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c IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisboa, 1049-001, Portugal   

A R T I C L E  I N F O   

Keywords: 
Human foot 
Ankle joint complex 
Range of motion 
Joint limits 
Joint resistance 
Multibody dynamics 

A B S T R A C T   

One of the most critical aspects when developing biomechanical models is the formulation of the 
joints, which, in the case of the human body, have limited range of motion (RoM). Thus, re-
strictions to prevent joints from performing unacceptable movements and avoid unrealistic 
configurations of the adjacent bodies must be formulated. This study extends the authors’ pre-
vious work to demonstrate the potential of applying a methodology to restrict the RoM of joints to 
the complex case of the human ankle joint complex. The methodology applies joint resistance 
moments to the adjacent bodies to mimic the resistive and dissipative behavior of the constituent 
materials and to prevent unacceptable configurations of those bodies. A detailed description of 
the application of the methodology to the ankle joint complex is given, including the definition of 
the joint’s local reference frames and circumduction cones, estimation of the longitude and 
latitude, calculation of the maximum latitude using the elliptical approach and the transfer of 
forces and moments to the adjacent bodies. The methodology correctly restricts the RoM of the 
ankle joint complex, producing physiologically sound simulation results.   

1. Introduction 

Over the last decades, the use of biomechanical models to study the human movement has been increasing in many science and 
engineering fields [1–3], such as sports [4], clinical studies [5,6] and crashworthiness research [7,8]. A biomechanical model is a 
mathematical representation of the human body and can be established using different numerical approaches, namely the multibody 
systems methodology or the finite element method [2,9]. In the former, which is the one considered in this work, the models can be 
thought of as systems composed of three main ingredients, namely, a set of bodies describing large rotational and translational mo-
tions, kinematic joints constraining their relative motion, and force elements acting upon those bodies [10,11]. The validity of the 
results provided by the biomechanical models is strongly dependent on their computational efficiency and anatomical accuracy, such 
as the reliable modeling of body segments, joints, or the body-environment interaction [12,13]. 

One of the most critical aspects to consider when developing computational models of the human body is the formulation of the 
joints, which have limited range of motion (RoM). The relative amplitude of motion allowed in any joint of the human body is usually 
known as the RoM, and it is strongly influenced by the geometric configuration of the bony structures adjacent to the joint, as well as by 
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Nomenclature 

Latin symbols 
ai Unit vector perpendicular to the joint axis si belonging to body i - 
a Semi-axis of the ellipse rad 
b Semi-axis of the ellipse rad 
D Jacobian matrix of the constraint equations - 
e0, e1, e2, e3 Euler parameters - 
f Force vector N 
g External generalized force vector N, N⋅m 
I Identity matrix - 
I Moment of inertia kg⋅m2 

jh Damping coefficient of joint h N⋅m⋅s 
l Moment lever arm m 
M Mass matrix kg, kg⋅m2 

mp,h Maximum moment magnitude to restrict the motion of joint h N⋅m 
m Moment vector N⋅m 
md

h Joint dissipative moment vector of joint h N⋅m 
mmr

h Joint motion-restricting moment vector of joint h N⋅m 
mr

h Joint resistance moment vector of joint h N⋅m 
n Unit vector normal to the surface of the circumduction cone - 
ṙk Velocity vector of the center of mass of body k in global coordinates m/s 
si Vector along the joint axis belonging to the reference body m 
sP
k Position vector of point P located on body k with respect to the center of mass in global coordinates m 

t Time variable s 
ur,h Unit vector defined using the moving body’s local coordinate system - 
ur,h,ξ Local ξ component of the unit vector ur,h- 
ur,h,η Local η component of the unit vector ur,h - 
ur,h,ζ Local ζ component of the unit vector ur,h - 
uξ,h Unit vector defining the ξ axis of joint h local coordinate system - 
uη,h Unit vector defining the η axis of joint h local coordinate system - 
uζ,h Unit vector defining the ζ axis of joint h local coordinate system - 
v̇ Vector containing the system accelerations m/s2, rad/s2 

xyz Global coordinate system m 

Greek symbols 
α Baumgarte stabilization coefficient - 
β Baumgarte stabilization coefficient - 
γ Right-hand side vector of the acceleration constraint equations - 
ε Angle of the talocrural joint axis in the transverse plane rad 
θ Angle of the talocalcaneal joint axis in the sagittal plane rad 
κ Relative angular motion between the moving body and the limits of the circumduction cone rad 
λ Lagrange multipliers vector - 
ρ Angle of the talocalcaneal joint axis in the transverse plane rad 
σh Latitude of joint h rad 
σh,max Maximum allowable latitude of joint h rad 
Δσh Compliance of joint h rad 
τ Angle of the talocrural joint axis in the frontal plane rad 
φ Joint angle rad 
Φ Position constraint equations - 
Φ̇ Velocity constraint equations - 
ψh Longitude of joint h rad 
ω Angular velocity vector rad/s 
ξηζ Body fixed coordinate system m 
ξhηhζh Joint’s local coordinate system m 

