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Novas perspetivas no desenvolvimento pulmonar fetal (a)normal: estudos preditivos e mecanísticos 

Resumo 

O desenvolvimento pulmonar é um complexo e desafiante tópico de pesquisa uma vez que, 

compreende diferentes zonas funcionais que diferem entre si em termos de nichos celulares e vias de 

sinalização. Estas zonas contribuem para a regulação da respiração neonatal normal. A hipoplasia pulmonar 

fetal (HPF) é caracterizada por pulmões pouco ramificados nos estadios iniciais e um reduzido número de 

ductos alveolares no final da gestação. Esta doença constitui uma das mais comuns causas de falha 

respiratória neonatal, para a qual o diagnóstico e tratamento pré-natal permanecem pouco conhecidos. 

Métodos imagiológicos e oclusão traqueal fetal endoscópica (FETO) são atualmente as ferramentas mais 

favoráveis para predizer e tratar a HPF, respetivamente. Contudo, os controversos valores preditivos por 

método imagiológico e os efeitos secundários associados com o FETO limitam a sua aplicabilidade. Tendo 

a sua máxima severidade na hérnia diafragmática congénita (HDC), a HPF é muitas vezes estudada no 

modelo da HDC induzida pelo nitrofen, o qual mimetiza de forma razoável a HDC humana no que concerne 

às alterações morfológicas e moleculares.  

No presente estudo pretendemos contribuir para o conhecimento do desenvolvimento pulmonar fetal. 

Para isso, exploramos o valor preditivo dos métodos imagiológicos na HPF letal; caracterizamos o pulmão 

hipoplásico fetal em termos de perfil epitelial celular da fase embriónica até à sacular e analisamos o papel 

funcional do Roundabout 1 (ROBO1) e ROBO2 na ramificação pulmonar e no perfil SRY-related HMG BOX 

(SOX2)/SOX9. Investigamos ainda os mecanismos desencadeados pelo fluido intraluminal que estimulam 

o crescimento pulmonar. Com esse intuito, avaliamos as culturas de explantes como modelo ex vivo para 

o estudo da composição do fluido intraluminal na ramificação pulmonar.  

Ao longo deste trabalho descrevemos os ultrassons como importantes preditores de HPF letal e 

recomendamos estudos restritos por tipo de doença e grau de severidade. Nos pulmões CDH-induzidos, 

verificamos um comprometimento do padrão próximo-distal e da diferenciação das células ciliadas na fase 

sacular. Identificamos o ROBO2 como estimulador da ramificação pulmonar via SOX9 e, descrevemos o 

ROBO2 como desregulado nos pulmões hipoplásicos. Demonstramos o fluido intraluminal como 

manipulável nas culturas de explantes pulmonares ex vivo e, reportamos a concentração de cloro 

intraluminal como promotor de crescimento celular num mecanismo dependente de PIEZO1/PIEZO2, 

expressos nas células pulmonares neuroendócrinas/corpos neuroepiteliais. 

Em conclusão, este trabalho contribui significativamente para o estado da arte do desenvolvimento 

pulmonar fetal e expõe novas perspetivas e possibilidades de investigação. 

Palavras-chave: células epiteliais, hipoplasia pulmonar fetal, mecanotradução, morfogénese 
ramificada, ultrassom  
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New insights in (ab)normal fetal lung development: predictive and mechanistic studies 

Abstract 

Fetal lung development is a complex and challenging topic of research since comprise distinct 

functional zones with unique cell niches and pathways that work together to permit normal respiratory 

function at birth. Fetal lung hypoplasia (FLH) with underbranched lungs at early and reduced number of 

alveoli at later development stages, constitute one of the most common causes of neonatal respiratory 

failure, for which the prenatal prediction and treatment remains uncertain. Imagiological methods and 

fetoscopic endoluminal tracheal occlusion (FETO) are the current more favorable approaches to predict and 

treat FLH, respectively. Nevertheless, the controversial predictive values by imagiological method and the 

inherent secondary effects after FETO restrain their applicability. Reaching its maximum severity in congenital 

diaphragmatic hernia (CDH), FLH is preferable studied in nitrofen-induced CDH rat model since it reasonably 

mimics the human CDH in terms of morphological and molecular alterations. 

In the present study, we intend to contribute to the body of knowledge in (ab)normal fetal lung 

development by exploring the predictive value of imagiological methods in lethal FLH estimation. In addition, 

we determine the epithelial cell profile from embryonic-to-saccular phases in induced-CDH lungs and 

evaluate the functional role of Roundabout 1 (ROBO1) and ROBO2 in branching morphogenesis and SRY-

related HMG BOX (SOX2)/SOX9 profile. We then extend our studies to investigate the mechanisms triggered 

by intraluminal fluid in stimulation of fetal lung growth. For that, we evaluate the experimental relevance of 

the ex vivo lung explant cultures to study the intraluminal lung fluid composition in branching 

morphogenesis.  

In this Ph.D. thesis, we describe ultrasounds as valuable predictor for lethal FLH and recommend 

restrict studies by disease type and severity degree. In induced-CDH lungs, we provide evidence that both 

proximodistal patterning and the differentiated profile of ciliated cells at saccular stage are impaired. We 

identify ROBO2 as promotor of SOX9 instead of SOX2 expression in branching morphogenesis and describe 

ROBO2 as dysregulated in hypoplastic lungs. Lastly, we demonstrate the intraluminal fluid able to be 

manipulated in ex vivo lung explant cultures, for which the intraluminal chloride concentration is modulator 

of ex vivo lung growth under a mechanism dependent on PIEZO1/PIEZO2, expressed in pulmonary 

neuroendocrine cells/neuroepithelial bodies.  

In conclusion, this work significantly contributes to the state-of-the-art in (ab)normal fetal lung 

development and exposes new perspectives and possibilities for research.  

Keywords: branching, epithelial cells, fetal lung hypoplasia, mechanotransduction, ultrasound.  
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1.1. Normal fetal lung development 

The transition from fetal to neonatal life is dependent upon major changes within the respiratory 

system that allow the infant to initiate the pulmonary gas exchange, a function that is performed by the 

placenta during fetal life. Traditionally, lung formation is divided into five distinct periods based on structure: 

embryonic, pseudoglandular, canalicular, saccular, and alveolar, which are shared among mammalian 

species. Nowadays, our understanding of fetal lung development and neonatal respiratory function results 

from studies that highlight the cellular and molecular mechanisms in the underlying morphologic alterations. 

As such, this introduction pretends to emphasize the current knowledge regarding the (ab)normal fetal lung 

development and support the key research topics that are relevant to the goals addressed in this project. 

Development of the lung begins with the early specification of the germ layers as the ectoderm, 

mesoderm, and endoderm are formed. Therefore, sequential signals among mesenchymal and epithelial 

cells direct transcriptional programs to produce the foregut endoderm that gives rise to the thymus, lung, 

liver, and pancreas. For instance, the high levels of bone morphogenetic protein (BMP), retinoic acid (RA), 

and the expression of Wingless 2/2b (WNT2/2b) in the ventral mesenchyme induce the expression of NK2 

homeobox 1 (Nkx2-1, also known as thyroid transcription factor 1 (Ttf1) or T/EBP) that distinguishes the 

future lung from the other foregut derivatives at the onset of embryonic phase [occurs between weeks 4 and 

8 of human’s gestation and embryonic day (E) 11 to E13 in rat] (reviewed in Jacobs et al 2012, Rankin et 

al 2016, Rock & Hogan 2010, Swarr & Morrisey 2015, Zhang et al 2017). In addition, RA activates paracrine 

networks dependent on Sonic Hedgehog (SHH) signaling from the endoderm to mesenchymal targets that 

include glioma-associated oncogene family zinc finger (Gli) 2/3, Forkhead box F1 (FoxF1), and T-box gene 

4 (Tbx4) (Figure 1). The expression of Bmp4 in the ventral mesoderm, and the Bmp antagonist, Noggin, 

expressed from the notochord on the dorsal side, establish the dorsal-ventral gradient of Bmp that is required 

to promote the proper placement of the lung along the proximodistal axis (reviewed in Arora et al 2012, 

Goss & Morrisey 2010, Hrycaj et al 2015, Jacobs et al 2012, Kimura et al 1996).  

Pseudoglandular stage occurs between weeks 8 and 16 of gestation in humans, and E12.5 to E18.5 

in rats, and it is characterized by the initial outgrowth of the lung bud, and consequent branching of the lung 

tips. Airway patterning starts from a single tube or cluster of cells that grows and undergoes rounds of 

budding and/or bifurcation that leads to the formation of the complex arborized network (Lovric et al 2017, 

Metzger et al 2008, Schittny 2017). The repetition of these bifurcations at defined angles (planar or 

orthogonal to the long axis of the parent tube) generates the stereotyped, hierarchically organized three-

dimensional branched architecture of the lung (Lovric et al 2017, Metzger et al 2008). Interestingly, it is the 

mesenchymal expression of TBX family members, FOXF1, and odd-skipped related transcription factor 1 



3 
 

(OSR1) that produce the WNT, BMP, and fibroblast growth factor 10 (FGF10) gradients, expressed at high 

levels in the distal tips of the lung (reviewed in Arora et al 2012, Morrisey & Hogan 2010, Whitsett et al 

2019). These gradients working with SHH, transcription growth factor-beta (TGFβ), and RA control the 

epithelial progenitor differentiation into SRY-related HMG BOX 2 (SOX2) versus SOX9 positive (+) cells and 

identify the proximal and distal pattern, respectively, at branching morphogenesis (Bellusci et al 1997, Daniel 

et al 2020, Grindley et al 1997, Lü et al 2004, Serra & Moses 1995, Whitsett et al 2019). In fact, the 

expression of FGF10 that directly activates β-Catenin in the distal epithelial progenitors’ cells induces the 

expression of BMP4 and SOX9. Conversely, as the epithelial tube grows towards these distal sources of 

FGF10 and BMP4, progeny from the distal multipotent epithelial progenitors are left behind in the epithelial 

stalk and once they are out of FGF10 and BMP4, they lose SOX9 expression and start expressing SOX2 

(Figure 1) (Hashimoto et al 2012, Mucenski et al 2005, Mucenski et al 2003, Shu et al 2005, Volckaert et 

al 2013). 

Transmural pressure of the chest cavity and smooth muscle contractions are also key regulators of 

branching morphogenesis (Goodwin et al 2019, Kim et al 2015, Lin et al 2017, Nelson et al 2017). For 

instance, the local transmural pressure alters the proximal smooth muscle contraction that tunes the airway 

branching. In fact, as transmural pressure increased, the time interval between peristaltic contractions of 

proximal smooth muscle decreased, which result in increased rates of branching (Nelson et al 2017). In 

addition, increasing smooth muscle differentiation suppresses branching initiation and extension, whereas 

their decrease leads to ectopic branching and alterations in branch positioning (Goodwin et al 2019, Kim et 

al 2015). Unfortunately, the exact identity of smooth muscle progenitors is unclear. However, the FGF9 

secreted by the mesothelium surrounding the lungs maintains the progenitor status of mesenchymal cells 

(Weaver et al 2003, Yi et al 2009); Fgf10- and Wilms tumor 1 (WT1)-expressing progenitors give rise to a 

minor fraction of smooth muscle cells at E15.5 and E18.5, whereas glioma-associated oncogene 1 (Gli1)- 

and Axin2-expressing progenitors construct the majority of smooth muscle cells at E18.5 (Figure 1) 

(Moiseenko et al 2017).  

The intrapulmonary arterial system starts to develop at pseudoglandular stage with the connection 

between the microcirculation of the peripheral lung and the larger pulmonary arteries and veins established 

(deMello et al 1997). Pulmonary vasculature is not required for initiation or branching of the embryonic lung 

buds but is essential for their survival and growth later in the development (reviewed in Tan & Lewandowski 

2020).  

Canalicular stage includes the period between 16- and 26-weeks in humans (E18.5 to E20 in rats). 

This stage comprises the expansion of the respiratory tree in diameter and length, the division of terminal 
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bronchioles, and the increase of capillaries number leaning against the epithelium that marks the beginning 

of the prospective gas-exchange region. In humans, terminal bronchioles divide into respiratory bronchioles 

and alveolar ducts, whereas there are no respiratory bronchioles in rodents (Pan et al 2019). The formation 

of respiratory bronchioles in humans and alveolar ducts in humans and rodents overlaps with the epithelial 

and mesenchymal differentiation and contributes to the morphological distinction between conducting and 

respiratory airways. In brief, epithelial cell differentiation implies the differentiation of bronchiolar and alveolar 

lineages from SOX2 and SOX9+ cells, respectively. Proximal or bronchiolar progenitors, SOX2+, give rise to 

pulmonary neuroendocrine cells (PNECs), clara or ciliated, whereas alveolar differentiation forms alveolar 

type I (AT1) and alveolar type II (AT2) cells in a mechanism dependent on Notch signaling (Figure 1) and 

detailed discusses in section 1.1.1. (Chang et al 2013, Gontan et al 2008, Rockich et al 2013, Tompkins 

et al 2011, Tompkins et al 2009). At the end of canalicular phase, the first future air–blood barriers are 

formed, and at least a minimal pulmonary surfactant is produced (Bohnhorst & Peter 2020, Schittny 2017). 

Indeed, the specification of AT1 cells that allow oxygen (O2) and carbon dioxide (CO2) diffusion, and the AT2 

cells that produce the pulmonary surfactant support the first chance of a human fetus to survive. Surfactant 

is a complex mixture of about 90% phospholipids (PLs) and 10% proteins that decrease the surface tension 

at the alveolar air-liquid interface, reduce the work of breathing, and inhibit/inactivates the environmental 

pathogens (reviewed in Bernhard 2016).  

