge can

easily configure ActivitySpot-enabled environments without having to care about the

6.2. LIMITATIONS 143

internals of the infrastructure or about the details of user interaction devices.

The software library was designed exclusively for supporting the development of new

actions. It abstracts user interaction device details and does not tie developers to the

activities the actions are going to be part of. Developers only have to care about writing

the code for stimulus reaction behavior, using abstractions for representing stimuli and

responses. With this library, any developer with minimum Java experience can develop

the support for new actions. Moreover, its simplicity and focus on stimulus-response

processing enables rapid development, being decisive in the short development timings

achieved during the preparation of end-user studies and other scenarios.

All the ActivitySpot software components are available [Pinto 08] to researchers and

ubiquitous computing practitioners willing to build upon it. The ubiquitous computing

research area has achieved a stage in its evolution when building entire solutions from

scratch hardly brings relevant contributions and is a waste of resources. By facilitat-

ing rapid development of ubiquitous computing solutions, the ActivitySpot framework

enables researchers to focus on higher-level concerns, such as social or psychological

aspects.

6.2 Limitations

There is no research work without limitations and my work is not the exception. Some

limitations are a result of the need of scoping that is inherent to any research activity

while others are a result of the lack of time to complete particular research tasks.

The major limitation of my work is the solidity and completeness of the validation

process. This work originally intended to thoroughly validate each element of the Activ-

itySpot framework – from the conceptual model to the software components. The major

effort investment was put on validating the conceptual model and the software infras-

tructure from the end-user viewpoint. Three user studies were successfully carried out

in distinct and realistic scenarios, producing interesting and meaningful results, which

allowed me to partially validate my thesis: the conceptual model is compatible with the

end-user mental model and the approach to user interaction, based on the composition

144 CHAPTER 6. CONCLUSIONS

of elementary interaction means, was successfully apprehended by end-users. However,

the method employed in the user studies had some variations, from study to study,

which affected the solidity of the results. For example, for user interaction evaluation,

only a single evaluation criterion was shared between the first and third studies – the

remaining criteria for that evaluation goal were different between these two studies.

These variations were introduced after the first and second studies, as I was learning

with some previous errors. Moreover, in some studies – particularly the first and third

ones –, the user sample was short, avoiding the obtention of statistical significance in

the results. In summary, the end-user studies would benefit of a larger sample and a

validation method applied consistently along the studies, which would lead to more solid

and consistent results.

Regarding the authoring tool, evaluation has been negatively affected by the primi-

tivity of the user interface and by the confusion provoked by the existence of two editors

with a physical space representation – space editor and activities editor. Moreover, the

user sample was short, as proven by the high standard deviations and coefficients of

variation in the results. Otherwise, the evaluation process was consistent between all

the user study sessions.

The authoring tool would increase even more the productivity if it had a deeper

integration with the run-time infrastructure. After specifying an environment configu-

ration, users had to manually copy the generated specification to a specific folder in the

run-time infrastructure installation. This is not at all a user-friendly task. A one-click

automated deployment functionality in the authoring tool would surely be a much better

solution.

I did not invest in the evaluation of the software library for ubiquitous computing

developers, because it had a secondary importance compared to other components of

the framework. A rigorous evaluation process would try to assess how the software

library augments productivity, whether it is learnable and easy to use, and whether it

responds to a wide diversity of scenarios. The evaluation sample would have to include

a reasonable number of more or less experienced developers. My own use of the library

somehow demonstrated these points, though admittedly in a biased way.

6.3. FUTURE WORK 145

Finally, although ActivitySpot was deployed and positively evaluated in real scenar-

ios, it has not yet been employed in other real settings. Further publication of these

results and collaboration with the industry may contribute to concretize this goal.

6.3 Future work

The ubiquitous computing scenarios that this work targets are very specific: occasional,

simple activities executed by individuals in public places, using elementary ubiquitous

computing means. Other related approaches may be the subject of relevant future

work. For example, enlarging the scope of my approach to workplace scenarios, where

activities are recurrently executed by the same people. Workplace scenarios would assess

whether the ActivitySpot framework is effective in situations where the right support for

repetitive and cumbersome tasks is fundamental. Moreover, it is easier to assess whether

the ActivitySpot conceptual model fits people’s model of a work activity, because people

are more able to externalize their activity – thinking about what they do – than they

are with activities they perform occasionally. Workplace scenarios would also be an

opportunity for exploring how the ActivitySpot framework can deal with collaborative

activities: dealing with multiple interaction means shared by multiple users working on

the same activity brings many challenges not covered by my work.

The application of the fundamental principles of Activity Theory to my work was

partial; ActivitySpot is centered on the structural aspect of Activity Theory, i.e., how

an activity is decomposed into actions and operations. Other aspects, such as goal

formation, externalization-internalization, tool mediation, or cultural-historical devel-

opment (see section 3.1.1) are not explicitly represented by my conceptual model and

can be subject for future work. Goal formation and cultural-historical development are

subjects of particular relevance to ubiquitous computing.

The principle of goal formation states that the consciousness of the subject regarding

motive and goals within an activity is dynamic and that different subjects may see an

activity or action differently, depending on their motive and goals. For example, an

action may become an activity by itself, when it acquires enough relevance to serve a

146 CHAPTER 6. CONCLUSIONS

motive. For example, procuring ingredients is an action for a domestic cook preparing

the dinner for his family, but can become an activity in its own if we think of the

procurement department in a restaurant chain. The inverse phenomenon may also

happen when an activity loses the motive that inspired it, whereupon it is converted

into an action (with its own goal) that implements a different activity. Therefore,

when designing ubiquitous computing support for human activities, one has to think

of the different motives and goals a particular functionality may serve, even for the

same person. The biggest challenge here is how to introduce flexibility in a ubiquitous

computing system so that a particular functionality is perceived and executed differently

by different people, depending on their motive.

Cultural-historical development of activity is also a matter of particular relevance.

Activities evolve over time, influenced by cultural and historical forces. People con-

stantly look for improving the way a particular activity is executed and may (or not)

share this knowledge with others. Although the act of sharing the praxis of an activity

with other people does not seem a major challenge for ubiquitous computing, the capa-

bility of integrating feedback into the way an activity or action is executed is not trivial

and deserves to be the subject of future work.

References

[Abowd 97] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper & M. Pinkerton.

Cyberguide: A mobile context-aware tour guide. Wireless Networks,

vol. 3, no. 5, pages 421–433, 1997.

[Abowd 00] Gregory D. Abowd & Elizabeth D. Mynatt. Charting Past, Present,

and Future Research in Ubiquitous Computing. ACM Transactions on

Computer-Human Interaction, vol. 7, no. 1, pages 29–58, March 2000.