Subscripts 
h Relative to a generic rotational joint h 
i Relative to body i 
j Relative to body j 
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the physiological properties of the surrounding soft tissues, such as muscles, tendons, and ligaments [14–18]. From the multibody 
systems formulation viewpoint, the kinematic joint models prevent the relative motion between interconnected bodies from occurring 
in the degree-of-freedom removed by the type of joint, but do not impose any restrictions on the RoM of the bodies in the 
degree-of-freedom allowed by the joint. Thus, additional restrictions must be formulated in order to prevent the joints from performing 
anatomically and physiologically unacceptable movements and to avoid unrealistic configurations of the connected bodies [18]. The 
RoM restriction is particularly important, for instance, in human motion simulations, in planning and optimizing the trajectories of 
bodies, or in the design of mobility assistive devices or exoskeletons. Thus, methodologies that realistically and accurately allow the 
RoM restriction are needed [19–22]. This study extends the authors’ previous work [23] in order to demonstrate the potential of 
applying a methodology to restrict the RoM of joints to the complex case of the human ankle joint complex. 

The ankle joint complex is composed of the talocrural and talocalcaneal articulations [24–26]. Plantarflexion and dorsiflexion are 
allowed by the talocrural articulation, which is located between the tibia and fibula, and the talus, as observed in Fig. 1. The talo-
calcaneal articulation allows inversion and eversion of the human foot, and it is located between the calcaneus and the talus (see Fig. 1) 
[27,28]. While these two articulations are the major contributors to plantarflexion, dorsiflexion, inversion and eversion, these 
movements are a combination of the different degrees-of-freedom of the ankle and foot in all cardinal planes. Fig. 1 shows that the talus 
is the bone structure inserted between the talocrural and talocalcaneal articulations, thus providing a non-coplanar rocking motion 
between them. 

The axes of the talocrural and talocalcaneal articulations establish specific anatomical orientations between each other [29–31], as 
it can be observed in Fig. 2. The angles shown in Fig. 2 are projected onto the corresponding cardinal plane. Therefore, after the first 
rotation in one plane using the angle projected on that plane, the second rotation requires calculating the corresponding angle as the 
real angle between the transverse plane of the body and the joint axis. In order to determine the real angles, the following conditions 
must be utilized [32,33] 

tanθre = tanθcosρ (1)  

tanτre = tanτcosε (2)  

where the subscript ‘re’ represents the real angle. Therefore, the joint axes can be expressed as 

stalocalcaneal = { cosρcosθre sinρcosθre sinθre }
T (3)  

stalocrural = { sinεcosτre cosεcosτre sinτre }
T (4) 

The values of ρ, θ, ε and τ can be retrieved from [18,29], and express the angles of the axes of both articulations projected onto the 
cardinal planes when the foot stands in the anatomical reference position, as depicted in Fig. 2. 

Fig. 3 shows a schematic representation of the dorsiflexion and plantarflexion, and inversion and eversion movements of the foot 
provided by the talocrural and talocalcaneal joints, respectively. 

The methodology utilized to restrict the RoM of joints [23] applies joint resistance moments to the bodies connected by the ankle 
joint complex to mimic the resistive and dissipative behaviors of the constituent materials and to prevent unacceptable configurations 
of those bodies. Thus, two terms contribute to the joint resistance moments, namely the dissipative and the motion-restricting terms. In 
this work, as an application example, a three-dimensional biomechanical model of the leg, main foot, and toes is developed using the 
multibody systems methodology and is simulated under various scenarios. The model has two functional degree-of-freedom, which 
result from the modified universal joint utilized to formulate the ankle joint complex [18]. For the application of the RoM method-
ology, the modified universal joint can be thought of as two separate revolute joints, in which the RoM associated with each joint axis 
must be restricted independently. A detailed description of the application of the RoM methodology to the ankle joint complex of the 
human foot is provided, including the definition of the moving and reference bodies, the joint’s local reference frames and circum-
duction cones, the estimation of the longitude and latitude, the calculation of the maximum latitude using the elliptical approach and 

p Penalty 
re Real angle 
t Relative to time instant t 

Superscripts 
d Relative to the dissipative moment 
mr Relative to the motion-restricting moment 
r Relative to the resistance moments 

Operators 
()T Matrix or vector transpose 
(′) Components of a vector in a body-fixed coordinate system 
(″) Components of a vector in the joint’s coordinate system 
(~) Skew-symmetric matrix of a vector 
(‖ ‖) Vector norm  
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the transfer of forces and moments to the connected bodies. 
The remaining of this article is organized as follows. A short explanation of the concepts of spatial multibody dynamics is given in 

Section 2. Then, Section 3 presents a description of the biomechanical model considered in this work. The application of the meth-
odology to restrict the RoM of the ankle joint complex is explained in detail in Section 4. In Section 5, the obtained results are presented 
and discussed. Finally, the present work ends with the concluding remarks described in Section 6. 

2. Spatial multibody dynamics 

The dynamic analysis of multibody systems relies on the development of mathematical models and on the implementation of 
computational procedures to simulate or analyze their motion. One of the most common methods to model multibody biomechanical 
systems is the Newton-Euler approach with absolute coordinates due to its simplicity and straightforward application to general- 
purpose codes [10,11,34–36]. Considering the Baumgarte stabilization method, the equations of motion of a general constrained 
multibody system can be written as [10] 

[
M DT

D 0

]{
v̇

λ

}

=

{
g

γ − 2αΦ̇ − β2Φ

}

(5)  

in which M is the system mass matrix, D represents the Jacobian matrix of the kinematic constraint equations, v̇ denotes the vector 
containing the system accelerations, λ is the Lagrange multipliers vector associated with the reaction forces and moments on the 

Fig. 1. Schematic representation of the ankle joint complex of the human foot.  