Starting on week 26 and finishing on week 36 of gestation in humans (E21 to postnatal day (P) 4 in 

rats), the saccular stage represents an intermediate phase, when branching morphogenesis ceases and 

alveolarization has yet to start (Cardoso & Lu 2006, Morrisey et al 2013). This stage is categorized by the 

enlargement of the terminal clusters into transitory alveolar saccules and ducts with a marked reduction on 

surrounding mesenchymal tissue. The capillaries also grow rapidly in the mesenchyme surrounding the 

primary alveoli to form a complex double network. AT2 covers part of the primary septa surface and 

surfactant continuous to be produced (Morton & Brodsky 2016, reviewed in Schittny 2017). Regarding the 

underlying mechanisms, the mesenchymal cells differentiated into lipofibroblasts (LIFs) and myofibroblasts 

in a process mediated by FGF10 and TGFβ type I receptor (TβRI or ALK5), (El Agha & Bellusci 2014, Li et 

al 2016). Importantly, the function of AT2 cells is supported by LIFs via an intercellular crosstalk pathway-

dependent of stretch, parathyroid hormone-related peptide (PTHRP), prostaglandin E2 (PGE2), and leptin, 

while myofibroblasts produce elastin and collagen that are compounds of extracellular matrix (ECM) (Figure 

1). The deposition of elastin and collagen and the presence of alveolar myofibroblasts are decisive for 

secondary septation during alveolarization with platelet-derived growth factor (PDGF)-A signaling as major 

regulator (Figure 1) (Andrae et al 2014, Boström et al 2002, Boström et al 1996, Lindahl et al 1997). In 
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fact, PDGF-A knockout mice show severe failure on alveolar septation since damage the alveolar 

myofibroblasts maturation and lack the elastin deposition (Boström et al 2002, Boström et al 1996, Lau et 

al 2011, Lindahl et al 1997), whereas overexpression of PDGF-A causes perinatal lethality due to marked 

mesenchymal cell proliferation (Li & Hoyle 2001).  

The transition from saccular to alveolar stages involves the LIF formation that is recognized by their 

abundant lipid droplets and expression of perilipin 2A (PLIN2A), PDGF receptor (PDGFR), and THY-1. 

Alveolarization represents a process during lung development that leads to the formation and maturation of 

the distal parts of the lung: the alveoli. The alveolar stage starts at 36 weeks of gestation in humans and 

continues through early childhood (P4 to P21 in rats). Albeit the formation of alveoli is essentially postnatal 

in rodents and humans (Amy et al 1977, Burri et al 1974, Hislop et al 1986, Langston et al 1984, Pan et 

al 2019, Zeltner et al 1987), maturation of peripheral alveoli is initiated before birth in the human lung, 

whereas the similar morphological issues are only visualized after birth in rodents (Burri 1984, Langston et 

al 1984, Pan et al 2019, Thurlbeck 1975). 

Alveolarization is marked by a dramatic increase in gas exchange surface due to the subdivision of 

the primitive saccules by new interair-space walls resulting in new alveoli. In fact, restructuring of the terminal 

saccule into a true alveolus consists of lengthening and thinning of the secondary septa, reduction of septal 

interstitial tissue, and remodeling of the capillary bed by fusion of the two septal capillary networks into one 

(Burri 2006, Rodríguez-Castillo et al 2018). Alveolarization requires complex interactions among 

differentiating AT1 and AT2 epithelial cells and diverse mesenchymal progenitors that form the collagen and 

elastin-rich scaffold and define the alveolar structure (Li et al 2015). Secondary septa arrive at the place of 

elastin deposition, which is produced by alveolar myofibroblasts (Figure 1). In rodents, by P4, so-called 

secondary septa appear in the primary septa at sites of elastin deposition (Morrisey & Hogan 2010, Tschanz 

et al 2014). At the tip (secondary crest) of these still-immature secondary septa, alpha-smooth muscle actin 

(α-SMA)+ myofibroblasts appear, and the expression of ECM components such as elastin further increases 

(Boström et al 1996, Chao et al 2015, Mižíková & Morty 2015, Morrisey & Hogan 2010). Signals like 

mechanical forces, PDGFRα, and TGFβ induce a myogenic phenotype (Torday & Rehan 2002, Torday et al 

2002), whereas Thy-1 severely impairs the alveolarization since inhibits the TGFβ, leading to reduced 

myogenic phenotype (Nicola et al 2009). In conclusion, mature alveoli are lined by two main epithelial cell 

types, AT1 and AT2. AT1 cells constitute about 95% of the surface area and are located immediately adjacent 

to the capillaries, which allows the efficient O2 and CO2 diffusion, whereas AT2 cells secrete surfactants to 

prevent alveolar collapse (Barkauskas et al 2013, Desai et al 2014). 
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Figure  1 - Timeline of five stages of lung development in rats and humans with the underlying molecular and cellular mechanisms. The five milestones of lung 

development are embryonic (formation of lung buds), pseudoglandular (branching morphogenesis), canalicular (formation of epithelial (continues in the next page) 
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(continuation of the previous page) sacs and appearance of capillaries), saccular (production of alveolar 

ducts and surfactant protein), and alveolar (maturation of the alveoli). The principal signal pathways that 

control lung bud formation (embryonic), proximodistal patterning (pseudoglandular); epithelial cell 

differentiation (canalicular); and primary (saccular) and secondary (alveolar) septa formation are 

characterized in the lower panel. Rat stages are represented in embryonic (E) or postnatal (P) days and 

human stages are represented by post-conception weeks (pcw) and years (y). α-SMA: alpha-smooth muscle 

action; BMP4: bone morphogenetic protein; BMPR1a: bone morphogenetic protein receptor 1a; BMPR1b: 

bone morphogenetic protein receptor 1b; FGF9: fibroblast growth factor 9; FGF10: fibroblast growth factor 

10; FGFR2b: fibroblast growth factor receptor 2b; Foxf1: Forkhead box factor 1; GLI: glioma-associated 

oncogene family zinc finger; Gli2: glioma-associated oncogene family zinc finger 2; Gli3: glioma-associated 

oncogene family zinc finger 3; Nkx2-1: NK2 homeobox 1; Nog: noggin; Osr: odd-skipped related 1; PGE: 

prostaglandin E2; PDGFRα: parathyroid hormone-related protein alpha; PTHrP: parathyroid hormone-related 

protein; RA: Retinoic acid; SHH: sonic hedgehog; SOX2: SRY-related HMG BOX 2; SOX9: SRY-related HMG 

BOX 9; Spry1: Sprouty 1; Spry2: Sprouty 2; Tbx4: T-box gene 4; Tbx5: T-box gene 5; Wnt2a: wingless 2a; 

Wnt7b: wingless 7b. 

 

1.1.1. Specification of epithelial lineages 

The complexity of lung morphogenesis is evident from the multiple cell types that constitute the lung, 

all present in appropriate numbers and sites to support the first respiration at birth (reviewed in Whitsett et 

al 2019). Lung identity is established during the embryonic phase when morphogens into the surrounding 

mesoderm induce the expression of Nkx2-1 in the ventral anterior foregut endoderm. Then, reciprocal 

mesodermal-endodermal interactions support branching morphogenesis and the specification of multipotent 

progenitor cells into a proximal and distal fate. For instance, during branching morphogenesis, the distal tip 

of the developing lung contains a pool of multipotent Sox9/Id2+ epithelial progenitors able to give rise to 

bronchiolar and alveolar epithelium (Figure 2). These progenitor cells proliferate at pseudoglandular stage 

and form the proximodistal patterning. For that, the high levels of Fgf10/Fgfr2b, Wnt/β-Catenin, and Bmp4 

in the distal tip of the lung promote the Sox9 or distal profile (Abler et al 2009, Chang et al 2013, Cornett 

et al 2013, Mucenski et al 2003, Shu et al 2005), whereas the consecutive grow of the epithelial tubes 

towards these distal sources decrease the levels of β-Catenin and Bmp4 and cells start expressing Sox2 

(Figure 2) (Eblaghie et al 2006, El Agha et al 2014, Gontan et al 2008, Hashimoto et al 2012, Park et al 

1998, Rockich et al 2013, reviewed in Volckaert & De Langhe 2015, Weaver et al 2000, Weaver et al 1999). 
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Later, it is the SOX2 and SOX9+ cells that differentiated and form the conducting and respiratory airways, 

respectively, at canalicular and saccular stages.  

The current model of bronchial and alveolar differentiation admits the bronchiolar lineages (SOX2+), 

giving rise to clara, ciliated, goblet, or PNECs, whilst alveolar (SOX9+) forms AT1 and AT2 cells (Figure 2). 

Molecularly, the bronchiolar differentiation implies a first molecular decision mediated by Notch via Hes1, a 

major Notch target gene, that establishes the pulmonary neuroendocrine (PNECs) and non-neuroendocrine 

profile. At this time, PNEC and non-neuroendocrine cells are distinguished by the expression of achaete-

scute homolog 1 (Ascl1) (also called Mash1) and Scgb3a2, respectively. Then, the non-neuroendocrine cells 

undergo a second Notch-mediated decision to commit the ciliated (forkhead box J1, Foxj1+/β-tubulin+) or 

clara cells [secretoglobin family 1A member 1, Scgb1a1, also called Clara cell-specific 10 kD protein (CC10) 

or Clara cell secretory protein (CCSP)] (Figure 2) (Borges et al 1997, Guha et al 2012, Guseh et al 2009, 

Ito et al 2000, Morimoto et al 2010, Morimoto et al 2012, Post et al 2000, Shan et al 2007, Stupnikov et 

al 2019, Tsao et al 2009, Zhang et al 2013). Inhibition of Notch signaling activates a regulatory gene network 

that includes Gemc1 (also called Gmnc), multicilin (also called Mcidas), E2F transcription factor 4 (E2F4), 

regulatory factor X2 (Rfx2), and FoxJ1 and supports the ciliated profile (Figure 2) (Arbi et al 2016, Campbell 

et al 2016, Didon et al 2013, Quigley & Kintner 2017, Stubbs et al 2012, Zhou et al 2017). Mcidas and 

Foxj1 are key transcriptional regulators of multiciliogenesis (Marshall et al 2016, Nemajerova et al 2016). 
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Figure  2 - Overview of bronchiolar and alveolar differentiation in the development of the lung – At the 

pseudoglandular stage, progenitor cells (SRY-related HMG BOX 9, SOX9+, green) within the distal tip 

epithelium both self-renew and generate descendants (SOX2+, violet) that exit the tip and populate the 

conducting airways. SOX9+ cells persist to the canalicular stage when they generate alveolar progenitors 

(orange) that populate the future alveoli, whereas proximal progenitors (SOX2) give rise to bronchiolar 

lineage. It is not clear if this switch from the production of bronchiolar to alveolar descendants is intrinsic or 

imposed by extrinsic factors. Alveolar progenitors generate type 1 (AT1) and type 2 (AT2) alveolar epithelial 

cells, directly or indirectly through a bipotent progenitor. The proximal SOX2+ progenitors form 

neuroendocrine (PNECs), clara, ciliated, and goblet cells. Abca3: ATP binding cassette subfamily A member 

3; Agr2: anterior gradient 2; Aqp5: aquaporin 5; Ascl1: achaete-scute homolog 1 (also known as Mash1); 

Dll1: Delta like canonical Notch ligand 1; Foxa3: forkhead box proteins; FoxJ1: forkhead boxJ1; FoxP1: 

forkhead box P1; FoxP2: forkhead box P2; Hes1: Hes family bHLH transcription factor 1; Id2: inhibitor of 

DNA binding 2; Muc5ac: Mucin 5AC; NE: neuroendocrine; (continues in the next page)  
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(continuation of the previous page) Pdpn: podoplanin; PGP9.5: protein gene product 9.5; PNECs: pulmonary 

neuroendocrine cells; Scgb1a1: secretoglobin family 1A member 1; Sftpc: surfactant- associated protein 

(adapted from Rock & Hogan 2011). 

 

Concerning alveolar lineage, transcriptional studies showed two origins for AT1 and AT2 cells (Chang 

et al 2013, Desai et al 2014, Frank et al 2019, Treutlein et al 2014). For instance, at early developmental 

stages, AT2 cells arise from highly proliferative SOX9+ cells localized in the most distal tip, whereas AT1 

emerges from a region just proximal to this in the stalk of the lung bud. This study also suggests the small 

number of bilineage AT1/AT2 cells observed between these two regions, representing residual 

undifferentiated progenitor cells, which progressively differentiate during development but do not contribute 

in a significant manner to mature alveolar epithelial lineages (Frank et al 2019). Conversely, at the later 

canalicular-saccular period, a common “bipotent” progenitor proliferates and gives rise to AT1 and AT2 cells 

(Figure 2). Authors also describe little epithelial proliferation during sacculation and for several weeks 

afterward, indicating that maturation of bipotent progenitors generates most or possibly all AT1 and AT2 

cells in development (Desai et al 2014, Treutlein et al 2014).  

More recently, other stimuli like tissue environment, mechanical forces, ECM, and intracellular factors 

are also identified in the regulation of alveolar cell differentiation. Indeed, reduced mechanical tension from 

fetal breathing by depletion of amniotic fluid or lowered stiffness of cell culture surface favors AT2 over AT1 

cell differentiation (Li et al 2018). In addition, the canonical WNT and FGF signaling inhibit the AT1 cell 

differentiation (Desai et al 2014, Frank et al 2016, Li et al 2018, Wang et al 2016b), whereas the histone 

deacetylase 3 (HDAC3)-dependent TGFβ signaling is required for proper epithelium expansion and AT1 cell 

spacing (Wang et al 2016b, Wang et al 2016c).  

1.1.2. Epithelial cell profile in fetal lung development 

With comparable conducting, respiratory and vascular components, the rodent and human lungs are 

organized into a proximodistal patterning that controls the first breath at birth. At the cellular level, slight 

differences have been described, particularly at birth (Berend et al 1991, Boers et al 1999, Pan et al 2019, 

Plopper & Hyde 2015, Reynolds et al 2015). For instance, at the more proximal airways (bronchi), the 

human lung is composed of the basal, ciliated, clara, serous, mucus, and neuroendocrine cells, and exhibits 

abundant submucosal glands (Berend et al 1991, Boers et al 1999, Plopper & Hyde 2015, Reynolds et al 

2015). In the mouse, the more proximal intrapulmonary conducting airways are composed primarily of 

ciliated and clara cells with clusters of PNECs largely located at airway branch points. In addition, the 
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respiratory bronchioles of the human lung are lined by cuboidal epithelia, alternating with thin-walled alveoli 

lined by squamous AT1 (Berend et al 1991, Boers et al 1999, Pan et al 2019, Plopper & Hyde 2015, 

Reynolds et al 2015), whereas the terminal bronchioles in mouse are lined by cuboidal epithelial cells with 

an abrupt transition (bronchioalveolar duct junction, BADJ) to the alveolar duct, which is lined by squamous 

AT1 (Boers et al 1999, Pan et al 2019, Suarez et al 2012). Besides these differences, the current knowledge 

demonstrates similar cellular functions during gestational life that allow the rodent model to be used in the 

study of human lung morphogenesis as followed described. 