[Alexander 77] C. Alexander, S. Ishikawa & M. Silverstein. A pattern language:

Towns, buildings, and construction. Oxford University Press, New

York, USA, 1977.

[Banavar 00] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Mun-

son, Jeremy Sussman & Deborra Zukowski. Challenges: An Applica-

tion Model for Pervasive Computing. In Sixth ACM/IEEE Interna-

tional Conference on Mobile Networking and Computing, pages 266–

274, Boston, USA, August 2000. ACM Press.

[Bannon 91] L. Bannon & S. Bødker. Beyond the Interface: Encountering Artifacts

in Use. In J. Carroll, editeur, Designing Interaction: Psychology at

the Human-Computer Interface, pages 227–253. Cambridge University

Press, New York, USA, 1991.

[Bardram 97] J. Bardram. Plans as Situated Action: An Activity Theory Approach

to Workflow Systems. In Fifth European Conference on Computer

147

148 REFERENCES

Supported Cooperative Work (ECSCW ’97), pages 17–32, Lancaster,

United Kingdom, September 1997. Kluwer Academic Publishers.

[Beckmann 03] C. Beckmann & A. Dey. SiteView: Tangibly Programming Active En-

vironments with Predictive Visualization. Technical Report IRB-TR-

03-019, Intel Research, Berkeley, CA, USA, June 2003.

[Bellotti 02] V. Bellotti, M. Back, W. Edwards, R. Grinter, A. Henderson &

C. Lopes. Making Sense of Sensing Systems: Five Questions for De-

signers and Researchers. In ACM Conference on Human Factors in

Computing Systems (CHI 2002), pages 415–422, Minneapolis, MN,

USA, April 2002.

[Bellotti 03] V. Bellotti, N. Ducheneaut, M. Howard & I. Smith. Taking Email

to Task: The Design and Evaluation of a Task Management Centered

Email Tool. In ACM Conference on Human Factors in Computing Sys-

tems (CHI 2003), pages 345–352, Fort Lauderdale, USA, April 2003.

[Blackwell 01] A. Blackwell & R. Hague. AutoHAN: An Architecture for Programming

the Home. In 2001 IEEE Symposia on Human-Centric Computing

Languages and Environments (HCC ’01), pages 150–157, Stresa, Italy,

September 2001. IEEE Computer Society.

[Bødker 91a] S. Bødker. Activity Theory as a Challenge to Systems Design. In H.-

E. Nissen, H. K. Klein & R. Hirscheim, editeurs, Information Systems

Research: Contemporary Approaches & Emergent Traditions, pages

551–564. North Holland, Amsterdam, Netherlands, 1991.

[Bødker 91b] S. Bødker. Through the interface: A human activity approach to user

interface design. Lawrence Erlbaum Associates, Hillsdale, USA, 1991.

[Card 83] S. Card, T. Moran & A. Newell. The psychology of human-computer

interaction. Lawrence Erlbaum Associates Inc., Hillsdale, NJ, USA,

1983.

REFERENCES 149

[Cheverst 00] K. Cheverst, N. Davies, K. Mitchell & A. Friday. Experiences of De-

veloping and Deploying a Context-Aware Tourist Guide: The GUIDE

Project. In 6th Annual International Conference on Mobile Computing

and Networking (MobiCom 2000), pages 20–31, Boston, USA, August

2000. ACM Press.

[Christensen 02] H.B. Christensen & J. Bardram. Supporting Human Activities – Ex-

ploring Activity-Centered Computing. In Fourth International Confer-

ence on Ubiquitous Computing (UbiComp 2002), volume 2498, pages

107–116, Göteborg, Sweden, September 2002. Springer-Verlag.

[Compeau 95] D. Compeau & C. Higgins. Computer Self-Efficacy: Development of a

Measure and Initial Test. MIS Quarterly, vol. 19, no. 2, pages 189–211,

1995.

[Constantine 99] L. Constantine & L. Lockwood. Software for use: A practical guide to

the essential models and methods of usage-centered design. Addison-

Wesley, Reading, MA, USA, 1999.

[Constantine 06] L. Constantine. Activity Modeling: Toward a Pagmatic Integration of

Activity Theory with Usage-Centered Design. Technical paper, Labo-

ratory for Usage-centered Software Engineering, Constantine & Lock-

wood. Ltd., November 2006.

[Cwalina 05] K. Cwalina & B. Abrams. Framework design guidelines: Conventions,

idioms, and patterns for reusable .NET libraries. Addison Wesley,

Reading, MA, USA, 2005.

[de Ipiña 02] D. Lpez de Ipiña, P. Mendonça & A. Hopper. TRIP: a Low-Cost

Vision-Based Location System for Ubiquitous Computing. Personal

and Ubiquitous Computing, vol. 6, no. 3, pages 206–219, May 2002.

[Dey 99] A. Dey, D. Salber, G. Abowd & M. Futakawa. The Conference Assis-

tant: Combining Context-Awareness with Wearable Computing. In 3rd

150 REFERENCES

International Symposium on Wearable Computers (ISWC ’99), pages

21–28, San Francisco, USA, October 1999.

[Dey 04] A. Dey, R. Hamid, C. Beckmann, I. Li & D. Hsu. a CAPpella: Pro-

gramming by Demonstration of Context-Aware Applications. In ACM

Conference on Human Factors in Computing Systems (CHI 2004),

pages 33–40, Vienna, Austria, April 2004.

[Dey 06] A. Dey, T. Sohn, S. Streng & J. Kodama. iCAP: Interactive Prototyp-

ing of Context-Aware Applications. In Fourth International Conference

on Pervasive Computing (Pervasive 2006), pages 254–271, Dublin, Ire-

land, May 2006.

[Diaper 03] D. Diaper & N. Stanton. The handbook of task analysis for human-

computer interaction. CRC, Boca Raton, FL, USA, 2003.

[Driver 04] C. Driver & S. Clarke. Hermes: A Software Framework for Mobile,

Context-Aware Trails Applications. In J. Bardram, H. Christensen,

D. Garlan & J. Sousa, editeurs, First International Workshop on Com-

puter Support for Human Tasks and Activities, Vienna, Austria, April

2004.

[Duignan 06] M. Duignan, J. Noble & R. Biddle. Activity Theory for Design: From

Checklist to Interview. In T. Clemmensen, P. Campos, R. Orngreen,

A. Pejtersen & W. Wong, editeurs, Human Work Interaction Design:

Designing for Human Work – The First IFIP TC 13.6 WG Conference

(HWID ’06), pages 9–32, Madeira, Portugal, February 2006. Springer-

Verlag.

[Edwards 03] W.K. Edwards, V. Bellotti, A. Dey & M. Newman. Stuck in the Mid-

dle: The Challenges of User-Centered Design and Evaluation for Mid-

dleware. In 2003 Conference on Human Factors in Computing Systems

(CHI 2003), Fort Lauderdale, USA, April 2003.