Fig. 2. Orientation of the talocrural and talocalcaneal axes in the (a) transverse, (b) frontal and (c) sagittal planes.  
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kinematic joints, g represents the generalized vector of externally applied forces and moments, and γ denotes the right-hand side vector 
of the acceleration constraint equations. Variables α and β are the feedback control parameters of the Baumgarte stabilization tech-
nique for velocity and position constraint violations, respectively, and are taken as positive constants. The terms Φ and Φ̇ represent the 
position and velocity constraint equations, respectively [10,37]. 

If the Baumgarte stabilization method is not taken into account in Eq. (5), the position, Φ, and velocity, Φ̇, constraint equations are 
not explicitly included in the formulation, which may cause violation of those original constraints, unstable equations of motion and 
the divergence of the system response. These violations can also be associated with the integration procedure, selected time step, and/ 
or inaccurate initial conditions [10,37]. 

3. Description of the biomechanical model 

In this work, a three-dimensional biomechanical multibody model of the human leg, main foot and toes is considered for forward 
dynamics analysis. The model was established using an in-house code developed in Matlab named MUBODYNA [38], and it is 
composed of three rigid bodies, namely the toes, main foot, and leg, as depicted in Fig. 4. Anatomically, the leg represents the tibia and 
fibula bones, the main foot is composed of the tarsus and metatarsus, and the toes encompass the phalanges [18]. The three rigid bodies 
are kinematically connected to each other by means of one revolute joint, connecting the toes to the main foot and representing the 
metatarsophalangeal articulations, and one modified universal joint, incorporated with a massless link, connecting the main foot to the 
leg and representing the ankle joint complex [18,39]. In should be noted that the massless link represents the offset between the two 
articular axes of the ankle joint complex introduced by the talus bone. A fixed joint is considered at the center of mass of the leg, 
restraining the translation and rotation of this body. A constant angle kinematic constraint is utilized to lock the metatarsophalangeal 
joint angle using the following condition 

Φ ≡ sT
i sj − sT

i,0sj,0 = 0 (6)  

where si and sj are two vectors perpendicular to the joint axis that belong to bodies i and j, respectively, in global coordinates. The 
subscript ‘0′ denotes the coordinates of vectors si and sj at the initial time step. 

The biomechanical model has three degrees-of-freedom. However, since the metatarsophalangeal joint is subjected to the constant 
angle kinematic constraint of Eq. (6), in reality, the model has only two functional degrees-of-freedom, which result from the modified 
universal joint. The two degrees-of-freedom represent, respectively, the plantarflexion and dorsiflexion, and the inversion and eversion 
of the human foot, as discussed in Section 1. 

A generic configuration of the biomechanical model, where the numbers of each body and their corresponding local coordinate 
systems are shown, is displayed in Fig. 4, and the corresponding initial positions are listed in Table 1. The local reference frames of the 
bodies are located at their center of mass (see Fig. 4) and are aligned with the principal axes of inertia. The locations of the center of 
mass of each body and all joints were assumed to be aligned with the midline of the foot, therefore, resulting in a null y-coordinate. The 
x, y, and z directions represent the anteroposterior, mediolateral and superoinferior directions in the three cardinal planes, respec-
tively. The model is released from the initial configuration with null velocities and under the action of the gravitational force, which 
acts on the negative z-direction. 

The dimensions and inertial properties of each body of the multibody system are listed in Table 2. The biomechanical model 
corresponds to a 71 kg and 1.77 m male subject [29]. The total foot length was considered to be 0.27 m [29] and the length of the 
massless link was taken as 0.0417 m [40]. 

Fig. 3. Schematic representation of the movement of the human foot provided by the (a) talocrural and (b) talocalcaneal joints.  
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The location of the metatarsophalangeal, talocalcaneal and talocrural joints with respect to the local reference frames of the toes, 
main foot and leg can be consulted in Table 3. 

The parameters utilized in the dynamic simulations and in the numerical methods required to solve the dynamics of the system are 
based on [18,23] and are presented in Table 4. 

4. Application of the methodology 

The methodology considered here to restrict the RoM of joints is based on the authors’ previous work [23]. The interested reader is 
referred to [23] for a detailed explanation of the concepts and formulations utilized in this Section. In order to restrict the RoM of 
joints, the methodology utilizes joint resistance moments, which are applied to the connected bodies to mimic the dissipative and 
resistive behavior of the constituent materials and to prevent unacceptable configurations of those bodies [19,23,41–43]. Two terms 
contribute to the joint resistance moments, mr

h, as 

mr
h = md

h + mmr
h (7)  

in which md
h is the joint dissipative moment vector, and mmr

h represents the joint motion-restricting moment vector. The subscript h 
denotes the joint index. 

A joint connects two bodies whose relative motion has to be restricted, and, in this methodology, they are referred to as the 
reference and moving bodies. The moving body is the one whose RoM is intended to be restricted, and the reference body is the one 
that allows the definition of the limits inside which the moving body can move without exceeding the RoM of the joint. Since the joint 
resistance moments represent an action-reaction pair, the results obtained using Eq. (7) are applied on the moving body and their 
symmetrical counterparts are applied on the reference body. In the multibody systems methodology, these moments are integrated in 
vector g of Eq. (5) [10,11,23,43]. 