1.1.2.1. Pulmonary neuroendocrine epithelial cells (PNECs) 

PNECs are the first specified cell type to appear in the respiratory epithelium, detectable at E12.5 in 

mice and 10 weeks in humans by the expression of bombesin. The cellular profile of neuroendocrine cells 

initiates as solitary with a salt-and-pepper patterning that later cluster into neuroepithelial bodies (NEBs). 

PNECs are rare, innervated airway epithelial cell types that account for <1% of the lung epithelium population 

and are enriched at airway branch point junctions (Table 1) (reviewed in Kuo & Krasnow 2015). Upon 

activation, PNECs release small neuropeptides [calcitonin gene-related peptide (CGRP), bombesin] and 

neurotransmitters [serotonin, gamma-aminobutyric acid (GABA), adenosine triphosphate (ATP)] (Brouns et 

al 2000, Cho et al 1989, Cutz et al 1993, Emanuel et al 1999, Garg et al 2019, Lauweryns et al 1973). 

These molecules may either act locally in an autocrine and paracrine manner or signal through neurons that 

innervate them. Importantly, the in utero injection or the treatment of the lung explant cultures with 

neuroendocrine products, ghrelin or bombesin, increase the surfactant protein-C (SP-C) content of AT2 cells, 

the deoxyribonucleic acid (DNA) content of mesenchymal cells, and the branching morphogenesis (Emanuel 

et al 1999, King et al 1995, Sunday et al 1990). These findings raised the possibility that PNECs act through 

their products to promote lung growth. (Noguchi et al 2015). In contrast, the absence of PNECs in Ascl1 

knockout mice, led to normal lungs in terms of branching pattern and size, with normal differentiated profile 

of the major epithelial cells, including clara, ciliated, AT1, and AT2 cells, indicating that PNECs are not 

required for primary aspects of lung development (Ito et al 2000).  

Over the last years, PNECs/NEBs have been reported as sensors of hypoxia, hypercapnia, acidosis, 

and airway stretch (reviewed in Garg et al 2019) with, however, unclear value in fetal lung development. 

Indeed, a recent publication showed PIEZO2, a known mechanosensor (Coste et al 2010, Ranade et al 

2014b, Woo et al 2014), expressed in NEBs at term with undetermined function since the regulation of fetal 

lung expansion and efficient neonatal respiration was attributed to PIEZO2 expressed in sensory neurons 

(Nonomura et al 2017). 



12 
 

 

Table 1 – Summary of the molecular markers, function, and other observations that characterize the 

differentiated epithelial cell types. AQP5: aquaporin 5; AT1: alveolar type 1 cell; AT2: alveolar type 2 cell; 

Cgrp: calcitonin gene-related peptide; Cyp2f2: cytochrome p450: FoxJ1: forkhead box J1; Hopx: 

homeodomain-only protein homeobox; ND: not defined; NEBs: neuroepithelial bodies; Pdpn: podoplanin; 

PNECs: pulmonary neuroendocrine cells; Ref: references; Scgb1a1: secretoglobin family 1A member 1; 

Sftpc: surfactant- associated protein; Tubb4a: Tubulin Beta 4A. 

Stem or 
progenitor 
population 

Marker 
Gene 

Proliferative 
Capacity 

Function 
Other 

observations 
Ref. 

PNECs/ 
NEBs 

Cgrp ND 

Airway sensor; required 
for appropriate innate 
immune inflammatory 

response 

<1% of the lung 
epithelium 

Garg 2019 

Clara 
Scgb1a1; 
Cyp2f2 

Yes 

Reparative cells for the 
airway epithelium; Barrier 
maintenance, secretion, 

and metabolism 

Secretory cells 
Reynolds 2010; 

Pan 2019 

Ciliated 
FoxJ1; 
Tubb4a 

No 
Critical for mucociliary 

clearance 
Recognized by the 

multiple cilia 
Rawlins 2007 
Toskala 2005 

AT1 
Pdpn; Aqp5; 

Hopx 
No 

Allow the efficient O2 and 
CO2 diffusion 

Cover 95% of the 
gas exchange 

surface 

Yang 2016; 
Nguyen 2019 

AT2 Sftpc Yes 

Produce pulmonary 
surfactant proteins; 

reduce alveolar surfactant 
tension 

Maturation occurs 
later in gestation 

Whitsett & 
Alenghat 2015; 
Bernhard 2016 

1.1.2.2. Clara cells 

Predominantly found in the intrapulmonary airway in human, the differentiation of clara cells starts 

at canalicular period and populate the trachea and conducting airway in mice (Pan et al 2019, Rawlins et 

al 2009). Clara is a secretory cell whose numbers vary among mammalian species, during development, 

and along the proximal-distal and dorsal-ventral axis of the airways (Ji et al 1995, Massaro et al 1994). In 

fact, distinct subsets of clara-secretory cells are in selective niches near NEBs, along the ducts of submucosal 

glands, and in the bronchoalveolar ductal regions. Within the normal lung, clara cells maintain the facultative 

progenitor cell pool (self-renewal) and restore terminally differentiated cells of the conducting airway 

epithelium (Table 1) (Reynolds & Malkinson 2010).  
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1.1.2.3. Ciliated cells 

Critical for efficient mucociliary transport, a major defense system of the lung that removes pathogenic 

microbes and inhaled particles from the respiratory tract, ciliated cells are first visualized in trachea and 

mainstem bronchi at approximately E14.0 in mice and proceed into a proximal to distal patterning as the 

fetal lung morphogenesis progress (Table 1) (Rawlins et al 2007). During development, the differentiation of 

ciliated lineage is the default of the non-neuroendocrine proximal airway epithelial cells. In mice, the ciliated 

cells appear as single cells in all three airway generations. However, with increasing age, the more proximal 

airways (trachea and lobar bronchi) develop ciliated cells in rows of 3-4 cells, while ciliated cells in the 

terminal bronchioles remain as single or paired cells (Toskala et al 2005). After differentiation, ciliated cells 

are recognized by the multiple cilia that are present on their apical surfaces (Toskala et al 2005).  

1.1.2.4. Alveolar type 1 (AT1) cells 

AT1 cells cover 95% of the gas exchange surface and are responsible for the physiological function of 

the pulmonary gas exchange (Table 1). Indeed, it is the thick morphology of the AT1 cells, covering the 

multiple alveoli, that allows the close contact with the vasculature and the passive diffusion of O2 into the 

bloodstream (Morrisey & Hogan 2010, Weibel 1971, Weibel 2015, Yang & Chen 2014, Yang et al 2016). 

Loss of AT1 cell type is related to fetal lung hypoplasia (FLH) with the simultaneous promotion of AT2 cellular 

profile (Flecknoe et al 2000, Nguyen et al 2019, Takayasu et al 2007c). 

1.1.2.5. Alveolar type 2 (AT2) cells 

The other major cell type of the alveolar epithelium, AT2 cells, is cuboidal and secretes surfactant to 

reduce surface tension (Table 1) (Morrisey & Hogan 2010, Weibel 2015). AT2 cells synthesize and recycle 

surfactant lipids, predominately palmitoyl-phosphatidylcholine, and surfactant proteins, SP-A, SP-B, SP-C, 

and SP-D, with each protein serving innate immune, biophysical and regulatory functions (Whitsett & 

Alenghat 2015, Whitsett et al 2015).  

The AT2 cell maturation occurs relatively late in gestation with the preterm infants frequently suffering 

from lung disease caused by surfactant deficiency. In fact, exogenous surfactant replacement preparations 

are used to provide surfactant lipids and proteins (SP-B and SP-C) that support the infant until endogenous 

surfactant synthesis by AT2 cells to be sufficient to maintain ventilation after birth (Bernhard 2016, Olmeda 

et al 2017). 
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1.1.3. Regulation of normal lung development by mechanical stimuli 

Physical forces in the form of fetal breathing movements (FBMs), transpulmonary pressures, or intraluminal 

lung fluid are critical regulators of lung architecture during development. In fact, the lung develops as a fluid-

filled organ, in which the intraluminal fluid moved by contractions of the smooth muscle and breathing 

movements assure the basal degree of lung expansion. The degree to which the lung can expand, and grow 

is ultimately dependent on the available intrathoracic and intrauterine space (Figure 3) as detail discussed 

in followed section.  

 

Figure  3 – The role of mechanical stimuli in the regulation of fetal lung expansion. Schematic diagram 

showing the function of mechanical stimuli in the regulation of lung liquid efflux during episodes of both fetal 

apnea and fetal breathing movements (FBMs). During apnea, the glottis is constricted, providing high 

resistance to the efflux of lung liquid. The production of lung fluid is dependent on the basolateral intake of 

sodium (Na+), potassium (K+), and chloride (Cl-) through sodium-potassium adenosine triphosphatase 

(Na+/K+-ATPase) pumps and Na+/K+/2chloride (Cl-, NKCC1) co-transporters (continues in the next page) 
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(continuation of the previous page) that in turn stimulate the apical Cl- secretion via cystic fibrosis 

transmembrane conductance regulator (CFTR), calcium-dependent chloride (CaCC) or voltage-sensitive 

chloride channel 2,3,5 (ClC2,3,5). As such, the continued secretion of lung liquid, therefore, provides a 

distending force on the lung, raising intraluminal pressure 1–2 mmHg above the pressure in the amniotic 

sac. This pressure gradient is referred to as transpulmonary pressure gradient. During FBM, the glottis 

dilates, allowing lung liquid to flow along the trachea, following its pressure gradient, from the lung lumen 

to the mouth where it is either swallowed or it enters in the amniotic sac. α-SMA: alpha-smooth muscle 

action; ASM: airway smooth muscle cell; FGF10: fibroblast growth factor 10; H2O: water. 

 

1.1.3.1. Intrathoracic space 

The synchronous development of the thoracic cage, diaphragm and pleural cavities is vital for the 

normal development of the lungs and postnatal functioning of the respiratory system. At its costal surface, 

the fetal lung is adjacent to the thoracic wall, while its basal surface, located adjacent to the diaphragmatic 

dome is shifted cranially by the growing liver (Yamamoto et al 2018). As such, the shape of the lung in 

fetuses, at least at its costal and basal aspects, is determined by the shape of the thoracic cavity, which 

needs to be firm enough to resist the pressure of the growing and expanding lungs (Figure 3). During 

pseudoglandular and canalicular phases, the lung surface is regulated by proliferation, branching, and 

outward growth of the bronchiolar system. Interestingly, in ex vivo microfluidic chest cavities, transmural 

pressure synchronizes the branching with airway smooth muscle contractions (Nelson et al 2017). 

In humans, from the third fetal trimester onward, the lung surface develops an evenly smooth 

morphology to adapt to respiratory movements in utero and facilitate further development of the airway and 

diaphragm (Harper 1996, Yamamoto et al 2018). Indeed, the breathing movements observed in fetuses 

depend on the intact thoracic and abdominal cavities so that the diaphragm can descend towards the rigid 

pelvic bowl, pushing out the abdominal wall (Mantilla et al 2017).  

1.1.3.2. Fetal breathing movements (FBMs) 

FBMs are breathing-like movements that occur episodically in healthy mammalian fetuses. FBMs 

begins early in fetal life and progressively become organized into discrete episodes that are largely associated 

with a fetal behavioral state resembling rapid eye movement sleep (Dawes et al 1972). Breathing-like 

movements oscillate between FBMs and apnea periods. During FBM episode, the laryngeal abductor (dilator) 

muscles contract in phase with the diaphragm, and the intrathoracic pressure reduce with small oscillations 

of liquid flow within the fetal upper airways (Figure 3). The contraction of the diaphragm limits the loss of 
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fetal lung liquid and therefore maintains the basal lung expansion (Fewell & Johnson 1983, Harding & 

Hooper 1996). In contrast, apnea involves the accumulation of lung liquid within the lung since the glottis 

is constricted and provides high resistance to tracheal efflux (Figure 3) (Harding et al 1984).  

Phrenic nerve section, thoracoplasty, or fetal paralysis are used to damage FMBs in the evaluation of 

subsequent morphological effects in in vivo fetal lung development. These studies demonstrated a significant 

decrease in fetal lung growth that suggests a direct consequence of FBMs in in vivo fetal lung development. 

However, a careful analysis regarding these experimental approaches seems to indicate an indirect effect of 

FBMs in the development of the lung. For instance, the section of phrenic nerve causes dystrophy of 

diaphragm muscle; thoracoplasty allows lung compression; and fetal paralysis abolishes laryngeal adductor 

activity, and may alter fetal posture that can separately explain the reduction in fetal lung growth by 

decreasing the pulmonary expansion (Harding et al 1993, Miller et al 1993). Indeed, the percent decrease 

in lung expansion is similar to the reduction in lung growth (Harding et al 1993, Miller et al 1993).  