REFERENCES 151

[Engeström 87] Y. Engeström. Learning by expanding: An activity-theoretical ap-

proach to developmental research. Orienta-Konsultit, Helsinki, Fin-

land, 1987.

[Engeström 99a] Y. Engeström. Activity theory and individual and social transforma-

tion. In Y. Engeström, R. Miettinen & R.-L. Punamäki, editeurs,

Perspectives on Activity Theory, pages 19–38. Cambridge University

Press, Cambridge, UK, 1999.

[Engeström 99b] Y. Engeström, R. Miettinen & R.-L. Punamäki. Perspectives on ac-

tivity theory. Cambridge University Press, Cambridge, UK, 1999.

[Eustice 99] K. Eustice, T. Lehman, A. Morales, M. Munson, S. Edlund &

M. Guillen. A Universal Information Appliance. IBM Systems Jour-

nal, vol. 38, no. 4, pages 575–601, October 1999.

[Feiner 97] S. Feiner, B. MacIntyre, T. Höllerer & A. Webster. A Touring Ma-

chine: Prototyping 3D Mobile Augmented Reality Systems for Explor-

ing the Urban Environment. In First International Symposium on

Wearable Computers (ISWC 97), pages 74–81, Cambridge, MA, USA,

October 1997.

[Fitzmaurice 95] G. Fitzmaurice, H. Ishii & W. Buxton. Bricks: Laying the Foundations

for Graspable User Interfaces. In ACM Conference on Human Factors

in Computing Systems (CHI ’95), pages 442–449, Denver, CO, USA,

May 1995.

[Fleck 02] M. Fleck, M. Frid, T. Kindberg, E. O’Brien-Strain, R. Rajani &

M. Spasojevic. From Informing to Remembering: Ubiquitous Systems

in Interactive Museums. IEEE Pervasive Computing, vol. 1, no. 2,

pages 13–21, April-June 2002.

[Gajos 02] K. Gajos, H. Fox & H. Shrobe. End User Empowerment in Hu-

man Centered Pervasive Computing. In Friedemann Mattern & Mah-

152 REFERENCES

moud Naghshineh, editeurs, First International Conference on Perva-

sive Computing (Pervasive 2002), pages 134–140, Zürich, Switzerland,

August 2002. Springer-Verlag.

[Georgakopoulos 95] D. Georgakopoulos, M. Hornick & A. Sheth. An Overview of Work-

flow Management: From Process Modelling to Workflow Automation

Infrastructure. Journal of Distributed and Parallel Databases, vol. 3,

no. 2, pages 119–152, April 1995.

[Greenhalgh 02] C. Greenhalgh. EQUIP: a Software Platform for Distributed Interac-

tive Systems. Technical Report Equator-02-002, Department of Com-

puter Science, University of Nottingham, 2002.

[Greenhalgh 04] C. Greenhalgh, S. Izadi, J. Mathrick, J. Humble & I. Taylor. ECT:

A Toolkit to Support Rapid Construction of Ubicomp Environments.

In System Support for Ubiquitous Computing Workshop at the Sixth

International Conference on Ubiquitous Computing (UbiComp 2004),

Nottingham, England, September 2004.

[Hall 66] E. Hall. The hidden dimension. Doubleday, New York, USA, 1966.

[Harrison 96] S. Harrison & P. Dourish. Re-place-ing space: the roles of place and

space in collaborative systems. In 1996 ACM Conference on Computer

Supported Cooperative Work (CSCW 1996), pages 67–76, Boston,

MA, USA, November 1996. ACM Press.

[Hartson 92] R. Hartson & P. Gray. Temporal Aspects of Tasks in the User Action

Notation. Human Computer Interaction, vol. 7, no. 1, pages 1–45,

1992.

[Henderson 86] D. A. Henderson & S. Card. Rooms: The Use of Multiple Virtual

Workspaces to Reduce Space Contention in a Window-Based Graphical

User Interface. ACM Transactions on Graphics, vol. 5, no. 3, pages

211–243, July 1986.

REFERENCES 153

[Hess 02] Christopher K. Hess, Manuel Román & Roy H. Campbell. Building

Applications for Ubiquitous Computing Environments. In Friedemann

Mattern & Mahmoud Naghshineh, editeurs, First International Con-

ference on Pervasive Computing (Pervasive 2002), pages 16–29, Zürich,

Switzerland, August 2002. Springer-Verlag.

[Hodes 98] T. D. Hodes & H. Katz Randy. Enabling “smart spaces”: entity de-

scription and user interface generation for a heterogeneous component-

based distributed system. Technical Report CSD-98-1008, University

of California at Berkeley, July 1998.

[Hong 00] J. Hong & J. Landay. SATIN: A Toolkit for Informal Ink-based Appli-

cations. In 13th Annual ACM Symposium on User Interface Software

and Technology, pages 63–72, San Diego, CA, USA, November 2000.

[Humble 03] J. Humble, A. Crabtree, T. Hemmings, K. Åkesson, B. Koleva, T. Rod-

den & P. Hansson. “Playing with the Bits”: User-configuration of

Ubiquitous Domestic Environments. In Fifth International Conference

on Ubiquitous Computing (UbiComp 2003), Seattle, USA, October

2003.

[Jacob 86] R. Jacob. A Specification Language for Direct Manipulation Interfaces.

ACM Transactions on Graphics, vol. 5, no. 4, pages 283–317, October

1986.

[Johanson 02] B. Johanson, A. Fox & T. Winograd. The Interactive Workspaces

Project: Experiences with Ubiquitous Computing Rooms. IEEE Perva-

sive Computing, vol. 1, no. 2, pages 67–74, April-June 2002.

[José 03] R. José, Helder Pinto, F. Meneses, N. Vilas Boas, H. Rodrigues &

A. Moreira. System support for Integrated Ubiquitous Computing En-

vironments. In System Support for Ubiquitous Computing Workshop

at the Fifth International Conference on Ubiquitous Computing (Ubi-

Comp 2003), Seattle, USA, 12-15 October 2003.

154 REFERENCES

[José 04] R. José & P. Coutinho. Situated web portal for local awareness and

transient interaction. In 2nd International Workshop on Ubiquitous

Systems for Supporting Social Interaction and Face-to-Face Commu-

nication in Public Spaces at the Sixth International Conference on

Ubiquitous Computing (UbiComp 2004), Nottingham, United King-

dom, September 2004.

[Kaptelinin 99] V. Kaptelinin, B. Nardi & C. Macaulay. The Activity Checklist: A Tool

for Representing the “Space” of Context. Interactions, vol. 6, no. 4,

pages 27–39, July-August 1999.