The metatarsophalangeal joint angle of the biomechanical model described in Section 3 is locked using Eq. (6), and, thus, the 
corresponding RoM is not restricted. In this sense, only the talocrural and talocalcaneal joints, which are formulated using a modified 

Table 1 
Initial positions for the biomechanical multibody model [18,29].  

Body (nr.) x [m] y [m] z [m] e0 e1 e2 e3 

Toes (1) 0.2177 0.0000 0.0367 1.0000 0.0000 0.0000 0.0000 
Main Foot (2) 0.0907 0.0000 0.0562 1.0000 0.0000 0.0000 0.0000 
Leg (3) 0.0544 0.0000 0.3513 1.0000 0.0000 0.0000 0.0000  

Fig. 4. Schematic representation of the biomechanical multibody model of the human leg, main foot and toes.  
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universal joint, are subjected to the joint resistance moments of Eq. (7). For the application of the RoM methodology, the modified 
universal joint can be thought of as two separate revolute joints, which means that the RoM associated with each joint axis must be 
restricted independently. 

The joint motion-restricting moment is formulated as a non-linear elastic element, which is null during admissible joint motions 
and varies from zero to a maximum value whenever an unacceptable configuration of the moving body is detected. The methodology 
considers that the acceptable configuration of a joint is established by the circumduction cone, which is a three-dimensional surface 
inside which any configuration of the joint is physiologically acceptable [23,43,44]. The circumduction cone can be established for any 
joint with rotational degrees-of-freedom, independently of its number of degrees-of-freedom. For instance, for a revolute joint, some 
sections of the cone are not reached by the moving body due to the intrinsic kinematic structure of this type of joint. The circumduction 
cone is characterized by defining the axes of the joint’s local coordinate system using the local coordinate system of the reference body. 
For the talocrural and talocalcaneal joints, the reference bodies are the leg and the main foot, respectively. In the cones illustrated in 
Fig. 5, the unit vectors defining the axes ξ, η and ζ of the joint’s local coordinate system are established as 

u′
ξ,h = { cosε − sinε 0 }T  

u′
η,h = { − sinεcosτre − cosεcosτre − sinτre }

T  

u′
ζ,h = { sinεsinτre cosεsinτre − cosτre }

T  

for the talocrural joint and as 

u′
ξ,h = { cosρcosθre sinρcosθre sinθre }

T  

u′
η,h = { − sinρ cosρ 0 }T  

u′
ζ,h = { − cosρsinθre − sinρsinθre cosθre }

T  

for the talocalcaneal joint. The symbol (′) represents the components of vector u in the body’s local coordinate system [34]. 
After the definition of the joint’s local coordinate system, a unit vector, ur,h, which allows to identify, in every configuration, the 

orientation of the moving body in the joint’s local coordinate system, with the exception of the internal rotation, must be established. 
For the talocrural and talocalcaneal joints, the moving bodies are the main foot and the leg, respectively. In a modified universal joint, 
vector ur,h is the massless link. However, in order to ensure that the RoM associated with each joint is correctly restricted, vector ur,h,p, 
which denotes the projection of the massless link onto the plane perpendicular to the axis of the joint whose RoM is intended to be 
restricted (see Figs. 5 and 6), must be considered. Vector ur,h,p is calculated using the following condition (see Fig. 6) 

Table 2 
. Geometric length and inertial properties of the bodies of the biomechanical multibody model [18,29].  

Body (nr.) Length [m] Mass [kg] Moment of inertia [kg⋅m2] 

Iξξ Iηη Iζζ 

Toes (1) 0.0797 0.2051 0.0001003 0.0001003 0.0002006 
Main Foot (2) 0.1903 1.2000 0.0013818 0.0038337 0.0037110 
Leg (3) 0.4300 3.5100 0.0477209 0.0483791 0.0048000  

Table 3 
. Location of the metatarsophalangeal, talocalcaneal and talocrural joints in local coordinates.  

Joint Body (nr.) ξ [m] η [m] ζ [m] 

Metatarsophalangeal Toes (1) − 0.0274 0.0000 − 0.0185 
Metatarsophalangeal Main Foot (2) 0.0996 0.0000 − 0.0380 
Talocalcaneal Main Foot (2) − 0.0363 0.0000 0.0096 
Talocrural Leg (3) 0.0000 0.0000 − 0.2438  

Table 4 
Parameters utilized in the dynamic simulation of the biomechanical multibody model.  

Dynamic Simulation Data 

Baumgarte coefficient - α 5 Reporting time step 0.00001 s 
Baumgarte coefficient - β 5 Relative and absolute integration tolerances 10− 10 

Integration algorithm ode15s Simulation time 5 s  
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ur,h,p =
ur,h −

(
uT

r,hsi

)
si

‖ ur,h −
(

uT
r,hsi

)
si ‖

(8)  

where ur,h,p is the projection of vector ur,h, and si represents a unit vector along the joint axis given either by Eqs. (3) or (4) (see Fig. 6). 
Since the massless link does not belong to any particular body, vector ur,h does not have constant coordinates in any of the local 
coordinate systems. It is important to note that the definition of both the unit vector ur,h and the circumduction cone must ensure that, 
in its initial state, the joint does not hold an unacceptable configuration. 