Given the difficulty that it is the restricted manipulation of in vivo FBMs, alternative methods have 

been the focus of research to disclose the underlying mechanisms. Fetal lung cells exposed to 5% phasic 

distension, either constantly at a rate of ∼60 cycles/min or intermittently (e.g., 15 min/h), in 2- or 3-

dimensional cultures are described as a potential alternative method to study mechanical stretch and FBMs, 

although the used stimulus (approximately 5% stretch) probably exceeds the stretch-induced by in vivo FBMs 

(Liu et al 1995a, Liu et al 1995c, Sanchez-Esteban et al 1998, Wang et al 2009). Molecularly, the applied 

5% phasic distension in fetal lung cells increases lung epithelial cell proliferation (Liu et al 1995b, Liu et al 

1994) and differentiation (Silbert et al 2008, Wang et al 2013, Wang et al 2006), whilst induces the 

expression of many growth factors, including PDGF, vascular endothelial growth factor (VEGF), epidermal 

growth factor (EGF), TGF (Liu et al 1995a, Muratore et al 2000, Wang et al 2013) and other components 

of intracellular signaling pathways, such as inositol trisphosphate (IP3), protein kinase C (PKC), calcium, 

cyclic adenosine monophosphate (cAMP), and mitogen-activated protein kinase (MAPK) (Liu et al 1996, Liu 

et al 1994, Sanchez-Esteban et al 2006, Wang et al 2006). Almost of these pathways are also reported in 

the regulation of normal fetal lung development, whilst are impaired in the congenital diaphragmatic hernia 

(CDH) (Dingemann et al 2010, Doi et al 2010, Friedmacher et al 2014b, Friedmacher et al 2014c, 

Gosemann et al 2012, Sanz-López et al 2013, Schmidt et al 2012).  

1.1.3.3. Lung fluid 

Lung develops as a fluid-filled organ that maintains the lung in a constantly distended state, 

stimulating their growth and maturation. Lung fluid is produced by the lung in a mechanism driven by active 
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Cl- secretion from the adjacent epithelial cells. Indeed, it is the sodium-potassium adenosine triphosphatase 

(Na+/K+-ATPase) pumps and Na+/K+/2chloride (Cl-) co-transporters, located on the basolateral surface of 

pulmonary epithelial cells, that allows the cellular intake of Cl-, Na+, and K+ (Bardou et al 2009, Brennan et 

al 2013, Brennan et al 2016, Finney et al 2008, Gillie et al 2001). The intracellular increase of chloride 

concentration ([Cl-]) stimulates their apical secretion via cystic fibrosis transmembrane conductance 

regulator (CFTR), calcium-dependent chloride (CaCC), and voltage-gated chloride channel 2, 3, or 5 (ClCs 

2,3,5) into the lumen that favors the movement of Na+ and water in the same direction, producing the 

intraluminal lung liquid (Figure 3)  (Bardou et al 2009, Blaisdell et al 2004, Brennan et al 2013, Brennan 

et al 2016, Dickson & Harding 1987, Edmonds et al 2002, Finney et al 2008, Lamb et al 2001, Olver et al 

1981, Olver & Strang 1974, Welsh 1983, Welsh et al 1982). After its secretion, the liquid exits the lung into 

the pharynx where it either contributes to the amniotic fluid or is swallowed and supports the normal fetal 

gastrointestinal contents. The volume of lung liquid within the future air space and its flux to and from the 

lower airways is influenced by fetal muscular activity, as well as by fetal posture and other factors that 

influence fetal transpulmonary pressure (reviewed in Wallace et al 2017). 

Multiple studies concerning the intraluminal lung fluid function demonstrate the lug fluid as key 

modulator of fetal lung development, in which the constant increases on lung liquid volume accelerate both 

lung growth and maturation, while continued reductions retard fetal lung development (Harding & Hooper 

1996, Hooper & Harding 1995). These alterations on intraluminal lung fluid volume also adjust FBMs, 

tracheal pressure, and tracheal efflux rate that sustain the tissue growth and cellular function (Figure 3). For 

instance, the continued drainage of fetal lung liquid reduces FBMs, tracheal pressure, and tracheal efflux 

rate that in turn damages the fetal lung growth (Figure 3) (Dickson & Harding 1987). Conversely, the 

increased lung liquid volume increase tracheal pressure and accelerate the tracheal efflux, with, however, 

no changes in liquid secretion rate and in the incidence and amplitude of fetal inspiratory muscle activity or 

in the activity of laryngeal adductor muscle (Dickson & Harding 1987). Finally, the alveolar wall and AT2 

cells are enhanced in ligated and inhibited in drained lungs (Alcorn et al 1977). 

1.1.3.4. Peristaltic airway contractions 

Contractile cells start to perform spontaneous contractions pushing peristaltic waves of inter-bronchial 

fluid into the periphery that cause a rhythmic extension of the distal airways including the terminal buds. It 

was postulated that these movements stimulate branching morphogenesis and prevent an uncontrolled 

expansion of the airways as pulmonary fluid is secreted into the lung lumen (Schittny et al 2000, Sparrow 

et al 1994). Indeed, the movement of lung fluid from proximal to distal parts of the developing lung begins 
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when a layer of α-SMA+ cells is formed around the most proximal airways at pseudoglandular or branching 

phase (Bokka et al 2015, Jesudason 2009, Jesudason et al 2006, Schittny 2017, Schittny et al 2000). The 

earlier expression of contractile protein α-SMA (Leslie et al 1990) and smooth muscle myosin heavy chain 

(MHC) filaments (Pandya et al 2006) in both proximal and distal lung mesenchyme (Mailleux et al 2005, 

Shan et al 2008) firstly recognize the airway smooth muscle (ASM) progenitor cells. The force generated by 

contraction of fetal ASM significantly stimulates fetal lung growth by inducing the expression of Fgf10 (Figure 

3) (Schittny et al 2000). FGF10 is produced by ASM precursor cells in the distal lung and drives their growth 

and entry into the smooth muscle cell lineage. This growth factor produces a dose-dependent proliferation 

of progenitor cells in early lung development, while in knockout mice lacking the Fgf10 gene, the airways fail 

to extend beyond carina (Mailleux et al 2005). In separate studies with phasic contractions at a frequency 

of 0.5–1 min−1, the increase of FGF10 expression is associated with increased fetal lung growth (Jesudason 

et al 2005). 

A recent publication conducted an in vivo study regarding the consequences of Myocardin (Myocd) 

inactivation in early-stage embryos. Myocd encodes a transcription factor necessary for ASM differentiation 

peristalsis. Authors showed that while airway smooth muscle is dispensable for epithelial branching, it is 

integral for building the tracheal architecture and promoting airway growth (Young et al 2020). 

1.1.4. Mechanotransduction 

The first demonstration that mechanical forces could directly activate/influence cellular function was 

the work by Hudspeth and Corey in 1979 (Corey & Hudspeth 1979). Authors argued that the activation of 

ionic currents in bullfrog auditory epithelial cells by mechanical stimulation was too fast (sub-millisecond 

range) to be compatible with a mechanism involving second messengers. As knowledge goes through, the 

specific role of mechanotransduction in embryo development and particularly in fetal lung development 

arise, improving our understanding of lung morphogenesis as dependent on physical forces. In fact, the lung 

is a mechanosensory organ, for which fetal lung expansion is regulator of lung growth and maturation in 

gestational life. As such, tracheal occlusion (TO) that increases the in vivo intraluminal volume and pressure 

is the preferable method to study the morphological and molecular features under the fetal lung expansion. 

Research comparing normal and TO lungs shows multiple up- and down-stream genes and pathways implied 

in cell proliferation and growth; reorganization of cytoskeleton-ECM; or alveolarization (Figure 4) (Boström et 

al 1996, Cock et al 2004, Filby et al 2006, Joyce et al 2003, Lindahl et al 1997, McDougall et al 2013, 

McDougall et al 2011, Riveline et al 2001, Schulze et al 2002, Seaborn et al 2008, Sozo et al 2007, Sozo 

et al 2006, Vuckovic et al 2013). More relevant, the crosstalk analysis of these genes indicates a functional 
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interdependency between pathways, suggesting a coordinate response in fetal lung expansion and 

alveolarization. 

 

Figure  4 – Venn diagrams showing the overlap between genes up-and down-regulated after in vivo tracheal 

occlusion compared with normal lungs. Up-and downregulated genes are identified in black and red, 

respectively. ARP2/3: actin-related protein 2/3 complex; α-SMA: alpha-smooth muscle actin; Ctgf: ; 

connective tissue growth factor; Cyr61: cysteine-rich 61; DBN1: drebrin; ECM: extracellular matrix; Egr1: 

early growth response 1; IGF1: insulin-like growth factors 1; IGF2: insulin-like growth factors 2; ITGA1: integrin 

alpha-1; ITGB1: integrin beta1; MMPs: matrix metalloproteins; PTHrP: parathyroid hormone-related protein; 

ROCK: Rho-associated protein kinase; TIMPS: tissue inhibitors of MMPs; Trop2: trophoblast antigen 2; Tsp1: 

thrombospondin-1; VDUP1: vitamin D3 up-regulated protein 1.  

 

Complementary studies regarding the above-mentioned pathways demonstrate stretch as an 

upstream target of ECM activation via integrins. Indeed, after activation, integrins triggers complex 

intracellular signaling that includes the focal adhesion kinase (FAK) through linker proteins [talin, vinculin, 

filamin, the integrin-linked kinase (ILK)-particularly interesting new cysteine-histidine-rich protein (PINCH)-

parvin complex, and α-actinin], and finished on cytoskeleton-actin pathways activation (Copland & Post 

2007, Wallace et al 2014, Whitsett et al 2019). In addition, the functional impairment of integrins induces 

critical morphological defects in fetal lungs that impair neonatal respiratory function. For instance, the 

integrin α3-null mice have abnormal branching morphogenesis (Kreidberg et al 1996); double α3/α6 

integrin null-mice have a complete lack of the left lung and severe right lung hypoplasia (De Arcangelis et al 
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1999); the integrin α8-null mouse has large dilated airspaces with defects in secondary septation, abnormal 

elastin deposition, and fusion of the medial and caudal lobes of the right lung (Benjamin et al 2009). These 

defects appear due to the inability of the mesenchymal cells to form focal contacts and control cell migration 

(Benjamin et al 2009). In addition, the lung epithelial cell proliferation and differentiation require the 

β1−integrin signaling (Berger et al 2003), in which the blocking of β1, α3, and α6-integrins reduce the SP-

C expression in induced (5% phasic stretch) cultures of fetal lung epithelial cells (Sanchez-Esteban et al 

2006). Concomitant with these findings, the deletion of β1-integrin from E10.5 onwards using Sftpc 

promoter-driven Cre induce defects in both airways branching and alveolarization. For instance, the airway 

branching defects are associated with impaired epithelial cell adhesion and migration, whereas the disrupted 

secondary septation, abnormal alveolar epithelial cell differentiation with excessive collagen I and elastin 

deposition, identified the morphological defects related to alveolarization (Plosa et al 2014).  

Concomitant with these findings, the overexpression of elastin, collagen, PTHrP, IGF1, and -2 in 

exposed-TO lungs evidenced the essential role of mechanical stretch in the improvement of alveolar septation 

(Figure 4) (Cilley et al 2000, Hooper et al 1993, Nobuhara et al 1998, Torday & Rehan 2002). In fact, 

elastin and collagen are decisive intermediators of secondary septation during alveolarization with the 

disorganized and immature profiles identifying a CDH lung. Igf2 knockout mice delay lung development with 

decreased septation through inhibition of cell differentiation (Liu et al 1993, Silva et al 2006), whereas the 

lung-specific deletion of Igf1 receptor (Igf1r) results in severely hypoplastic lungs with thickened 

mesenchyme, increased cell proliferation, and apoptosis, and delayed differentiation of epithelial and 

endothelial cells (Epaud et al 2012). 
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1.1.4.1. PIEZO1/PIEZO2 

A novel ion channel family, the Piezo family was recently discovered by Coste et al (Coste et al 2010). 

PIEZOs proteins are pore-forming multimeric ion channels, with the resulting proteins, PIEZO1 and PIEZO2, 

able to respond to mechanical stimuli. Besides the similar structure, global and tissue-specific knockout 

mice have enriched our knowledge regarding the function of these ionic channels. Indeed, divergent 

functions as dependent on the expressed cell type arise in regulation of vasculogenesis, pulmonary function, 

control of red blood cell volume, detection of basal blood pressure, touch or proprioception (Alcaino et al 

2018, Cahalan et al 2015, Coste et al 2012, Feng et al 2018, Maneshi et al 2018, Nonomura et al 2017, 

Ranade et al 2014b, Wang et al 2017, Woo et al 2014, Zeng et al 2018).  

PIEZO1 is expressed predominantly in non-neuronal cell types, and it is essential in the transduction 

of external and internal applied forces in the plasma membrane. During embryogenesis, shear stress, that 

is, the frictional force generated from fluid flow over cells, initiates endothelial cell migration and alignment, 

which control the vessel formation and maturation. Shear stress also regulates vascular tone by releasing 

endothelial-cell-derived relaxing factors, such as nitric oxide, that modulate arterial diameter. When 

expressed in embryonic and mouse endothelial cells, PIEZO1 controls vasculogenesis under a mechanism 

calcium-dependent (Li et al 2014, Ranade et al 2014a). The diameter and wall thickness of small arteries 

are also regulated by PIEZO1 during hypertension, in which the stretch-induced PIEZO1 stimulates the 

calcium influx and activates the ECM crosslinking enzyme transglutaminase that controls the vascular inward 

remodeling (decreasing vessel diameter) (Retailleau et al 2015).  

In adult mice, PIEZO1 activity is required to maintain basal blood pressure, where it mediates shear-

stress-induced arterial dilation. In fact, PIEZO1-dependent calcium influx responds to shear stress and leads 

to endothelial ATP release. The release of ATP acts to initiate the purinergic P2Y2 receptor coupled to the G 

proteins, Gq and G11, in endothelial cells, that in turn phosphorylates the serine/threonine-protein kinase 

(AKT) and increase the nitric oxide production and release, which causes vasodilation (Wang et al 2016a). 

Furthermore, PIEZO1 expressed in red blood cells is required for their volume regulation with the activation 

of PIEZO1 causing the influx and activation of the calcium-activated potassium channel KCa3.1 that results 

in K+ and water efflux and consequent dehydration (Cahalan et al 2015).  

Regarding PIEZO2, their critical function in sensory processes, like detection of touch and 

proprioception, and in respiratory physiology, have been extensively reported. In fact, PIEZO2 expressed in 

Merkel cells regulates the sensation of touch through low-threshold mechanoreceptor fibers (Ikeda et al 

2014, Maksimovic et al 2014, Ranade et al 2014b, Woo et al 2014), whereas their selective deletion in 

proprioceptive neurons in mice, strikingly abolishes the muscle stretch-induced firing of these neuronal fibers 
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and led to severe deficits in body coordination and limb position (Florez-Paz et al 2016, Woo et al 2015). 