[Kaptelinin 03] V. Kaptelinin. UMEA: Translating Interaction Histories into Project

Contexts. In G. Cockton & P. Korhonen, editeurs, ACM Conference

on Human Factors in Computing Systems (CHI 2003), pages 353–360,

Fort Lauderdale, USA, April 2003.

[Kindberg 00] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Ilja Bedner,

Debbie Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky

Krishnan, Howard Morris, Celine Pering, John Schettino & Bill Serra.

People, Places, Things: Web Presence for the Real World. In 3rd

Annual Conference on Wireless and Mobile Computer Systems and

Applications (WMCSA 2000), Monterey, USA, December 2000.

[Ko 04] A. Ko, B. Myers & H. Aung. Six Learning Barriers in End-User

Programming Systems. In IEEE Symposium on Visual Languages and

Human-Centric Computing, pages 199–206, Rome, Italy, September

2004.

[Koile 03] K. Koile, K. Tollmar, D. Demirdjian, H. Shrobe & T. Darrell. Activity

Zones for Context-Aware Computing. In Fifth International Confer-

ence on Ubiquitous Computing (UbiComp 2003), Seattle, USA, Octo-

ber 2003.

REFERENCES 155

[Krasner 88] G. E. Krasner & S. T. Pope. A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80. Journal of Object-

Oriented Programming, vol. 1, no. 3, pages 26–49, August-September

1988.

[Kray 04] C. Kray, R. Wasinger & G. Kortuem. Concepts and issues in interfaces

for multiple users and multiple devices. In Workshop on Multi-User

and Ubiquitous User Interfaces (MU3I) at the 2004 International Con-

ference on Intelligent User Interfaces (IUI 2004), pages 7–11, Funchal,

Portugal, January 2004.

[Kules 03] B. Kules, H. Kang, C. Plaisant, A. Rose & B. Shneiderman. Im-

mediate Usability: Kiosk design principles from the CHI 2001 Photo

Library. Technical Report HCIL-2003-22, University of Maryland, Jan-

uary 2003.

[Kuutti 91a] K. Kuutti. Activity Theory and its applications to information systems

research and development. In H.-E. Nissen, H. Klein & R. Hirschheim,

editeurs, Information Systems Research: Contemporary Approaches

& Emergent Traditions, pages 529–549. North-Holland, Amsterdam,

Netherlands, 1991.

[Kuutti 91b] K. Kuutti. The Concept of Activity as a Basic Unit for CSCW Re-

search. In L. Bannon, M. Robinson & K. Schmidt, editeurs, 2nd Eu-

ropean Conference on Computer-Support Collaborative Work, pages

249–264, Amsterdam, Netherlands, 1991. Kluwer.

[Law 99] J. Law & J. Hassard. Actor network theory and after. Blackwell

Publishers, Oxford, UK, 1999.

[Leontiev 78] A. Leontiev. Activity, consciousness, and personality. Prentice-Hall,

Englewood Cliffs, NJ, USA, 1978.

156 REFERENCES

[Leontiev 81] A. Leontiev. The Problem of Activity in Psychology. In J. Wertsch,

editeur, The Concept of Activity in Soviet Psychology, pages 37–71.

Sharpe, Armonk, USA, 1981.

[Look 03] Gary Look, Stephen Peters & Howard Shrobe. Plan-Driven Ubiquitous

Computing. In Artificial Intelligence in Mobile System Workshop at the

Fifth International Conference on Ubiquitous Computing (UbiComp

2003), Seattle, USA, 12-15 October 2003.

[Luria 76] A. Luria. Cognitive development: Its cultural and social foundations.

Harvard University Press, Cambridge, MA, USA, 1976.

[MacIntyre 01] B. MacIntyre, E. Mynatt, S. Voida, K. Hansen, J. Tullio & G. Corso.

Support for multitasking and background awareness using interactive

peripheral displays. In ACM Symposium on User Interface Software

and Technology (UIST ’01), pages 41–50, Orlando, USA, November

2001.

[Medina-Mora 92] R. Medina-Mora, T. Winograd, R. Flores & F. Flores. The Action

Workflow Approach to Workflow Management Technology. In ACM

Conference on Computer-Supported Cooperative Work (CSCW 1992),

pages 281–288, Toronto, Canada, November 1992.

[Muller 04] M. Muller, W. Geyer, B. Brownholtz, E. Wilcox & D. Millen. One-

Hundred Days in an Activity-Centric Collaboration Environment based

on Shared objects. In ACM Conference on Human Factors in Comput-

ing Systems (CHI 2004), pages 375–382, Vienna, Austria, April 2004.

[Myers 00] B. Myers, S. Hudson & R. Pausch. Past, Present and Future of User

Interface Software Tools. ACM Transactions on Computer-Human

Interaction, vol. 7, no. 1, pages 3–28, March 2000.

[Myers 02] B. Myers, R. Malkin, M. Bett, A. Waibel, B. Bostwick, R. Miller,

J. Yang, M. Denecke, E. Seemann, J. Zhu, C. Peck, D. Kong,

REFERENCES 157

J. Nichols & B. Scherlis. Flexi-modal and multi-machine user inter-

faces. In Fourth IEEE International Conference on Multimodal In-

terfaces (ICMI 2002), pages 343–348, Pittsburgh, PA, USA, October

2002.

[Nardi 96] B. A. Nardi. Context and consciousness: Activity theory and human-

computer interaction. MIT Press, Cambridge, USA, 1996.

[Newman 02] M. Newman, J. Sedivy, C. Neuwirth, W. Edwards, J. Hong, S. Izadi,

K. Marcelo & T. Smith. Designing for Serendipity: Supporting End-

User Configuration of Ubiquitous Computing Environments. In Sym-

posium on Designing Interactive Systems (DIS 2002), pages 147–156,

London, UK, June 2002.

[Norman 88] D. Norman. The psychology of everyday things. Basic Books, New

York, USA, 1988.

[Norman 98] D.A. Norman. The invisible computer. MIT Press, Cambridge, USA,

1998.

[Norman 05] D. Norman. Human-Centered Design Considered Harmful. Interac-

tions, vol. 12, no. 4, pages 14–19, July-August 2005.

[OASIS 03] OASIS. Web Services for Remote Portlets (WSRP), 2003.

http://oasis-open.org/committees/wsrp/.

[Paolucci 99] M. Paolucci, O. Shehory, K. Sycara, D. Kalp & A. Pannu. A Planning

Component for RETSINA Agents. In M. Wooldridge & Y. Lesperance,

editeurs, Lecture Notes in Artificial Intelligence, Intelligent Agents VI.

MIT Press, Cambridge, USA, 1999.

[Paternò 99] F. Paternò. Model-based design and evaluation of interactive applica-

tions. Springer Verlag, London, UK, 1999.