Fig. 6 provides a schematic representation of two bodies i and j connected by a modified universal joint, with joint axis si and sj, 
respectively. An example is given for the si joint axis. The massless link, vector ur,h, and the projection of the massless link onto the 
plane perpendicular to the si joint axis, vector ur,h,p, are illustrated. 

The moving body is in an unacceptable configuration whenever it is located outside the circumduction cone. In these circum-
stances, a joint motion-restricting moment must be applied to reposition the moving body into an acceptable configuration. In order to 
determine whether the actual position of the moving body is inside (acceptable configuration) or outside (unacceptable configuration) 
the circumduction cone, the longitude, ψh, and latitude, σh, of the unit vector ur,h,p expressed in the joint’s local coordinate system must 
be determined [23]. The longitude, ψh, is established by the joint’s local ξh axis and the projection of vector ur,h, in the plane ξhηh of the 
joint’s local coordinate system (see Fig. 7a). The longitude is calculated as [23] 

ψh = arctan
(

u″
r,h,p,η

u″
r,h,p,ξ

)

(9)  

where (″) represents the components of vector ur,h,p expressed in the joint’s local coordinate system. It must be highlighted that, when 
dealing with revolute joints, as in the present case, the longitude can only assume values of 0◦ or 180◦, or 90◦ or 270◦ in order to fulfill 
the kinematic constraints. 

The latitude, σh, is established by the joint’s local unit vector uζ,h and the unit vector ur,h,p, as illustrated in Fig. 7b. Thus, the 
latitude can be calculated using the following condition [23] 

σh = arccos
(
u″

r,h,p
T
u″

ζ,h
)

(10) 

Fig. 5. Schematic representation of the circumduction cones for the (a) talocrural and (b) talocalcaneal joints. The talocrural, and talocalcaneal 
joint axes are highlighted in blue and red, respectively. 
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The reference frame for each joint of the ankle may be defined such that the vector uζ,h has the same orientation as vector ur,h,p at 
the initial configuration (see Fig. 5). Thus, in this situation, the latitude is zero. 

At this stage, all the necessary ingredients to construct the circumduction cone have been described. The cone is defined by 
specifying the maximum allowable latitude, σh,max, for certain values of longitude, ψh. Then, an interpolation function is created in 
order to estimate the maximum allowable latitude corresponding to any value of longitude. In this work, the maximum latitude for 

Fig. 7. Schematic representation of the (a) longitude, ψh, and (b) latitude, σh, for the calculation of the joint motion-restricting moment. The 
longitude is defined in the plane ξhηh of the joint’s local coordinate system (top view of the circumduction cone). 

Fig. 6. Schematic representation of representation of two bodies i and j connected by a modified universal joint, with joint axis si and sj, 
respectively. Vectors ur,h and ur,h,p are illustrated. 
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talocrural dorsiflexion and plantarflexion is considered to be 20◦ and 35◦, respectively. In turn, talocalcaneal maximum inversion and 
eversion are defined as 35◦ and 25◦, respectively [45]. Since, in a modified universal joint, the restriction of the RoM is achieved by 
considering two separate revolute joints, two circumduction cones must be constructed. The longitude was defined, for both joints, as 

ψh = { 0∘ 90∘ 180∘ 270∘ 360∘ }

The maximum latitude for the talocrural and talocalcaneal joints was defined, respectively, as 
σh,max = {20∘ 1∘ 35∘ 1∘ 20∘ } and σh,max = {1∘ 25∘ 1∘ 35∘ 1∘ }

The differences in the maximum latitude are associated with the definition of the joint’s local coordinate system for each joint (see 
Fig. 5). Furthermore, a value of 1◦ is utilized as a tolerance in the locations of the circumduction cone that are not reached due to the 
kinematic structure of a revolute joint. As observed in the above conditions, the maximum allowable latitude for both the talocrural 
and talocalcaneal joints is defined for longitude values that coincide with the limits of the four main quadrants, namely 0◦, 90◦, 180◦, 
270◦ and 360◦ (see Fig. 8). Thus, the maximum allowable latitude for any longitude is calculated using the elliptical approach, which 
treats each quarter of the ellipse independently, as [23] 

σh,max(ψh) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2

tan2(ψh) +
b2

a2

(

1 −
b2

a2

)

+ b2

√

(11)  

where a and b are constants representing the length of the semi-axes of the ellipse for a given quarter and, in this methodology, denote 
the defined maximum latitude values (see Fig. 8). 

The joint motion-restricting moment corresponds to a third-degree polynomial function with the behavior depicted in Fig. 9, and it 
is expressed as [23,43,46] 

mmr
h =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if σh ≤ σh,max

mp,h

[

3
(

κ
Δσh

)2

− 2
(

κ
Δσh

)3
]

ũr,h,pn if σh,max < σhandκ ≤ Δσh

mp,hũr,h,pn if κ > Δσh

(12)  

where mp,h is the magnitude of the maximum penalty moment applied to restrict the joint’s motion, Δσh corresponds to the angular 
range between the cone limit and the maximum moment application, allowing to adjust the joint’s stiffness, κ denotes the relative 
angular motion between the moving body and the limits of the circumduction cone and n represents the direction normal to the surface 
of the circumduction cone for the corresponding value of σh,max [23]. Values of 11.5◦ and 226 N⋅m were considered for Δσh and mp,h, 
respectively, and were both retrieved from [43,46]. The symbol (~) represents the skew-symmetric matrix associated with that vector 
[34]. 