Pulmonary function is also dependent on PIEZO2 expressed in nodose ganglion and dorsal root ganglion 

that in turn regulates lung expansion in newborns and adult mice. Specifically, PIEZO2 expressed in sensor 

neurons in the neural crest of the newborn mice is required for both proper lung expansion and efficient 

respiration with hypoventilation, decreased inspiratory activity, altered expiratory pattern, or unexpanded 

lungs observed under the functional impairment of PIEZO2 (Nonomura et al 2017). This study also described 

PIEZO2 expressed in NEBs at birth with, however, undefined functions. In adult mice, PIEZO2 expressed in 

nodose sensory neurons works as a sensor required for lung volume regulation and the Hering-Breuer reflex 

response (Nonomura et al 2017). 

In light of all the above-described functions, it is easy to understand the gain and loss of function as 

responsible for multiple human diseases. In fact, mutations in the human Piezo1 and Piezo2 genes are 

linked to distinct hereditary human diseases, such as hereditary xerocytosis (also known as dehydrated 

stomatocytosis); or the autosomal recessive syndrome of muscular atrophy with perinatal respiratory 

distress, arthrogryposis, and scoliosis (reviewed in Alper 2017).  
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1.2.  Hypoplastic fetal lung development 

FLH affects 1.4 per 1000 births (Tisekar & Ak 2021) and can be either primary (or idiopathic) or 

secondary to other anomalies (Cotten 2017, Knox & Barson 1986, Moessinger et al 1983). Primary 

pulmonary hypoplasia includes congenital acinar dysplasia and genetic disorders like trisomy 13, trisomy 

18, or trisomy 21 (Tisekar & Ak 2021). Anomalies affecting the intrathoracic cavity or amniotic fluid volume 

cause secondary pulmonary hypoplasia. CDH, congenital pulmonary airway malformation (CPAM), or chest 

wall deformities are examples of intrathoracic space-occupying lesions. These abnormalities cause a 

reduction in the volume of the thoracic cavity, which physically restricts the growth of the peripheral lung. 

Conversely, oligohydramnios secondary to preterm premature rupture of membranes (PPROM), lack of 

functional renal parenchyma, or urinary outflow tract abnormalities are examples of amniotic fluid decrease. 

As such, when the volume of amniotic fluid volume is reduced, the uterus compresses the fetus increasing 

flexion of the fetal body. The increase in fetal trunk flexion increases abdominal and intrathoracic pressures, 

which increases the transpulmonary pressure gradient, causing an increased efflux of lung liquid along the 

trachea and a reduction in lung expansion (Mehler et al 2011, Mileto et al 2018, Spiro et al 2015). 

PPROM and CDH constitute the most common extra- and intrathoracic causes of FLH, respectively, 

with the timing of injury in relation to embryologic lung development determining the chance for neonatal 

survival (Thibeault & Haney 1998, Thurlbeck 1992, Tisekar & Ak 2021). In general, underdeveloped lungs 

with impaired branching morphogenesis and reduced number of alveoli identified a hypoplastic lung during 

gestational life. At birth, diagnosis comprises a spectrum of respiratory complications ranging from neonatal 

death to less severe manifestations, including chronic respiratory failure, pulmonary hemorrhage, 

bronchopulmonary dysplasia, or even transient respiratory distress that require high ventilatory support in 

the absence of obstruction or with abnormal radiologic findings (elevated diaphragm, bell-shaped chest) 

(Knox & Barson 1986, Laudy & Wladimiroff 2000, Lauria et al 1995, Moessinger et al 1989, Triebwasser & 

Treadwell 2017). Finally, decreases in lung weight:body weight ratio of less than 0.015 (De Paepe et al 

2005) with reduced radial alveolar count or total DNA count, defines the postmortem diagnosis (Askenazi & 

Perlman 1979, Wigglesworth & Desai 1981).  
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1.2.1. Preterm premature rupture of membranes (PPROM) 

1.2.1.1. Clinical aspects 

PPROM is the rupture of gestational membranes before the onset of labor and before 37 weeks of 

gestation. PPROM prior to the limit of fetal viability i.e. 24 weeks of gestation is known as “previable PPROM” 

and complicates less than 1% of all pregnancies (Kiver et al 2018), whereas mid-trimester PPROM, defined 

as rupture of fetal membranes before 28 weeks of gestation, complicates approximately 0.4%–0.7% of all 

pregnancies (Tchirikov et al 2017). Previable and mid-trimester PPROM are associated with high neonatal 

mortality and long- and short-term severe morbidities (Kiver et al 2018, Tchirikov et al 2017). Infants with 

pulmonary hypoplasia exhibit abnormal lung function at birth with reduced tidal volume, increased 

respiratory rate, and reduced static lung compliance and functional residual capacity. The duration of latency 

between the timing of membrane rupture and delivery appears to be inversely related to the gestational age 

at PPROM. Neonates delivered following previable PPROM are at a significantly higher risk for a multitude 

of adverse outcomes during both the neonatal period and early childhood. These associations persist when 

controlled for confounders, including gestational age at delivery or infectious morbidity (Manuck & Varner 

2014).  

1.2.1.2. Experimental evidence 

Studies regarding oligohydramnios secondary to lack of amniotic fluid volume in humans 

demonstrated a significant decrease in collagen expression (Chen et al 2008) and absence of elastic tissue 

(Haidar et al 1991, Nakamura et al 1990). In fetal rat lungs, the induction of oligohydramnios promotes a 

similar degradation of collagen deposition in interstitial spaces that was dependent on higher MMP levels. 

Furthermore, when oligohydramnios is caused at pseudoglandular stage, the developed lung has reduced 

elastin deposition; impaired alveolarization, and decreased expression of PDGF and its receptor (Chen et al 

2007b). 
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1.2.2. Congenital diaphragmatic hernia (CDH) 

1.2.2.1. Clinical aspects 

CDH occurs when the diaphragm fails to close during embryonic development that permits the 

abdominal contents to enter into the thorax cavity. The reduced space available causes chronic lung collapse 

on the affected side that impairs the normal fetal lung development. In addition, as the diaphragmatic defect 

occurs early in the development, it usually results in severe lung hypoplasia, with major impairments on lung 

structure and function. CDH occurs in approximately 1-5 of every 10.000 live births and can be diagnosed 

at routine obstetric screening from 15 weeks of gestation (Chandrasekharan et al 2017, Shanmugam et al 

2017, Yang et al 2006). 

Ultrasonography has been the primary mode of prenatal imaging for CDH with an overall prenatal 

detection rate of about 50–60% at a mean gestational age of 24 weeks (Mesas Burgos et al 2016). 

Ultrasound is also used to assess the degree of severity of the CDH by estimating the lung size. However, 

ultrasound is user-dependent and has several limitations, thus many centers use magnetic resonance 

imaging (MRI) as an adjunct. MRI can better identify the type of hernia, provide an anatomical assessment 

of herniated organs and their effects on surrounding structures and determine specific lung volumes and 

liver herniation measurements (Mehollin-Ray et al 2012). After confirmation of the prenatal diagnosis of CDH 

is necessary to stratify the prognosis (reviewed in Doné et al 2008). The two prognostic factors that have 

obtained more consistent results in prenatal and postnatal outcomes are lung-to-head ratio (LHR; expressed 

as a function of what is expected in a gestational aged control, observed /expected LHR) (Alfaraj et al 2011, 

Jani et al 2006, Jani et al 2009, King et al 2016) and liver position (Burgos et al 2019, Coughlin et al 2016, 

Hedrick et al 2007, Ruano et al 2014, Ruano et al 2012a).  

Based upon these parameters, CDH fetuses can be now prenatally stratified into low and high-risk 

groups. The low-risk fetuses should be managed expectantly during pregnancy (Burgos et al 2019, Coughlin 

et al 2016, Hedrick et al 2007, Ruano et al 2014, Ruano et al 2012a). In opposition, for the high-risk fetuses 

(i.e. fetuses which prognosis is predictably poor with postnatal treatment available), the consensus is that 

something needs to be done before the birth in order to total or partially revert the fetal lung hypoplasia. In 

fact, over the last decades have emerged in vivo and ex vivo studies that highlight the morphological, cellular, 

and molecular mechanisms under fetal lung development with, unfortunately, poor clinical relevance (Chiu 

2014, Costlow & Manson 1981, Nakamura et al 2020). As such, the urgency of this topic permitted the 

development and validation of distinct animal models now available for the study not only the lung 

morphogenesis and mechanisms but also to test promising antenatal therapies. 
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1.2.2.2. Experimental evidence 

1.2.2.2.1. Animal models 

Performed in sheep and rabbits, surgical model is used to test promising antenatal therapies, whereas 

their applicability to study the earliest origins of CDH and FLH is limited since the diaphragmatic defect is 

created late in gestation. Genetic models are created under the experimental evidence of dysregulated genes 

in CDH are responsible for diaphragm formation (Nakamura et al 2020). This concept permits the 

description of Roundabout 1/2 (Robo1/2), retinoic acid receptor alpha and beta 2 (Rarα and Rarβ2), or 

Sox7 transgenic mice all able to create the diaphragmatic defect observed in CDH fetuses (reviewed in 

Nakamura et al 2020). However, a minority of cases (18%) are associated with known genetic defects 

(reviewed in Wynn et al 2014). As so, these models do not reflect the true nature of human CDH (reviewed 

in Nakamura et al 2020, Wynn et al 2014). Teratogenic model uses the administration of a herbicide called 

nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether) to a pregnant rat and consequent CDH and FLH is 

developed in a relatively high proportion of the progeny (Costlow & Manson 1981). Nitrofen induces a 

marked decrease in RA levels, most probably due to inhibition of retinal dehydrogenases (RALDH) function 

rather than expression since RALDH mRNA levels are normal (Mendelsohn et al 1994). The advantage of 

this model is that the defect is induced at the stage when the foregut has just separated into the esophagus 

and trachea, giving the opportunity to carefully study the developmental anatomy of the lungs and diaphragm 

in CDH (Kluth et al 1990, Montalva & Zani 2019, Montedonico et al 2008a, Tenbrinck et al 1990). In fact, 

the nitrofen administration during midgestation to pregnant dams causes developmental anomalies that 

reasonably replicate the major abnormalities and the pathophysiology described in human CDH 

(Montedonico et al 2008a, van Loenhout et al 2009).  

Human and nitrofen-induced CDH lungs have reduced surface area for gas exchange due to 

hypoplasia with the lung parenchyma suffering from reduced distal branching and alveoli. Finally, the alveoli 

that do exist have thicker walls that impair the close association of the airspaces with the capillaries (Ameis 

et al 2017, Donahoe et al 2016). In this model, the specific location and extent of the diaphragmatic defects 

are very comparable, but also the similarities in the CDH-associated anomalies, including lung hypoplasia, 

pulmonary hypertension, cardiovascular and skeletal defects, are impressive too (Ameis et al 2017, Donahoe 

et al 2016, Tenbrinck et al 1990, van Loenhout et al 2009). Therefore, the nitrofen-induced CDH model is 

one of the best to investigate the etiology, pathogenesis, and therapeutic options in CDH.  
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1.2.2.2.1.1. ROBO/SLIT signaling 

Roundabout (Robo) genes encode cell-surface receptors that respond to their secreted ligands, SLIT 

proteins, in a wide variety of cellular processes. Four Robo genes and three Slit have been identified in 

mammals (Brose et al 1999, Huminiecki et al 2002, Kidd et al 1998). First implicated in the regulation of 

axon pathfinding (Kidd et al 1999, Kidd et al 1998, Rothberg et al 1988), ROBO/SLIT signaling has since 

been demonstrated to play a role in processes such as neural crest cell migration and sensory ganglia 

morphogenesis (De Bellard et al 2003, Giovannone et al 2012, Shiau & Bronner-Fraser 2009), leukocyte 

chemotaxis (Ye et al 2010), epithelial adhesion (Macias et al 2011), or diaphragm and kidney formation 

(Grieshammer et al 2004, Liu et al 2003, Yuan et al 2003). Functionally, ROBO/SLIT signaling has been 

shown to transmit migratory cues by modulating cell adhesion and actin polymerization (Lundström et al 

2004, Rhee et al 2007, Rhee et al 2002, Shiau & Bronner-Fraser 2009). More recently, ROBO/SLIT signaling 

is reported in regulation of progenitor cell profile during the development of the central nervous system (CNS) 

(Borrell et al 2012), mammary gland (Ballard et al 2015, Harburg et al 2014, Macias et al 2011), or 

pancreas (Blockus & Chédotal 2016, Escot et al 2018).  

In fetal lungs, Robo1/Robo2 knockout mice delayed the separation of foregut from the dorsal body 

wall, describing this as primary defect that precedes the organ misplacement and diaphragm malformation 

(Domyan et al 2013). In addition, Xian et al described that homozygous Robo1/Dutt1 knockout mice almost 

die at birth due to respiratory failure with delayed lung maturation. Lungs from these mice have reduced air 

spaces and increased mesenchyme, features that are present some days before birth. Survivors acquire 

extensive bronchial hyperplasia (Xian et al 2001). 
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1.2.2.2.2. A CDH lung by developmental stage: what is known? 

Studies regarding the morphological features in CDH lungs demonstrate important defects from early-

to-later developmental stages. Indeed, the initial reduction in the number of terminal end buds expands to 

reduced air space with septa notably thicker as the hypoplastic lung development progress. Molecularly, the 

comparison between normal and induced-CDH lungs describes multiple dysregulated genes and pathways 

during branching or alveolar morphogenesis. For instance, the earlier pseudoglandular stage (E15.5) is 

marked by the decreased expression on FGF9, BMP4, T-box2,4,5, WNT7b, and WNT2a that evolve to 

decreased FGF (FGF2, FGF7, FGF10, FGF18) and BMP (BMP4, BMPR2, T-box2,4,5), increased RA [RARβ, 

RARα, retinoid X receptor alpha (RxRα), RALDH3] and unchanged WNT (WNT2, WNT7b) signaling  at the 

time of arrested branching morphogenesis (Figure 5) (Doi & Puri 2009, Gosemann et al 2013, Makanga et 

al 2013, Takahashi et al 2013, Takahashi et al 2017, Takayasu et al 2007a).  