158 REFERENCES

[Paternò 01] F. Paternò. Task Models in Interactive Software Systems. In S. Chang,

editeur, Handbook of Software Engineering & Knowledge Engineering,

pages 817–836. World Scientific Publishing Co., Singapore, 2001.

[Pinto 05] H. Pinto & R. José. Pervasive Location-based Systems: The Funda-

mental Challenges between Vision and Reality. International Journal of

Pervasive Computing and Communications, vol. 1, no. 1, pages 7–12,

March 2005.

[Pinto 08] H. Pinto. Activity-oriented Support to Localized

Activities Performed by Occasional Visitors, 2008.

http://ubicomp.algoritmi.uminho.pt/activityspot/.

[Richardson 94] T. Richardson, F. Bennett, G. Mapp & A. Hopper. Teleporting in

an X Window System Environment. IEEE Personal Communications,

vol. 1, no. 3, pages 6–12, September 1994.

[Robertson 00] G. Robertson, M. van Dantzich, D. Robbins, M. Czerwinski, K. Hinck-

ley, K. Risden, D. Thiel & V. Gorokhovsky. The Task Gallery: A 3D

Window Manager. In ACM Conference on Human Factors in Comput-

ing Systems (CHI 2000), pages 494–501, Amsterdam, The Nederlands,

April 2000.

[Rodden 03] T. Rodden & S. Benford. The evolution of buildings and implications

for the design of ubiquitous domestic environments. In ACM Con-

ference on Human Factors in Computing Systems (CHI 2003), pages

9–16, Fort Lauderdale, FL, USA, April 2003. ACM Press.

[Román 02a] M. Román & R. Campbell. A User-Centric, Resource-Aware,

Context-Sensitive, Multi-Device Application Framework for Ubiquitous

Computing Environments. Technical Report UIUCDCS-R-2002-2284

UILU-ENG-2002-1728, University of Illinois at Urbana-Champaign,

July 2002.

REFERENCES 159

[Román 02b] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell &

K. Nahrstedt. A Middleware Infrastructure for Active Spaces. IEEE

Pervasive Computing, vol. 1, no. 4, pages 74–83, October-December

2002.

[Satyanarayanan 01] M. Satyanarayanan. Pervasive Computing: Vision and Challenges.

IEEE Personal Communications, vol. 8, no. 4, pages 10–17, August

2001.

[Schäl 96] T. Schäl. Workflow management systems for process organisations.

Springer, Berlin, Germany, 1996.

[Scholtz 04] J. Scholtz & S. Consolvo. Toward a Framework for Evaluating Ubiq-

uitous Computing Applications. IEEE Pervasive Computing, vol. 3,

no. 2, pages 82–88, April-June 2004.

[Sierhuis 97] M. Sierhuis & W. Clancey. Knowledge, Practice, Activities and People.

In AAAI Spring Symposium on Artificial Intelligence in Knowledge

Management, pages 142–148, Stanford, USA, March 1997.

[Simmons 98] R. Simmons & D. Apfelbaum. A Task Description Language for

Robot Control. In IEEE/RSJ International Conference on Intelligent

Robotics and Systems, Vancouver, Canada, October 1998.

[SMSLib 08] SMSLib. SMSLib, 2008. http://smslib.org/.

[Sousa 02] J. P. Sousa & D. Garlan. Aura: an Architectural Framework for

User Mobility in Ubiquitous Computing Environments. In 3rd Working

IEEE/IFIP Conference on Software Architecture, pages 29–43, Mon-

treal, Canada, August 2002. Kluwer Academic Publishers.

[Sousa 05] J. P. Sousa. Scaling Task Management in Space and Time: Reducing

User Overhead in Ubiquitous-Computing Environments. Phd thesis,

School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA, United States of America, May 2005.

160 REFERENCES

[Stahl 05] C. Stahl, J. Baus, B. Brandherm, M. Schmitz & T. Schwartz. Nav-

igational and Shopping Assistance on the Basis of User Interactions

in Intelligent Environments. In The IEE International Workshop on

Intelligent Environments (IE 2005), pages 182–191, Colchester, United

Kingdom, June 2005.

[Suchman 87] L. Suchman. Plans and situated actions: the problem of human-

machine communication. Cambridge University Press, New York,

USA, 1987.

[Sun 03] Sun. Enterprise JavaBeans Technology, 2003.

http://java.sun.com/products/ejb/.

[Tandler 01] Peter Tandler. Software Infrastructure for Ubiquitous Computing Envi-

ronments: Supporting Synchronous Collaboration with Heterogeneous

Devices. In Third International Conference on Ubiquitous Computing

(Ubicomp 2001), pages 96–115, Atlanta, Georgia, September 2001.

[Tolmie 02] P. Tolmie, J. Pycock, T. Diggins, A. MacLean & A. Karsenty. Unre-

markable computing. In ACM Conference on Human Factors in Com-

puting Systems (CHI 2002), Minneapolis, MN, USA, April 2002. ACM

Press.

[Toye 05] E. Toye, R. Sharp, A. Madhavapeddy & D. Scott. Using Smart Phones

to Access Site-Specific Services. IEEE Pervasive Computing, vol. 4,

no. 2, pages 60–66, April-June 2005.

[Truong 04] K. Truong, E. Huang & G. Abowd. CAMP: A Magnetic Poetry In-

terface for End-User Programming of Capture Applications for the

Home. In Sixth International Conference on Ubiquitous Computing

(UbiComp 2004), volume 3205, pages 143–160, Nottingham, England,

September 2004. Springer-Verlag.

REFERENCES 161

[Venkatesh 03] V. Venkatesh, M. Morris, G. Davis & F. Davis. User Acceptance of In-

formation Technology: Toward a Unified View. MIS Quarterly, vol. 27,

no. 3, pages 425–478, September 2003.

[Villar 05] N. Villar, G. Kortuem, K. Van Laerhoven & A. Schmidt. The Pendle:

A Personal Mediator for Mixed Initiative Environments. In IEE Work-

shop Conference on Intelligent Environments (IE 05), Colchester, UK,

June 2005.

[Vygotsky 78] L. Vygotsky. Mind in society: The development of higher psychological

processes. Harvard University Press, Cambridge, MA, USA, 1978.

[W3C 06] W3C. Extensible Markup Language (XML) 1.1 (Second Edition), 2006.

http://www.w3.org/TR/2006/REC-xml11-20060816/.

[Want 02] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar & J. Light.

The Personal Server – Changing the Way We Think about Ubiquitous

Computing. In Fourth International Conference on Ubiquitous Com-

puting (UbiComp 2002), pages 194–209, Göteborg, Sweden, October

2002. Springer-Verlag.

[Weiser 91] Mark Weiser. The Computer for the 21st Century. Scientific American,

vol. 265, no. 3, pages 94–104, September 1991.