Eq. (12) can be substituted by others existing in the literature, such as the ones given in the works of Yamaguchi [19] and Nasr et al. 
[47], or can be obtained by experimental testing, while keeping unchanged the remaining methodology described in the previous 
paragraphs. 

It is important to note that, in the following formulation, the reference and moving bodies are denoted as bodies i and j, respec-
tively. When the moving body is located in an unacceptable configuration, the joint motion-restricting moment, calculated utilizing Eq. 
(12), must be directly applied to the reference body, mmr

h,i , and to the massless link, mmr
h,massless. However, since the massless link is a 

vector connecting two bodies and it does not belong to any of them, the joint motion-restricting moment is not directly applied to the 
moving body. Thus, the moment applied to the massless link, mmr

h,massless, must be transferred to both the moving and the reference 

Fig. 8. Schematic representation of the top view of the circumduction cone with the longitude and maximum latitude specified for the (a) talocrural 
and (b) talocalcaneal joints. 
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bodies. A schematic representation of the force and moment transfer phenomenon for the modified universal joint is displayed in 
Fig. 10. 

The joint motion-restricting moment applied to the massless link, mmr
h,massless, generates a force on the reference body, fh,i, which is 

calculated as 

fh,i =

(
ũr,h,pmmr

h,massless

‖ ur,h,p‖‖mmr
h,massless‖

)

fh,i (13)  

in which fh,i is the force magnitude evaluated as 

Fig. 9. Graphical representation of the third-degree polynomial function for the joint motion-restricting moment.  

Fig. 10. Schematic representation of the force and moment transfer phenomenon in a modified universal joint.  
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fh,i =
‖ mmr

h,massless‖

‖ ur,h,p‖
(14) 

Force fh,i generates a moment on the reference body, which is established as 

mh,i = l̃h,ifh,i (15)  

where lh,i is the moment lever arm from the point of force application to the center of mass of the reference body, which, as shown in 
Fig. 10, can be calculated as 

lh,i = sP
i +

(
ur,h − ur,h,p

)
(16)  

in which sP
i is the global position vector of point Pi located on the reference body with respect to the body’s local coordinate system. 

The force applied to the reference body, fh,i, must be applied to the moving body with opposite direction, fh,j, as 

fh,j = − fh,i (17) 

The force fh,j produces a moment because its application point is displaced from the center of mass of the moving body as 

mh,j = s̃P
j fh,j (18) 

In biomechanical models, the joint dissipative moment allows to simulate the dissipative behavior of the tissues that exist around 
human articulations, such as muscles, ligaments, or cartilage [19,42,48]. The joint dissipative moment is formulated using a viscous 
torsional damper as [43] 

md
h = − jhωh (19)  

in which jh is the rotational damping coefficient of the joint h and ωh denotes the joint h angular velocity vector. The joint dissipative 
moment given by Eq. (19) is associated with the energy loss due to the viscoelasticity of the tissues existing around human articu-
lations. In this work, the damping coefficient for the ankle joint complex, jh, was obtained by multiplying the total mass of the subject 
by the normalized value 0.008 N⋅m⋅s/kg [49,50]. Thus, a value of 0.5680 N⋅m⋅s was utilized. Since two circumduction cones are 
considered for the application of the RoM methodology, half of this value is applied to each cone (0.2840 N⋅m⋅s). Due to consideration 
of the massless link in a modified universal joint, the angular velocity of each joint is calculated based on the velocities of the adjacent 
bodies as (see Fig. 11) 

Fig. 11. Schematic representation of the vectors utilized to calculate the angular velocity of each joint of a modified universal joint.  
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ωh = −
1

‖ ur,h,p‖ sinφ

(
aT

i

(
sisT

i − I
)
ṙi +

(
− uT

r,h,pãi + aT
i

(
s̃P

i − sisT
i s̃P

i + siuT
r,h s̃i + uT

r,hsi s̃i

))
ωi

+aT
i

(
I − sisT

i

)
ṙj + aT

i

(
sisT

i s̃P
j − s̃P

j

)
ωj

) (20)  

in which ai represents one arbitrary unit vector perpendicular to the si joint axis, φ is the joint angle, which is measured between 
vectors ai and ur,h,p, as represented in Fig. 11 for the case of the talocalcaneal joint, sP

k (k = i, j) is the global position vector of point P, 
the insertion of the massless link, located on body k with respect to the body’s local coordinate system, I denotes the identity matrix, ṙk 
denotes the velocity vector of the center of mass of body k described in global coordinates, and ωk denotes the angular velocity vector 
of body k. 

5. Results and discussion 

This section presents and discusses the results of the application of the proposed methodology to restrict the RoM of the ankle joint 
complex of the biomechanical model. In what follows, the results of three analyses are shown. In the first analysis, the biomechanical 
model is released from the initial position, with null velocities, and under the action of the gravitational force only. The second and 
third analyses are similar to the first case but include the joint resistance moments to restrict the RoM of the talocrural and talo-
calcaneal joints without and with energy dissipation, respectively. 