Induced-CDH lungs also evidence the bronchiolar and alveolar differentiation as damaged, in which 

the initial decrease on neuroendocrine markers (Mash1, Dll1, and ghrelin) expression with the 

overexpression of Hes1 and Scgb1a1 (non-neuroendocrine markers) indicate a preferable bronchiolar 

differentiation to neuroendocrine instead of non-neuroendocrine cells (Pereira-Terra et al 2015, Santos et al 

2006, Santos et al 2007). Regarding the alveolar differentiation, an opposite effect on the expression of AT1 

and AT2 differentiated cell markers is also described in CDH lungs at term. In fact, markers of AT1 mature 

cells (AQP5, ICAM1, TRα1, and TRβ1) are downregulated in nitrofen-exposed CDH lungs, while the AT2 cell 

markers (SP-C, TNFα, and TTF1) are overexpressed (Losada et al 2000, Shima et al 1999, Takayasu et al 

2007b, Takayasu et al 2007c, Teramoto et al 2001, Van Tuyl et al 2003). Interestingly, the decrease in 

surfactant production and secretion, evidenced by the low levels of phosphatidylcholine, and the factors 

involved in stimulating surfactant lipids maturation report unfunctional AT2 cells. In addition, the expression 

of PTHrP, adipose differentiation-related protein (ADRP), Thy1, peroxisome proliferator-activated receptor-

gamma (PPARg), and RA are demonstrated to be downregulated, whereas the inhibitor of surfactant 

phospholipid synthesis, TNFα, is overexpressed (Figure 5) (Carroll et al 2002, Doi et al 2010, Friedmacher 

et al 2014a, Friedmacher et al 2014c, Gosemann et al 2012, Nakazawa et al 2007, Shima et al 1999). 

Finally, the overexpression of alveolar macrophages (AMFs)-specific markers, PDGFA/PDGFRα, collagen, α-

SMA, and elastin in CDH lungs reinforce the idea of a damaged alveolarization since the defective expression 

of SHH and FGF10 signaling must explain the impairment on AMF migration and the resultant immature 

and disorganized elastin distribution and reduced secondary septation (Figure 5) (Boucherat et al 2007, 

Dingemann et al 2010, Fox et al 2018, Mychaliska et al 2004, Taira et al 1999). The current knowledge 

showed the differentiated alveolar epithelial cells, AT1 and AT2, as critical for gas exchange at birth that 
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must explain the neonatal respiratory failure in CDH (Alfanso et al 1996, Bohnhorst & Peter 2020, Lin et al 

2007, North et al 1995, Utsuki et al 2001).  

In human CDH lungs, similar morphological and molecular features are described, in which the 

deficient secondary septation, with decreased elastin deposition at the tips of growing septa, is associated 

with high levels of PDGF in amniocentesis and cord blood opening important questions regarding the 

therapeutic value of these molecules and pathways in CDH lungs (Boucherat et al 2007, Candilera et al 

2016, Fleck et al 2013). 
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Figure  5 – Timeline of the fetal lung development in rats and humans with the indication of the more relevant morphological and 

molecular alterations observed in the experimental congenital diaphragmatic hernia (CDH) lungs. (continues in the next page) 
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(continuation of the previous page) ADRP: adipose differentiation-related protein; BMP4: bone 

morphogenetic protein 4; CDH: congenital diaphragmatic hernia; CCSP: clara cell secretory protein; Dll1: 

Delta like canonical Notch ligand 1; E: embryonic day; FGF9: fibroblast growth factor 9; FGF10: fibroblast 

growth factor 10; Foxf1: Forkhead box factor 1; NE: neuroendocrine; P: postnatal day; pcw: post-conception 

weeks; PDGFRα: parathyroid hormone-related protein alpha; PNECs: pulmonary neuroendocrine cells; 

PTHRP: parathyroid hormone-related protein; SHH: sonic hedgehog; SP-C: surfactant protein-C; Tbx4: T-box 

gene 4; Tbx5: T-box gene 5; TNFα: tumor necrosis factor alpha; y: year; Wnt2: wingless 2; Wnt7b: wingless 

7b. 

 

1.2.2.3. Antenatal therapies 

Advances in prenatal diagnosis of CDH and the increased ability to stratify the risk for neonatal 

respiratory failure open a key “window of opportunity” for fetal intervention, whose antenatal therapies are 

the appealing approaches to improve fetal lung growth and neonatal survival in fetuses at high risk for the 

condition (Kovler & Jelin 2019). Currently, retinoids, corticosteroids, and sildenafil are the most promising 

non-surgical prenatal interventions to correct lung hypoplasia and pulmonary hypertension in CDH, whereas 

fetoscopic endoluminal tracheal occlusion (FETO) is the surgical therapy indicated for the more severe cases 

of FLH in CDH fetuses (reviewed in Kashyap et al 2018). 

1.2.2.3.1. Retinoids 

Decreased levels of vitamin A and RA have been shown to contribute to the pathogenesis of pulmonary 

hypertension and hypoplasia observed in human CDH and animal models (reviewed in Kashyap et al 2018). 

The retinoid signaling appears important in normal diaphragmatic and pulmonary development, and it is 

hypothesized that disruptions in this pathway may contribute to the pathogenesis of CDH (Chen et al 2007a, 

Chen et al 2013, Chen et al 2007c, Cho et al 2005, reviewed in Fernandes-Silva et al 2020, Fernandes-

Silva et al 2017, Liebeskind et al 2000, McGowan et al 1995, Nakazawa et al 2007, Noble et al 2007, 

Pereira-Terra et al 2015, Rankin et al 2016). In fact, retinoid signaling is an important component of lung 

budding and branching early in development, and later influences septation and alveolarization. The retinoid 

signaling pathway also appears to play an important role in complete closure of the diaphragm. 

Diaphragmatic defects are present in the offspring of vitamin A–deficient rats and retinoic acid receptor 

double knockout mice, and infants with CDH have low levels of plasma retinol (reviewed in Kashyap et al 

2018). As such, treatment with RA during gestation in animal models reduces the incidence of CDH and 
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improve lung hypoplasia, lung development, and vascular abnormalities (Baptista et al 2005, Gallot et al 

2008, Lewis et al 2011, Montedonico et al 2008b, Oshiro et al 2005, Schmidt et al 2012, Thébaud et al 

1999). Unfortunately, the teratogenic effect of RA establishes a clinical challenge in the application of this 

treatment in human CDH fetuses (Eastwood et al 2015). 

1.2.2.3.2. Corticosteroids 

Corticosteroid administration before anticipated preterm birth is one of the most important antenatal 

therapies available to improve newborn outcomes. Betamethasone and dexamethasone are the most widely 

studied corticosteroids, and they generally have been preferred for antenatal treatment to accelerate fetal 

lung maturation (Briceño-Pérez et al 2019, Wynne et al 2020). As such, a small human randomized 

controlled trial compares placebo to the administration of corticosteroids (betamethasone) to the pregnant 

woman and their unborn baby with CDH at 34 weeks of gestation. This study showed no difference in the 

improvement of perinatal mortality, in the number of days with mechanical ventilation, or in hospital 

admission between the two groups (Grivell et al 2015, Lally et al 2006). As such, the use of prenatal steroids 

in CDH fetuses is considered dispensable since do not improve neonatal outcomes (Kashyap et al 2018, 

Wynne et al 2020). 

1.2.2.3.3. Sildenafil 

Concomitant with FLH, pulmonary hypertension persists postnatally in CDH babies and adversely 

affects survival if not adequately treated. In many centers, inhaled nitric oxide (iNO) is used for pulmonary 

vasodilation. Molecular studies show the beneficial effects of iNO mediated by cyclic guanosine 

monophosphate (cGMP) pathway. Phosphodiesterase type 5 (PDE5) inactivates the cyclic GMP pathway, 

leading to a decrease in nitric oxide effects. Studies in animals showed that the prenatal administration of 

sildenafil (PDE5 inhibitor) significantly improves lung structure and pulmonary vessel density, reduces right 

ventricular hypertrophy, decreases pulmonary artery resistance, and improves oxygenation (Burgos et al 

2016, Luong et al 2011, Mous et al 2016). Indeed, sildenafil is already used clinically in the postnatal 

management of persistent pulmonary hypertension in CDH neonates (Kashyap et al 2018). More recently, 

it was described that sildenafil can cross the placenta at a relatively high transfer rate, in which the fetal 

drug administration in combination with fetal tracheal occlusion restore the lung parenchyma, size, and 

vasculature to normal outcomes, making it a promising prenatal therapy for CDH under clinical investigation 

(Kashyap et al 2019, Russo et al 2019). 
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1.2.2.3.4. Fetoscopic endoluminal tracheal occlusion (FETO) 

1.2.2.3.4.1. Clinical aspects 

The first report of fetal tracheal occlusion for the treatment of CDH in humans was by Harrison et al 

(Harrison et al 1996), in which the placement of a foam plug inside the trachea was performed by open 

hysterotomy. The foam plug was then substituted for external tracheal clips placed after open tracheal 

exposure. In both cases, the clips or plugs were removed after birth via an ex-utero intrapartum therapy 

(EXIT) procedure. In the first report of eight human fetuses treated with fetal tracheal occlusion, there were 

no long-term survivors (Harrison et al 1996). However, several of the patients showed dramatic lung growth, 

and the deaths were all thought to be due to non-pulmonary causes. These sensational early cases led to 

the rapid refinement of the techniques for attaining tracheal occlusion in an effort to minimize the 

consequences of the hysterotomy and EXIT procedures (Flake et al 2000). As such, a detachable balloon 

was developed for deployment inside the trachea, avoiding the need for neck dissection and open 

hysterotomy by the introduction of fetal endoscopic surgery, called ‘Fetendo’ (Deprest et al 2004, Harrison 

et al 2001, Harrison et al 1998). 

The rapid improvements achieved in the late 1990s and early 2000s led to a series of successful 

initial trials using the current technique of Fetal Endoscopic Tracheal Occlusion (FETO) (Harrison et al 2003, 

Harrison et al 1998). FETO uses continuous US guidance to insert a deflated balloon into the fetal mouth 

under local anesthesia. In brief, a 3mm cannula is placed percutaneously (i.e., through the maternal skin, 

abdominal wall, and uterus) and directed towards the fetal mouth. For that, the fetoscope is passed through 

the cannula into the amniotic fluid, and with a combination of ultrasound guidance and direct endoscopic 

visualization, the endoscope is guided into the fetal larynx and through the vocal cords. A detachable latex 

balloon is placed in the fetal trachea halfway between the carina and the vocal cords. The balloon is next 

inflated with 0.6mL of saline solution and the endoscope and cannula are removed (Perrone & Deprest 

2021, Van der Veeken et al 2018). The balloon is typically placed between weeks 27-29 in severe and later 

(30-32 weeks) for moderate cases of FLH, secondary to CDH. The maternal is continuously monitored for 

potential deflation of the balloon and other complications, i.e., polyhydramnios, chorioamniotic membrane 

separation, PPROM, chorioamnionitis, or other signs of preterm labor (Van der Veeken et al 2018). Removal 

of the balloon is recommended at between 34 0/7 and 34 6/7 and can be performed via fetoscopic retrieval, 

percutaneous puncture using ultrasound-guidance, tracheoscopic removal on placental circulation during 

standard cesarean section or, at last option, in the immediate neonatal period (Jiménez et al 2017). The 

method of balloon removal depends upon the expertise at each center, the accessibility of the balloon for 
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an ultrasound-guided puncture, and the stability of the mother and fetus at the time of removal. Once the 

balloon is removed, the pregnancy can be managed expectantly, and women can deliver vaginally. 

Concerning the therapeutic value of FETO, clinical research evaluating the improvement in fetal lung 

development describes a significant increase in lung size within 48 hours of balloon placement (Ruano et al 

2013). This increase is dependent on initial o/e LHR and the timing of the occlusion and balloon removal 

(Nawapun et al 2015, Peralta et al 2008). Regarding the most commonly reported neonatal outcomes: 

survival and gestational age at delivery, comparative studies consistently report earlier gestational age at 

delivery for FETO and mixed results around survival, fluctuating from no differences between control and 

intervention to significant improvement after FETO (Deprest et al 2004, Deprest et al 2006, Harrison et al 

2003, Ruano et al 2011, Ruano et al 2012b). Few studies also report rates of extracorporeal membrane 

oxygenation (ECMO) utilization and severe pulmonary hypertension and that neonate who received FETO 

have lower rates of both (Dhillon et al 2018, Ruano et al 2011, Ruano et al 2012b, Style et al 2019). 

Collectively, these findings motivate a randomized standard multicenter international trial to evaluate the 

therapeutic value of FETO in pulmonary hypoplasia secondary to CDH (NCT01240057 and NCT00763737). 

As such, the Tracheal Occlusion to Accelerate Lung growth (TOTAL) trial was initiated in 2011 in Europe 

and has begun recruitment from several centers in the United States (www.totaltrial.eu). The trial has two 

strata for randomization comparing the outcome to expectant management, a moderate and severe isolated 

left-sided CDH. At this time, the TOTAL trial is completed, and the results are expected in the near future  

(Perrone & Deprest 2021).  

1.2.2.3.4.2. Experimental evidence 

Experiments in animal models reveal distinct capacities for fetal lung growth and maturation 

depending on the time and duration of the tracheal occlusion (TO) (De Paepe et al 1999, De Paepe et al 

1998, Keramidaris et al 1996, Maltais et al 2003, Probyn et al 2000). In fact, the in vivo experiments in the 

sheep model demonstrates a higher effect of TO when applied at early than later developmental stages. This 

discrepancy in fetal lung growth is probably explained by the compliance of the rib cage that imposes less 

restriction on lung expansion at early than later stages (De Paepe et al 1998, Probyn et al 2000). As such, 

TO applied at late pseudoglandular/ early canalicular stage induces slow onset of lung growth that quick 

and progressively increase as fetal lung development advance. Conversely, when applied at early alveolar 

stage, the fetal lung growth increases linearly between 2 and 7 days after TO, reaching a maximum on day 

7 (Hooper et al 1993, Keramidaris et al 1996, Nardo et al 1998, Wallace et al 2014). However, the total 

number of alveoli and the lung weight observed on day 4 of TO remain unchanged until day10, indicating a 
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limited capacity for pulmonary expansion and alveoli formation in in vivo lungs (Lines et al 1999, Nardo et 

al 1998, Nardo et al 2000).  