[Wertsch 81] J. Wertsch. The Concept of Activity in Soviet Psychology: An Intro-

duction. In J. Wertsch, editeur, The Concept of Activity in Soviet

Psychology, pages 3–36. Sharpe, Armonk, USA, 1981.

[Wise 00] A. Wise, A. Cass, B. Lerner, E. McCall, L. Osterweil & S. Sutton

Jr. Using Little-JIL to Coordinate Agents in Software Engineering.

In Fifteenth IEEE International Conference on Automated Software

Engineering (ASE 2000), pages 155–163, Grenoble, France, September

2000.

Appendix A

Environment specification examples

This appendix complements chapter 4 with examples for each document defining an

environment specification.

A.1 Devices specification

Listing A.1: An XML example of devices specification

<?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>

<dev ices>

<device>

<name>r f i d</name>

<type>input</type>

<eventParameters>

<parameter>

<name>device−id</name>

<type>s t r i n g</type>

</parameter>

<parameter>

<name>tag−id</name>

<type>s t r i n g</type>

</parameter>

163

164 APPENDIX A. ENVIRONMENT SPECIFICATION EXAMPLES

</eventParameters>

<c on t r o l l e r >

<binary>pt . uminho . a c t i v i t y s p o t . i o . RFIDController</binary>

</c on t r o l l e r >

</device>

<device>

<name>sms−out</name>

<type>output</type>

<eventParameters>

<parameter>

<name>de s t i n a t i on</name>

<type>s t r i n g</type>

</parameter>

<parameter>

<name>message</name>

<type>s t r i n g</type>

</parameter>

</eventParameters>

<c on t r o l l e r >

<binary>pt . uminho . a c t i v i t y s p o t . i o . SMSController</binary>

</c on t r o l l e r >

</device>

</dev ices>

A.2 Context dimensions specification

Listing A.2: An XML example of context dimensions specification

<?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>

<context>

<c on t r o l l e r >

<name>c ap ab i l i t y</name>

A.3. ACTIVITIES AND ACTIONS SPECIFICATION 165

<binary>

pt . uminho . a c t i v i t y s p o t . context . Capab i l i t yCon t r o l l e r

</binary>

</c on t r o l l e r >

<c on t r o l l e r >

<name>date−time</name>

<binary>

pt . uminho . a c t i v i t y s p o t . context . DateTimeControl ler

</binary>

</c on t r o l l e r >

</context>

A.3 Activities and actions specification

Listing A.3: An XML example of activities and actions specification

<?xml version=” 1 .0 ” encoding=”ISO−8859−1” standalone=”yes ”?>

<s p e c i f i c a t i o n >

<act ions>

<ac t i on id=” c 1 ”>

<name>Get t i c k e t</name>

<de s c r i p t i on >

Getting an e l e c t r o n i c t i c k e t

</de s c r i p t i on >

<c on t r o l l e r >

<binary>pt . uminho . a c t i v i t y s p o t . a c t i on s . GetTicket</binary>

</c on t r o l l e r >

<s t imu l i >

<st imulus>

<type>r f i d</type>

<dataspace>event</dataspace>

<response>

166 APPENDIX A. ENVIRONMENT SPECIFICATION EXAMPLES

<type mu l t ip l e=” f a l s e ”>sms−out</type>

</response>

</st imulus>

</s t imu l i >

</act ion>

<ac t i on id=” c 2 ”>

<name>Get f r i e n d s l i s t </name>

<de s c r i p t i on >

Obtaining a l i s t o f f r i e nd who have a l r eady bought t i c k e t

</de s c r i p t i on >

<c on t r o l l e r >

<binary>pt . uminho . a c t i v i t y s p o t . a c t i on s . GetFriends</binary>

</c on t r o l l e r >

<s t imu l i >

<st imulus>

<type>r f i d</type>

<dataspace>event</dataspace>

<response>

<type mu l t ip l e=” f a l s e ”>sms−out</type>

</response>

</st imulus>

</s t imu l i >

</act ion>

</act ions>

<a c t i v i t i e s >

<a c t i v i t y id=” a 1 ”>

<name>Going to the cinema</name>

<cond i t i ons >

<cond i t i on type=”date−time” value=”19 :00−24 :00 ”>

</cond i t i ons >

A.3. ACTIVITIES AND ACTIONS SPECIFICATION 167

<act ions>

<ac t i on r e f=” c 1 ”/>

<ac t i on r e f=” c 2 ”/>

</act ions>

</a c t i v i t y >

</ a c t i v i t i e s >

<dev ices>

<dev i ce id=”d 1”>

<type>sms−out</type>

<l o ca t i on >l 1</l o ca t i on >

</device>

<dev i ce id=”d 2”>

<type>r f i d</type>

<l o ca t i on >l 1</l o ca t i on >

</device>

</dev ices>

<l o c a t i on s >

< l o c a t i o n id=” l 1 ”>

<pos i t i on >

<x>711</x>

<y>274</y>

</pos i t i on >

</l o ca t i on >

</ l o c a t i on s >

</ s p e c i f i c a t i o n >

Appendix B

Evaluation materials

This appendix complements chapter 5 with the surveys submitted to the participants

of each end-user evaluation scenario.

B.1 Phd poster session survey

Q1. Indique-nos qual foi a actividade que levou a cabo no sistema Activi-

tySpot.

© Visitar posters

© Apresentar posters

Q2. Antes de dar ińıcio à utilização do sistema ActivitySpot, tinha enten-

dido o objectivo de cada uma das duas actividades propostas (ver questão

anterior).

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q3. Os cartazes junto da recepção e os desdobráveis forneceram instruções

claras para (marque uma cruz na casa indicada para cada linha):

169

170 APPENDIX B. EVALUATION MATERIALS

C
on

co
rd

o
to

ta
lm

en
te

C
on

co
rd

o
p
ar

ci
al

m
en

te

N
em

co
n
co

rd
o,

n
em

d
is

co
rd

o

D
is

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
to

ta
lm

en
te

Registo no sistema

Reconhecer meios de interacção dispońıveis

Utilizar funcionalidades dispońıveis

Q4. O registo no sistema, antes de obter o cartão e o porta-chaves na re-

cepção, foi realizado facilmente.

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

B.1. PHD POSTER SESSION SURVEY 171

Q5. Os meios de interacção disponibilizados pelo sistema foram de fácil

utilização [Nota: caso não tenha utilizado algum dos meios abaixo listados,

deixe a respectiva casa em branco]:

C
on

co
rd

o
to

ta
lm

en
te

C
on

co
rd

o
p
ar

ci
al

m
en

te

N
em

co
n
co

rd
o,

n
em

d
is

co
rd

o

D
is

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
to

ta
lm

en
te

SMS

Porta-chaves ou cartão

Ecrãs públicos

Página “Internet”

Bluetooth ou infra-vermelhos

Q6. A utilização da câmara fotográfica e a partilha de fotografias com o

sistema tornou a experiência mais interessante [Nota: caso não tenha uti-

lizado a câmara fotográfica para a partilha de fotografias com o sistema, não

responda a esta questão]

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q7. A sua experiência de utilização do ActivitySpot na “Semana da Enge-

nharia” foi satisfatória.