The trajectory of the center of mass of the main foot segment throughout the simulation time in the three cardinal planes can be 
observed in Fig. 12. The initial conditions defined for the biomechanical model, in which, at the initial configuration, the foot is 
horizontal with respect to the ground, prevent the talocrural joint from reaching its maximum latitude for dorsiflexion. However, for 
the talocalcaneal joint, no limitation is imposed by the initial conditions. By analyzing Fig. 12, significant differences in the trajectory 
of the center of mass of the main foot segment are observed for all analyses and for all three cardinal planes. For talocrural plan-
tarflexion, the amplitude of movement of the center of mass is higher when the RoM methodology is not considered. In turn, when the 
RoM methodology is applied, with or without energy dissipation, the amplitude of movement is significantly decreased. This fact can 
be observed in the anteroposterior (x-direction) and superoinferior (z-direction) directions (see Fig. 12). The maximum latitude for 
eversion is not reached for the talocalcaneal joint in the case where the RoM methodology is not applied. This can be concluded by the 
fact that, in Fig. 12b and c, the blue plot reaches higher position values than the grey plot in the lateral direction (negative y). For 
talocalcaneal inversion (medial direction, positive y), the model exceeded the maximum latitude in the first analysis. This occurrence 
was corrected with the application of the RoM methodology. It is important to note that, for the case of RoM methodology application 
without energy dissipation, the trajectory of the center of mass of the main foot is less smooth due to the successive joint resistance 
moment applications to prevent the RoM from being exceeded, which impose successive changes of direction. With the addition of 
energy dissipation to the system, a smoother behavior of the trajectory of the center of mass of the main foot segment is observed in all 
cardinal planes. Overall, energy dissipation helps to stabilize the system. 

Fig. 13 presents several snapshots of the movement of the biomechanical multibody model for the first second of simulation in order 
to provide a comparison of the amplitude of motion and type of movement between the three cases tested in Fig. 12. 

In order to examine whether the maximum latitude for plantarflexion, eversion and inversion is properly restricted with the 
application of the proposed RoM methodology, the evolution of the latitude as a function of the longitude for the talocrural and 
talocalcaneal joints is depicted in Fig. 14. When the RoM methodology is not considered, the model exceeded the maximum latitude for 
plantarflexion since a latitude of almost 90◦ is reached for ψh=180◦, as opposed to a maximum latitude of 37◦ and 35◦ observed when 
the RoM methodology is considered without and with energy dissipation, respectively (see Fig. 14a and c). When energy dissipation is 
not considered, the latitude exceeds the maximum allowable latitude by 2◦ because a value of 11.5◦ was set for parameter Δσh, which 
allows to adjust the joint stiffness. Furthermore, the maximum latitude for dorsiflexion is not reached (ψh=0◦). It must be emphasized 
that, in the present application example, when the RoM methodology is taken into account with energy dissipation, the model reaches 
the equilibrium position in the maximum latitude for plantarflexion, since the gravitational force tends to lead the foot outwards its 
normal RoM. For the talocalcaneal joint, as concluded previously in Fig. 12, when the RoM is not considered, the maximum latitude for 
eversion is not reached (ψh=270◦), as opposed to the maximum latitude for inversion (ψh=90◦). In the cases in which the RoM 
methodology is applied, the maximum latitude for both of these movements is adequately restricted to the respective defined values, 
considering the parameter Δσh (see Fig. 14b and d). 

Fig. 15 shows the evolution of the joint dissipative moment and the joint motion-restricting moment for both the talocrural and 
talocalcaneal joints throughout the simulation time. Since none of these moments are applied to the model in both joints when the RoM 
methodology is not considered, this case in not depicted in Fig. 15. When the RoM methodology is applied without energy dissipation, 
only the joint motion-restricting moment is acting on the model. This situation is expected since, with no energy dissipation, the 
maximum latitude for plantarflexion, inversion and eversion are reached, as discussed above (see Figs. 12 and 14). The joint dissipative 
moment is only applied when energy dissipation is considered in the RoM methodology and its curve and magnitude differ for both 
joints (see Fig. 15a and b), which is sound because the angular velocity calculated using Eq. (20) is different. However, it is important 
to note that the dissipative moment applied in the talocrural joint is nearly three times higher than that applied in the talocalcaneal 
joint. For the talocalcaneal joint, when energy dissipation is considered, only the joint dissipative moment is acting on the model, since 
the maximum latitude for inversion and eversion is not exceeded (see Fig. 15b and d). However, when the RoM is considered with 
energy dissipation, both moments are acting on the talocrural joint (see Fig. 15a and c). This phenomenon occurs because the 
maximum latitude for plantarflexion is reached at around 0.43 s of simulation, as observed in Fig. 14a for ψh=180◦. Since the joint 
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Fig. 12. Trajectory of the center of mass of the main foot in the (a) sagittal, (b) transverse and (c) frontal planes. The green marker represents the 
initial position of the center of mass of the main foot. The x, y, and z directions correspond to the anteroposterior, mediolateral and superoinferior 
directions in the three cardinal planes, respectively. 
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dissipative moment is acting on the model, the relative velocity of the bodies decreases during the simulation. Thus, in the first time the 
maximum latitude for talocrural plantarflexion is detected, the magnitude of the joint motion-restricting moment is maximum and 
decreases in subsequent detections, before stabilizing around 0.14 N⋅m (see Fig. 15c). After stabilization, the model remains in the 
same configuration for the remainder of the simulation, and, therefore, a constant magnitude of joint motion-restricting moment is 
applied to prevent the plantarflexion RoM from being exceeded. In general, the application of the joint motion-restricting moment is 
responsible for the discontinuities observed in the curves of the joint dissipative moment in plots of Fig. 15a and b. Finally, the 
magnitude of the joint motion-restricting moment for both joints is much higher than that observed for the joint dissipative moment 
(see Fig. 15). However, in general, the joint motion-restricting moment is applied in a very short period of time, as opposed to the joint 
dissipative moment. 