In this context, it is easy to understand the following studies that further evaluate the morphological, 

cellular, and molecular effects of TO in fetuses with CDH. In nitrofen-induced CDH rats, TO increases lung 

weight, DNA and protein content, lung volume, and surface area. The increased distension on CDH lungs 

(i.e., CDH+TO) reverse pulmonary hypoplasia, promote maturation of AT1 cells and reduce the expression 

of SP-C and TTF-1 observed in induced-CDH lung (Chapin et al 2005, Yoshizawa et al 2003). TO-applied 

CDH fetuses also reverse the increased pulmonary arterial medial and adventitial thickness associated with 

CDH. In fetal rabbits, the applied short and long-duration TO in fetuses with a diaphragmatic hernia (DH) 

showed the longer able to induce fetal lung growth and correct the pulmonary vascular anomalies (Bratu et 

al 2001, Kanai et al 2001, Luks et al 2000), whereas the surfactant production and the number of AT2 cells 

decrease (Benachi et al 1998, Benachi et al 1999, Bratu et al 2001). Conversely, the short-duration TO 

does not affect lung growth, whereas reverse the pulmonary vascular anomalies and AT2 cell numbers (Luks 

et al 2000, Papadakis et al 1998, Wild et al 2000, Wu et al 2002).  

More recently, transcriptomic studies regarding the molecular profile in DH versus DH+TO lungs 

establish TO able to stimulate alveolar formation through an increase in the number of secondary crests in 

both intact and hypoplastic lungs. This effect is related to the overexpression of genes evolved in ECM 

function and alveolarization. Those genes include molecules expressed in the growing secondary septa, like 

elastin, tropoelastin, fibulin-5, or involved in interactions between cells (α6-integrin, tenascin-C) and 

extracellular environment. Unexpectedly, TO also induce changes in the expression of other genes like β1-

integrin, lysyl oxidase, and drebrin that are not affected by lung hypoplasia, raising the question of TO-

inducing disturbances in alveolar remodeling (Vuckovic et al 2013).  

At the cellular level, Engels et al (Engels et al 2016) display confused expression profiles for several 

of the epithelial cell markers. For instance, the molecular markers for clara cells demonstrate phosphatidic 

acid phosphatase type 2B (PPAP2B) and kinase insert domain receptor (KDR) upregulated in DH and 

downregulated after TO, whereas Scgb1a1 was unchanged in DH, and overexpressed in DH-TO. Regarding 

AT2 cell markers, CD36 was downregulated in DH and upregulated by TO, while delta like non-canonical 

Notch ligand 1 (DLK1) was overexpressed in DH and downregulated by TO. An opposite profile was also 

visualized for ciliated cell markers with FOXJ1, coiled-coil domain containing 39 (CCDC39), leucine rich 

repeats and IQ motif containing 1 (LRRIQ1), EF-hand domain containing protein 1 (EFHC1), and 

tetratricopeptide repeat domain 18 (TTC18) upregulated in DH and downregulated in DH+TO, whereas 

CCDC19, leucine rich repeat containing 23 (LRRC23), WD repeat-containing proteins (WDR16), fibronectin 
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type III and ankyrin repeat domains 1 (FANK1), enkurin (ENKUR) and CCDC113 were downregulated in 

DH+TO and unchanged in DH. 
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Aims 

Despite sophisticated prenatal and postnatal clinical interventions applied in severe cases of 

pulmonary hypoplasia, the mortality rate remains unacceptably high. Pulmonary hypoplasia is a 

developmental problem, and the emerging consensus is that the prenatal period is the preferrable 

therapeutic window of opportunity to improve morphological defects and future neonatal respiratory function. 

As such, research regarding diagnosis and the pathophysiology of FLH has arisen over the last decades 

with, however, limited clinical relevance. In fact, albeit imagiological methods that allow the in vivo 

examination and measurement of fetal lungs have been described as valuable in FLH prediction in fetuses 

at high risk for the condition, the controversial predictive values by method difficult their applicability (Fong 

et al 1988, Gerards et al 2007, Gerards et al 2008, Kilbride et al 1996, Peralta et al 2006, van Teeffelen et 

al 2010, van Teeffelen et al 2012, Vergani et al 2010).  

Regarding the FLH pathophysiology, punctual molecular and cellular interactions have highlighted 

our understanding of the morphological defects in branching and alveolar formation. Indeed, the 

transcriptome and genome-wide studies in human and induced-CDH lungs report high priority genes and 

pathways, such as ROBO/SLIT signaling, to treat FLH or CDH. ROBO/SLIT pathway is regulator of epithelial 

progenitor cell profile in the development of pancreas, mammary gland, or CNS. In fetal lung development, 

ROBO/SLIT signaling is essential for diaphragm formation, whereas SOX2 and SOX9+ cells are the epithelial 

progenitor cells that give rise to the proximodistal patterning and later differentiate into bronchiolar and 

alveolar lineages. Surprisingly, the molecular function of ROBO1 and ROBO2 in branching morphogenesis 

and in the epithelial progenitor cell profile was never topic of research in normal or hypoplastic fetal lungs. 

In FLH, recovering the fetal lung growth or maturation to improve neonatal respiratory function are 

inescapable areas of research. FETO is the therapy recommended for the more severe cases of FLH in CDH 

with verified advancements in fetal lung growth, maturation, and neonatal respiratory function (reviewed in 

Kovler & Jelin 2019, Tsao & Johnson 2020). Unfortunately, the increased risk for iatrogenic PPROM after 

FETO simultaneously limits their clinical relevance and enhances the research interest on the underlying 

mechanisms (Engels et al 2016, Nelson et al 2005, Vuckovic et al 2013). As such, since to predict or treat, 

we need to understand first, this Ph.D. thesis aims to i) evaluate the imagiological methods to predict lethal 

FLH; ii) characterize the epithelial cell profile in induced-CDH lungs; iii) understand the molecular function 

of ROBO1/2 in branching morphogenesis and SOX2/SOX9 profile; and iv) reveals the molecular/cellular 

mechanisms triggered by intraluminal fluid in the stimulation of branching morphogenesis. 
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To achieve our general research aims, the work was divided into the following specific aims: 

 Investigate the effectiveness of the available imagiological methods in the prediction of 

lethal pulmonary hypoplasia;  

 Characterize an induced-CDH lung in terms of proximodistal patterning and epithelial 

cell profile; 

 Study the presence and functional relevance of ROBO1/ROBO2 in epithelial progenitor 

cell profile and branching morphogenesis; 

 Describe an ex vivo model that allows the study of lung fluid composition in fetal lung 

growth; 

 Reveal the mechanical relevance of PIEZO1/PIEZO2 in branching morphogenesis. 
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Thesis layout 

The present Ph.D. thesis is organized into eight chapters: 

 

In Chapter 1, just before Aims and Thesis layout, a General introduction to the thesis theme has been 

presented, including a review of the literature focused on the signal pathways that control fetal lung 

development. Aiming to the direct work developed in the present thesis, special attention is also dedicated 

to the mechanical stimuli in the regulation of (ab)normal fetal lung morphogenesis.  

Chapter 2 includes a published systematic review focused on noninvasive ultrasound methods and 

their value to predict fetal lung hypoplasia in general diseases, premature rupture of membranes, and 

congenital diaphragmatic hernia. 

Chapter 3 comprises a published research manuscript entitled “ROBO2 signaling in lung development 

regulates SOX2/SOX9 balance, branching morphogenesis and is dysregulated in nitrofen-induced congenital 

diaphragmatic hernia”. This chapter reports both the relative expression levels and spatiotemporal 

distribution of epithelial progenitor cell markers (SOX2 and SOX9), and membrane receptors (ROBO1 and 

ROBO2) during in vivo normal and hypoplastic fetal lung development. The biological role of ROBO1 and 

ROBO2 in the SOX2 and SOX9 molecular profile is also explored in ex vivo branching morphogenesis. 

Chapter 4 includes a study entitled “Distinct epithelial cell signatures during normal and hypoplastic 

fetal lung development”. This exploratory research describes the expression profile of CCSP, FOXJ1, CGRP, 

and SP-C from pseudoglandular-to-saccular stages in nitrofen induced-CDH rat model. 

Chapter 5 presents the article “Intraluminal chloride regulates lung branching morphogenesis: 

involvement of PIEZO1/PIEZO2” that is submitted in a peer-reviewed journal. In this work, lung explant 

cultures are reported as ex vivo models useful to study the lung fluid composition effects in branching 

morphogenesis. The increase of intraluminal chloride concentration is also described as a stimulator of fetal 

branching morphogenesis through PIEZO1/PIEZO2.  

Chapter 6 contains a general discussion of the most relevant results of this thesis. 

Chapter 7 includes a compendium of the major conclusions drawn from this work as well as the 

future perspectives.  

In the end of the thesis, in Chapter 8, all the references from the entire write-up are presented in 

alphabetical order.  
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Chapter 2 – Ultrasound for lethal prenatal pulmonary hypoplasia prediction 

The results presented in this chapter are: 
 

i) Published in an international peer-reviewed journal: 
 
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. Imagiological methods for prediction of fetal pulmonary 

hypoplasia: a systematic review. J Matern Fetal Neonatal Med. 2021 May;34(9):1459-1468. doi: 

10.1080/14767058.2019.1636029. Epub 2019 Jul 3. PMID: 31269833. 

(the integral reproduction was authorized by Taylor & Francis Group, Annex A)  
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2.1. Chapter overview 

2.1.1. Rationale 

Secondary to multiple disorders with intra or extrathoracic causes, FLH is one of the most common 

cause of neonatal respiratory failure. Interestingly, the prediction of FLH in fetuses at high risk for the 

condition determines the familiar counseling, the specialized neonatal assistance, and improve neonatal 

survival. As such, the study of the more predictive method that correlates FLH with neonatal respiratory 

function is an inevitable topic of research.  

US and MRI are the only available methods that noninvasively allowed the examination and 

measurement of the in vivo fetal lungs being reasonable in their use to detect FLH. However, the controversial 

predictive values by method have limited their clinical relevance. Interestingly, PROM and CDH are the most 

common extra- and intrathoracic causes of FLH, respectively, for which FLH is estimated by o/e-LHR, when 

secondary to CDH, while remains unpredictable if secondary to PPROM (Araujo Júnior et al 2010, Barros et 

al 2016, Milks et al 2017, Oluyomi-Obi et al 2017, Snoek et al 2017, Vergani et al 2010, Weaver et al 

2014). As such, in this chapter we pretend to i) detect general gaps regarding the clinical experimental 

design; and ii) describe the more predictive method for lethal FLH in general diseases, PPROM, and CDH. 

2.1.2. Major Findings 

The major findings from this chapter are described below: 

 3 dimensional-fetal lung volume to body weight ratio (3D-FLB) and 2 dimensional-lung area 

(2D-LA) predict lethal FLH in general diseases; 

 2D- chest area (CA)-head area (HA)x100/CA estimate lethal FLH in PPROM; 

 MRI-observed-to-expect fetal lung volume predict FLH in CDH; 

 2D and 3D-US have equal predictive values in groups with 0% survival; 

 Restrict studies for disease groups and severity degrees are recommended. 
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Chapter 3 – Epithelial progenitor cells and ROBO signaling in both branching morphogenesis 
and nitrofen-induced CDH rat model 

The results presented in this chapter are: 
 

i) Published in an international peer-reviewed journal: 
 
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. ROBO2 signaling in lung development regulates 

SOX2/SOX9 balance, branching morphogenesis and is dysregulated in the nitrofen-induced congenital 

diaphragmatic hernia. Respir Res. 2020 Nov 18;21(1):302. doi: 10.1186/s12931-020-01568-w. PMID: 

33208157. 

(the integral reproduction was authorized by Springer Nature, Annex B)  
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3.1. Chapter overview 

3.1.1. Rationale 

Identified by a diaphragmatic defect that allows the herniation of abdominal organs into the thorax 

cavity, CDH affects 1-5 in 10.000 live births. Hypoplastic lungs with decreased branching morphogenesis at 

early and reduced number of alveoli with septa notably thicker a later developmental stages characterize the 

pulmonary immaturity and respiratory failure at birth. Transcriptome and genome-wide studies have 

demonstrated multiple up- and downregulated genes and pathways, like ROBO/SLIT signaling, in induced-

CDH lungs that highlight our understating of the morphological defects by developmental stage (reviewed in 

Montalva & Zani 2019, Longoni et al 2014, Russell et al 2012).  

Robo1/2 knockout mice delay the separation of foregut from the body wall (Domyan et al 2013), 

whereas the Robo1/Dutt1 functional impairment damage the neonatal respiratory function at birth (Xian et 

al 2001). More recently, ROBO/SLIT signaling was described as regulator of epithelial progenitor cell profile 

in the development of CNS, mammary gland, and pancreas (Ballard et al 2015, Blockus & Chédotal 2016, 

Borrell et al 2012, Escot et al 2018, Harburg et al 2014, Macias et al 2011). In fetal lungs, SOX2 and SOX9 

identified the epithelial progenitor cells that define the proximodistal patterning at branching morphogenesis, 

whereas the Sox2 or Sox9 knockout mice have impaired epithelial cell differentiation with abnormal fetal 

lung development (Gontan et al 2008, Rockich et al 2013, Tompkins et al 2011, Tompkins et al 2009). 

Indeed, the primordial capacity of SOX2 and SOX9+ cells to give rise to bronchial and alveolar lineages, 

respectively, is almost established at the time of conducting and respiratory airways formation (Eblaghie et 

al 2006, El Agha et al 2014, Gontan et al 2008, Hashimoto et al 2012, Park et al 1998, Rockich et al 2013, 

reviewed in Volckaert & De Langhe 2015, Weaver et al 2000, Weaver et al 1999).  