© Concordo totalmente

© Concordo parcialmente

172 APPENDIX B. EVALUATION MATERIALS

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q8. O suporte tecnológico à actividade que levou a cabo na “Semana da

Engenharia” tornou-a mais interessante e envolvente do que se ela tivesse

sido realizada através dos meios tradicionais.

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q9. Acha que os seus anteriores conhecimentos de utilização de tecnologia

contribuiram para o sucesso da experiência?

© Sim, sem dúvida

© Sim, provavelmente

© Talvez

© Provavelmente não

© Definitivamente não

Q10. Alguma vez durante a experiência executou alguma funcionalidade

motivado pela curiosidade ou preocupou-se unicamente em levar a cabo a

actividade?

© Sim, executei funcionalidades motivado(a) pela curiosidade

© Não me lembro

© Não, estive unicamente concentrado em conseguir executar apenas o que foi

necessário.

Q11. O conhecimento que o sistema tinha do seu número de telemóvel e dos

locais onde utilizou o cartão/porta-chaves não o preocupou.

© Concordo totalmente

© Concordo parcialmente

B.1. PHD POSTER SESSION SURVEY 173

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q12. A experiência poderia ter sido mais interessante se o sistema tivesse

acesso a mais informação pessoal (e.g., interesses de investigação).

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q13. A posśıvel utilização futura para outros fins do conhecimento sobre

o seu número de telemóvel e dos locais onde utilizou o cartão/porta-chaves

não o preocupa.

© Concordo totalmente

© Concordo parcialmente

© Nem concordo, nem discordo

© Discordo parcialmente

© Discordo totalmente

Q14. Houve alguma interacção que não tenha dado origem a uma resposta

do sistema?

© Sim, houve interacções sem resposta por parte do sistema

© Não me recordo

© Não, o sistema sempre respondeu às minhas interacções

Q15. Houve alguma interacção cuja resposta dada pelo sistema fosse desa-

dequada ou desenquadrada do contexto?

© Sim, o sistema gerou respostas desadequadas/desenquadradas do contexto

© Não me recordo

© Não, o sistema sempre respondeu adequadamente às minhas interacções

Q16. O tempo decorrido entre as interacções e as respectivas respostas

174 APPENDIX B. EVALUATION MATERIALS

geradas pelo sistema foi:

© Muito curto

© Curto

© Nem curto, nem longo

© Longo

© Muito longo

Q17. Caso tenha algum comentário ou sugestão adicionais em relação ao

sistema ActivitySpot, por favor, use o espaço seguinte para o fazer:

Q18. Com que frequência utiliza o telemóvel para enviar SMS?

© Todos os dias

© Algumas vezes por semana

© Uma vez por semana

© Uma vez por mês

© Nunca

Q19. Com que frequência utiliza o computador?

© Todos os dias

© Algumas vezes por semana

© Uma vez por semana

© Uma vez por mês

© Nunca

Q20. Com que frequência utiliza o computador para navegar na “Internet”?

© Todos os dias

© Algumas vezes por semana

© Uma vez por semana

© Uma vez por mês

B.2. CULTURAL CENTER SURVEY 175

© Nunca

Q21. Com que frequência utiliza as funcionalidades Bluetooth ou infra-

vermelhos do seu telemóvel? [Caso o seu telemóvel não possua, ou não sabe

se possui, estas funcionalidades, não responda a esta questão]

© Todos os dias

© Algumas vezes por semana

© Uma vez por semana

© Uma vez por mês

© Nunca

B.2 Cultural Center survey

Q1. Durante a utilização do ActivitySpot, percebi claramente quais as acções

ou funcionalidades que era posśıvel executar.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q2. Verifiquei que as diferentes acções ou funcionalidades que executei es-

tavam relacionadas entre si e faziam parte de um conjunto destinado a su-

portar os espectadores do CCVF.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q3. Verifiquei que executei funcionalidades que tiveram influência em outras

funcionalidades executadas mais tarde.

© Concordo totalmente

© Concordo parcialmente

176 APPENDIX B. EVALUATION MATERIALS

© Discordo parcialmente

© Discordo totalmente

Q4. Foi posśıvel compreender o efeito de todas as minhas interacções com o

sistema.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q5. Foi posśıvel, ao longo da utilização do ActivitySpot, ter conhecimento

do estado da minha actividade (o que tinha feito, o que podia ainda fazer,

etc.).

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q6. Não tive quaisquer dificuldades em perceber e utilizar o sistema através

dos diferentes meios dispońıveis (NOTA: responda apenas para os meios de

interacção que tenha utilizado):

C
on

co
rd

o
to

ta
lm

en
te

C
on

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
to

ta
lm

en
te

SMS

Cartão e porta-chaves de identificação

Câmara do telemóvel

Q7. O sistema ActivitySpot é adequado para ser utilizado nos espectáculos

B.2. CULTURAL CENTER SURVEY 177

do CCVF.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q8. O sistema ActivitySpot não é, para quem o utiliza, um factor de per-

turbação de uma normal ida ao CCVF.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q9. A utilização do sistema ActivitySpot foi frustrante.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q10. A utilização do sistema ActivitySpot tornou a minha ida ao CCVF

mais interessante.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q11. Teria utilizado o sistema ActivitySpot espontaneamente, sem ter sido

previamente convidado(a) a tal.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

178 APPENDIX B. EVALUATION MATERIALS

Q12. Considero relevante a existência de sistemas como o ActivitySpot em

outros espaços públicos.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q13. O sistema ActivitySpot forneceu-me informação personalizada, i.e.,

diferente daquela a que outros utilizadores tiveram acesso.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q14. O acesso a informação personalizada torna a utilização deste tipo de

sistemas mais interessante.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q15. A utilização do ActivitySpot teria sido mais interessante se o sistema

tivesse acesso a mais informação pessoal.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q16. O tempo dispońıvel, em cada espectáculo, para a utilização do Activi-

tySpot é suficiente.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

B.2. CULTURAL CENTER SURVEY 179

© Discordo totalmente

Q17. As instruções de utilização fornecidas foram suficientes.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q18. O sistema teria sido mais fácil de utilizar se houvesse mais ajuda

dispońıvel.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

Q19. O sistema reagiu rapidamente às minhas interacções.