Since the required calculations for the three compared scenarios do not differ significantly, the computational cost of the 
biomechanical model was evaluated through the number of function evaluations, and it is depicted in Fig. 16. When energy dissipation 
was considered in the RoM methodology and when the 5-second simulation was utilized to evaluate the computational cost of the 
biomechanical multibody model, the system showed numerical issues after it was fully dampened. These issues are directly associated 
with the numerical error that arises from the integration process and that does not allow to obtain exactly null velocities and, thus, fully 
stop the motion of the bodies. In turn, very low velocities are calculated using Eq. (5), which provoke variations in the position and 
velocity of the bodies of the biomechanical model, leading to a continuous application of a joint dissipative moment to the system. The 

Fig. 13. Snapshot of the movement of the biomechanical model for the first second of simulation (a) subjected to gravitational action only, and with 
the RoM methodology (b) without and (c) with energy dissipation. 
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dissipative moment provokes significant variations, in relative terms, of the coordinates of the biomechanical model, which reduce the 
time step required to meet the specified tolerances and proceed with the integration process, significantly decreasing the computa-
tional efficiency. In order to ensure that this issue does not affect the analysis, Fig. 16 shows the computational cost for 1 s of simulation 
only, which represents the simulation time prior to the occurrence of the above-mentioned numerical issues. Observing Fig. 16, the 
most efficient case is the one in which the RoM methodology is not considered, while the case without energy dissipation is the least 
efficient one. 

6. Concluding remarks 

In this work, a methodology to restrict the RoM of joints is applied to the ankle joint complex of the human foot. This methodology 
can be useful, for instance, in human motion simulation, in planning and optimizing the trajectories of bodies, or in the design of 
mobility assistive devices or exoskeletons. The ankle joint complex is composed of the talocrural and the talocalcaneal articulations, 

Fig. 14. Variation of the latitude as a function of the longitude for the (a) talocrural and (b) talocalcaneal joints. These figures represent a top view 
of the joint’s local coordinate system: case without RoM (

––
), RoM without dissipation (---), RoM with dissipation (– · –), and limits of the cir-

cumduction cone ( ). Figures (c) and (d) depict a zoom of figures (a) and (b), respectively. 
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Fig. 15. Evolution of the joint dissipative moment for the (a) talocrural and (b) talocalcaneal joints and of the joint motion-restricting moment for 
the (c) talocrural and (d) talocalcaneal joints throughout the simulation time. 

Fig. 16. Computational cost for the biomechanical multibody model for 1 s of simulation.  
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which allow, respectively, plantarflexion and dorsiflexion, and eversion and inversion of the foot. The RoM methodology applies joint 
resistance moments to the connected bodies to mimic the resistive and dissipative behavior of the materials constituent of the joint and 
to prevent unacceptable relative configurations of those bodies. Thus, the joint resistance moments are composed of two terms, namely 
the joint dissipative moment and the joint motion-restricting moment terms. A three-dimensional biomechanical model of the human 
leg, main foot and toes is developed under the framework of the multibody systems methodology. The rigid bodies are kinematically 
connected to each other by means of one revolute joint representing the metatarsophalangeal articulations, and one modified universal 
joint representing the ankle joint complex. The multibody model has three degrees-of-freedom but, since the metatarsophalangeal joint 
angle was considered to be locked, in reality the model has two degrees-of-freedom, which include the movements allowed by the 
ankle joint complex. For the application of the RoM methodology, the modified universal joint can be thought of as two revolute joints, 
which means that the RoM associated with each joint axis must be restricted independently and two different circumduction cones 
must be constructed. For both the talocrural and talocalcaneal joints, a detailed description of the application of the RoM methodology 
is given in this work. The definition of the moving and reference bodies, of the joint’s local reference frames and of the circumduction 
cones for each joint of the ankle joint complex is provided. The estimation of the longitude and latitude, and the calculation of the 
maximum latitude using the elliptical approach is also described. Due to the fact that, in a modified universal joint, there is a massless 
link connecting the two bodies, the joint motion-restricting moment is directly applied to the reference body and to the massless link. 
Thus, a process of force and moment transfer from the massless link to both the moving and reference bodies must be considered and it 
is explained in detail in this work. From the obtained results, it can be concluded that the methodology correctly restricts the RoM of 
the ankle joint complex of the human foot and it can be further applied to the dynamic simulation of biomechanical multibody models. 
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