© Concordo totalmente

© Concordo parcialmente

© Discordo parcialmente

© Discordo totalmente

180 APPENDIX B. EVALUATION MATERIALS

Q20. Sinto-me à vontade na utilização das seguintes tecnologias:

C
on

co
rd

o
to

ta
lm

en
te

C
on

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
p
ar

ci
al

m
en

te

D
is

co
rd

o
to

ta
lm

en
te

SMS

Cartões de identificação

Ecrãs públicos

Câmara do telemóvel

Bluetooth

B.3 Conference surveys

The conference surveys were mainly targeted at the experimental group, who used Ac-

tivitySpot. A short survey was also submitted to a control group, in order to assess

whether ActivitySpot helped its users to better achieve their goals, compared to people

who did not use ActivitySpot (control group). There were different survey formula-

tions, depending on the role of the subject: one for conference participants in general,

another for conference authors, and another for conference organizers. The following

formulations were targeted at conference authors.

B.3.1 Experimental group

Q1. Foi posśıvel perceber claramente o que o sistema ActivitySpot, na glo-

balidade, pretendeu oferecer aos utentes do espaço da conferência.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

B.3. CONFERENCE SURVEYS 181

© Concordo totalmente

Q2. De entre as funcionalidades que o ActivitySpot possibilitou aos seus

utilizadores, lembro-me das seguintes (sem consulta):

1.

2.

3.

Q3. Enfrentei dificuldades ao registar-me no ActivitySpot.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q4. O tempo despendido quando do registo no ActivitySpot é razoável.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q5. Na generalidade, a execução das funcionalidades oferecidas pelo Activi-

tySpot é complicada.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q6. Houve alguma funcionalidade que lhe tenha colocado dificuldades?

© Sim. Quais e porquê:

© Não

Q7. Utilizou o ActivitySpot baseando-se apenas nas instruções dispońıveis

(sem necessitar de qualquer ajuda humana)?

182 APPENDIX B. EVALUATION MATERIALS

© Sim

© Não

Q8. O ActivitySpot teria sido mais fácil de utilizar se houvesse mais ajuda

dispońıvel.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q9. As diferentes interacções que efectuei estavam integradas entre si.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q10. As funcionalidades que executei tiveram influência em outras funcio-

nalidades executadas mais tarde.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q11. O ActivitySpot respondeu às minhas interacções sempre da maneira

esperada.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q12. Houve ambiguidade quanto ao destinatário das respostas do Activi-

tySpot.

© Discordo totalmente

© Discordo parcialmente

B.3. CONFERENCE SURVEYS 183

© Concordo parcialmente

© Concordo totalmente

Q13. Ocorreu algum conflito com outros participantes na utilização concor-

rente dos meios de interacção disponibilizados?

© Sim

© Não

Q14. Ao longo da utilização do ActivitySpot, foi posśıvel ir tendo conheci-

mento do estado da minha actividade.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q15. O esforço requerido pelo ActivitySpot permitiu a normal realização da

minha actividade na conferência.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q16. A utilização do ActivitySpot distraiu-me da normal realização da minha

actividade na conferência.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q17. A forma como as funcionalidades do ActivitySpot me foram oferecidas

é coerente com a minha visão da actividade que costumo desenvolver numa

conferência.

© Discordo totalmente

© Discordo parcialmente

184 APPENDIX B. EVALUATION MATERIALS

© Concordo parcialmente

© Concordo totalmente

Q18. O ActivitySpot forneceu-me informação personalizada, i.e., diferente

daquela a que outros utilizadores tiveram acesso para as mesmas situações.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q19. A utilização do ActivitySpot teria sido mais interessante se o sistema

tivesse acesso a mais informação pessoal.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q20. A utilização do ActivitySpot ajudou-me a realizar os objectivos da

minha actividade.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q21. Numa escala de 1 (totalmente falhado) a 10 (totalmente realizado),

o grau de realização do objectivo “conhecer trabalho nesta área cient́ıfica”,

com ou sem ajuda do ActivitySpot, foi:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q22. Numa escala de 1 a 10, o grau de realização do objectivo “intercâmbio

de conhecimento”, com ou sem ajuda do ActivitySpot, foi:

B.3. CONFERENCE SURVEYS 185

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q23. Numa escala de 1 a 10, o grau de realização do objectivo “estabelecer

contacto com outros investigadores”, com ou sem ajuda do ActivitySpot, foi:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q24. Numa escala de 1 a 10, o grau de realização do objectivo “recolher

opiniões sobre o próprio trabalho”, com ou sem ajuda do ActivitySpot, foi1:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q25. Caso não tivesse utilizado o ActivitySpot, os objectivos da minha

actividade na conferência teriam sido atingidos com o mesmo sucesso.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q26. A utilização de um sistema como o ActivitySpot em espaços públicos

é prefeŕıvel a uma única aplicação, instalada num telemóvel, que reúna as

mesmas funcionalidades.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

1This question had a different formulation in the survey submitted to conference organizers or

participants who were not authors.

186 APPENDIX B. EVALUATION MATERIALS

© Concordo totalmente

Q27. A utilização de um sistema como o ActivitySpot em espaços públicos

é prefeŕıvel a uma única aplicação, instalada num quiosque interactivo, que

reúna as mesmas funcionalidades.

© Discordo totalmente

© Discordo parcialmente

© Concordo parcialmente

© Concordo totalmente

Q28. Sinto-me à vontade na utilização das seguintes tecnologias:

D
is

co
rd

o
to

ta
lm

en
te

D
is

co
rd

o
p
ar

ci
al

m
en

te

C
on

co
rd

o
p
ar

ci
al

m
en

te

C
on

co
rd

o
to

ta
lm

en
te

SMS

Cartões de identificação

Ecrãs públicos

Câmara do telemóvel

Bluetooth

B.3. CONFERENCE SURVEYS 187

B.3.2 Control group

Q1. Numa escala de 1 (totalmente falhado) a 10 (totalmente realizado), o

grau de realização do objectivo “conhecer trabalho nesta área cient́ıfica”,

com ou sem ajuda do ActivitySpot, foi:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q2. Numa escala de 1 a 10, o grau de realização do objectivo “intercâmbio

de conhecimento”, com ou sem ajuda do ActivitySpot, foi:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

Q3. Numa escala de 1 a 10, o grau de realização do objectivo “estabelecer

contacto com outros investigadores”, com ou sem ajuda do ActivitySpot, foi:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

188 APPENDIX B. EVALUATION MATERIALS

Q4. Numa escala de 1 a 10, o grau de realização do objectivo “recolher

opiniões sobre o próprio trabalho”, com ou sem ajuda do ActivitySpot, foi2:

Falhado 1 2 3 4 5 6 7 8 9 10 Realizado

© © © © © © © © © ©

2This question had a different formulation in the survey submitted to conference organizers or

participants who were not authors.