Since the potential function of ROBO1/2 in branching morphogenesis and in SOX2/SOX9 profile were 

never described, this chapter aimed to i) identify the spatiotemporal distribution of proximodistal markers 

(SOX2, SOX9) and receptors (ROBO1, ROBO2) from embryonic-to-saccular stages in nitrofen induced-CDH 

rat model; and ii) elucidate the functional role of ROBO1 and ROBO2 in both branching morphogenesis and 

SOX2/SOX9 profile. 

3.1.2. Major Findings 

The major findings from this chapter are described below: 

 Proximodistal patterning is impaired from pseudoglandular-to-saccular stages in nitrofen-

induced CDH rat model; 
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 Spatiotemporal distribution and relative expression levels of ROBO1 and ROBO2 are altered 

after CDH-induction; 

 Distinct or balanced functions for ROBO1 and ROBO2 receptors in branching 

morphogenesis;  

 Inhibition of ROBO2 stimulates pulmonary branching morphogenesis through 

overexpression of BMP4 and β-Catenin that promote SOX9 instead of SOX2 expression. 
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Chapter 4 – Epithelial cell profile in the nitrofen-induced congenital diaphragmatic hernia rat 
model 

The results presented in this chapter are: 
 

i) Submitted for publication in an international peer-reviewed journal:  
 
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. Distinct epithelial cell signatures during normal and 
hypoplastic fetal lung development. submitted.  

  



 

69 
 

4.1. Chapter overview 

4.1.1. Rationale 

Single-cell RNA sequencing and lineage-tracing studies demonstrate important cell niches in a 

proximodistal patterning during the development of the lung (Du et al 2015, Du et al 2017, Guo et al 2017, 

Guo et al 2019, Guo et al 2015, Guo & Xu 2018). In light of the results obtained in Chapter 3, where the 

proximodistal patterning was found to be impaired in nitrofen induced-CDH rat model, we intend to go further 

and investigate the epithelial cell profile of clara, PNECs, ciliated, and AT2 cells in induced-CDH lungs.  

 

4.1.2. Major Findings 

The major findings from this chapter are described below: 

 CGRP is overexpressed in bronchi and terminal bronchiole in induced-CDH lungs; 

 SP-C is overexpressed in bronchi, terminal bronchiole, and bronchioalveolar duct 

junction (BADJ) at E19.5, and in BADJ and alveolar duct at E21.5 in exposed-nitrofen 

CDH lungs; 

 CCSP is decreased in bronchi at E19.5 and overexpressed in BADJ at E19.5 and E21.5, 

and in bronchi at E21.5 after CDH-induction; 

 Contrary to normal lungs, FOXJ1 is expressed in BADJ at canalicular and saccular stages 

in induced-CDH lungs; 

 In CDH lungs, the multi cilia that identify the differentiated profile of ciliated cells are 

almost absent in bronchi at E21.5. 
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Distinct epithelial cell signatures during normal and hypoplastic fetal lung development 
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Abstract 

Recent studies identified a great diversity of cell types in precise number and position to create the 

architectural features of the lung that ventilation and respiration at birth depend on. With damaged 

respiratory function at birth, congenital diaphragmatic hernia (CDH) is the more severe cause of fetal lung 

hypoplasia with unspecified cellular dynamics. As such, to characterize the epithelial cell tissue in hypoplastic 

lungs, a careful analysis regarding pulmonary morphology and epithelial cell profile was conducted from 

pseudoglandular-to-saccular phases in normal versus nitrofen-induced CDH rat lungs. Our analysis equally 

comprises the whole lung by quantification of the relative expression levels (western blot) and the specific 

pulmonary structures that were evaluated in terms of spatiotemporal distribution (immunohistochemistry). 

Surfactant protein-C (SP-C), calcitonin gene-related peptide (CGRP), clara cell secretory protein (CCSP), and 

forkhead box J1 (FOXJ1) were the used molecular markers for alveolar type II, pulmonary neuroendocrine, 

clara, and ciliated cell profiles, respectively.  

Generally, we identified an aberrant expression of SP-C, CGRP, CCSP, and FOXJ1 in induced-CDH 

lungs. For instance, the overexpression of FOXJ1 and CGRP in bronchi and primordia of bronchiole defined 

the pseudoglandular stage, whereas the increased expression of CGRP in bronchi; FOXJ1 and CGRP in 

terminal bronchiole; and CCSP and SP-C in BADJ classified the canalicular and saccular hypoplastic stages. 

Our findings also describe unexpected FOXJ1 positive cells in BADJ at canalicular and saccular stages, 

whereas the multi cilia observed in bronchi were notably absent at embryonic day 21.5 in nitrofen-induced 

CDH lungs. 

In conclusion, the recognized alterations in the epithelial cell profile contribute to a better 

understanding of neonatal respiratory insufficiency in induced-CDH lungs and indicate a problem in the 

epithelial cell differentiation in hypoplastic lungs. 

 

Short Title: Epithelial signatures in CDH 
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Introduction 

Respiratory function is dependent on lung architecture, created and maintained by interactions of 

myriad cells along with the gestational life (Schittny 2017a). Importantly, the traditional view of fetal lung 

development subdivides the lung morphogenesis into five distinct periods based on structure: embryonic, 

pseudoglandular, canalicular, saccular, and alveolar periods, which are shared among mammalian species 

(reviewed in Schittny 2017b, Warburton et al 2010). At the molecular level, it is the expression of Nkx2-1 in 

the endoderm of the ventral wall of the anterior foregut that first identified the lung at the embryonic stage 

(Minoo et al 1999). Afterward, mesodermal-endodermal interactions support branching morphogenesis and 

the specification of multipotent progenitor cells into proximal (SOX2) versus distal (SOX9) profiles (Eblaghie 

et al 2006, El Agha et al 2014, Gontan et al 2008, Hashimoto et al 2012, Park et al 1998, Rockich et al 

2013, reviewed in Volckaert & De Langhe 2015, Weaver et al 2000, Weaver et al 1999). Interestingly, the 

differentiation of proximodistal patterning at the time of conducting and respiratory airways formation control 

the neonatal respiratory function. More relevant, the current knowledge of epithelial cell differentiation admits 

distinct models for bronchiolar (SOX2+) versus alveolar (SOX9+) lineages, in which the bronchiolar 

differentiation gives rise to goblet, clara, ciliated, and neuroendocrine cells under mechanisms dependent 

on Notch signaling (Liu & Hogan 2002, Perl et al 2005, Post et al 2000, Rawlins et al 2009a, Tsao et al 

2008, Wuenschell et al 1996), whereas SOX9 or a region just proximal to the SOX9+ cells at early and a 

bipotent progenitor at later developmental stage form AT1 and AT2 cells (Frank et al 2019, Desai et al 2014, 

Treutlein et al 2014). AT1 cells constitute about 95% of the surface area and are located immediately 

adjacent to the capillaries, which allows the efficient O2 and CO2 diffusion, while AT2 cells secrete surfactants 

to prevent alveolar collapse (Barkauskas et al 2013, Desai et al 2014). 

Reaching its maximum severity in the congenital diaphragmatic hernia (CDH), fetal lung hypoplasia 

remains one of the most common causes of morbidity and mortality for neonates. CDH is defined as a 

diaphragmatic defect that allows the herniation of abdominal organs into the thorax that impairs the normal 

fetal lung development (Cotten 2017, Gonçalves et al 2021, Nogueira-Silva et al 2008). Hypoplastic lungs 

have reduced surface area for gas exchange, with a decrease in distal branching and alveoli. The alveoli that 

do exist have thicker walls, impairing the close association of the airspaces to the capillaries (Coughlin et al 

2016, Kluth et al 1993, Nogueira-Silva et al 2012). A recent publication has shown the proximodistal 

patterning impaired in induced-CDH lungs from pseudoglandular-to-saccular stages (Gonçalves et al 2020), 

whereas the epithelial cell dynamics that result from these differentiations continues uncertain. In this 
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context, taking advantage of the nitrofen-induced CDH rat model that mimics the in vivo human CDH in 

terms of the disrupted signal pathways in branching morphogenesis and alveolar differentiation (Montalva 

& Zani 2019), we performed a careful analysis regarding the pulmonary morphology and the epithelial cell 

profiles during normal versus hypoplastic pulmonary development. 

 

Material and Methods 

This study was carried out in strict accordance with FELASA guidelines (Benavides et al 2019) and 

European regulations (European Union Directive 86/609/EEC). All animal experiments were approved by 

the Life and Health Sciences Research Institute (ICVS), University of Minho, and by the Direção Geral de 

Alimentação e Veterinária (approval No. DGAV 021328). 

 

Animal model and experimental design 

Sprague-Dawley female rats (225 g; Charles-River, Spain) were maintained in appropriate cages under 

temperature-controlled room (22–23°C) on 12 hours’ light: 12 hours’ dark cycle, with commercial solid food 

and water ad libitum. The rats were mated and checked daily for vaginal plug. The day of plugging was 

defined as embryonic day (E) 0.5 for time dating purposes. According to the nitrofen-induced CDH rat model 

(Nogueira-Silva et al 2013, Tenbrinck et al 1990), at E9.5, randomly selected pregnant rats were exposed 

to 100 mg nitrofen (2,4- dichlorophenyl-p-nitrophenylether). At different time points (E17.5, E19.5, and 

E21.5), fetuses were harvested by cesarean section. After fetal decapitation, a thoracic laparotomy was 

performed under a binocular surgical microscope (Leica, Wild M651.MSD, Switzerland) to inspect the 

diaphragm and harvest the organs. Fetuses were divided into two groups, namely the control group (Ctrl), 

fetuses exposed to olive oil alone; and CDH group, fetuses exposed to nitrofen with the diaphragmatic defect. 

Lungs were either fixed in 4% paraformaldehyde for immunohistochemistry or snap-frozen in liquid nitrogen 

for protein extraction. GPower 3.1.9.4 (Franz Faul, Universitat Kiel, Germany) was used for sample size 

calculation. In total, 12 dams and 106 embryonic rats were used in this study. 

 

Immunohistochemistry 

Normal and induced-CDH lungs at different gestational ages (E17.5-21.5) were fixed in 4% 

paraformaldehyde and embedded in paraffin as previously described (Peixoto et al 2015). Primary 

antibodies for alveolar type II (AT2, Anti-Prosurfactant Protein C, Cat No.  AB3786, Merck Millipore, 

Germany); Clara (Anti-Clara Cell Secretory Protein, Cat No. 07-623, Merck Millipore, Germany); ciliated 

(FOXJ1, Cat No. PA5-36210, ThermoFisher Scientific, USA); pulmonary neuroendocrine cells/ 
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neuroepithelial bodies (PNECs/NEBs; CGRP, Cat No. ab91007, abcam, USA) were used. Negative control 

reactions included omission of primary antibody, in which immunoreactivity was not observed. Tissue 

sections were incubated with a streptavidin-biotin immunoenzymatic antigen detection system (Cat No. TL-

125-QHD, Thermo Scientific, USA) according to the manufacturer’s instructions and visualized with a 

diaminobenzidine tetrahydrochloride solution (Cat No. TA-125-QHDX, Thermo Scientific, USA) (Peixoto et al 

2015). The time expended in DAB solution was dependent on the developmental stage, but equally between 

normal and CDH slides, allowing the quantification of immunohistochemical signals. The percentage of 

stained cells per microscopic field was scored in a single-blinded fashion in four independent peripheral 

areas per section (four sections per experimental group). Scoring was as follows: 0, 0-1% cells/pulmonary 

structure; 1, 1–25% cells/pulmonary structure; 2, 25–50% cells/pulmonary structure; 3, 50–75% 

cells/pulmonary structure; 4, 75–100% cells/pulmonary structure in accordance with (Nogueira-Silva et al 

2008). At least three independent experiments were performed for each antibody tested. In each experiment, 

a different set of slides comprising the whole range of gestational ages was used. Different and unrepeated 

animal samples were selected for each group (gestational age). Six different animals were examined for 

each group per studied antibody. All sections were scanned with Olympus BX61 Upright Microscope 

(Olympus Corporation, Japan) and independently evaluated by two investigators. 

 

Western Blot analysis 

Normal and nitrofen-exposed CDH lungs from different gestational ages (E17.5 – E21.5) were 

processed for western blot analysis according to (Piairo et al 2018). Briefly, 15 µg of protein were loaded 

onto 10% acrylamide mini gels, electrophoresed at 100 V at room temperature, and then transferred to 

nitrocellulose membranes (HybondTM -C Extra, GE Healthcare Life Sciences, UK). Blots were blocked in 5% 

bovine serum albumin and probed with primary antibodies for AT2 (surfactant protein-C, SP-C, Cat No. 

AB3786); clara (clara cell secretory protein, CCSP, Cat No. 07-623); ciliated (FoxJ1, Cat No.  PA5-36210); 

PNECs/NEBs (CGRP, Cat No. ab91007) were used according to the manufacturer's instructions. For loading 

control, blots were probed with β-tubulin (Cat No. ab15568 abcam, USA). Afterward, membranes were 

incubated with a secondary horseradish peroxidase conjugate, developed with Clarity West ECL subtract, 

and the chemiluminescent signal was captured using the Chemidoc XRS. Quantitative analysis was 

performed with Quantity One 4.6.5 1-D Analysis Software. Three independent experiments were performed 

(n = 3). In total, nine animals were used in each group (gestational age/condition) per antibody. 
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Statistical analysis 

All quantitative data are presented as the mean ± standard deviation (SD). The statistical analysis 

was performed by two-way ANOVA for lung condition (normal and CDH) and embryonic day (E17.5, E19.5, 

and E21.5) in protein expression level. The parametric test assumptions were previously verified, and an 

additional Fisher´s Least Significant Difference (LSD) test was used for post-test analysis. Statistical analysis 

was performed using the statistical software IBM SPSS Statistics 24.0. Statistical significance was set at *p< 

0.05. 

 

Results 

To reveal the epithelial cell profile in hypoplastic lungs, CDH was induced by the nitrofen-induced 

CDH rat model, and the followed molecular markers: CCSP+, FOXJ1+, CGRP+, and SP-C+ identified the distinct 

epithelial cell types. The relative expression levels and the spatiotemporal distribution were revealed by 

western blot and immunohistochemistry (IHC), respectively, from E17.5-to-E21.5. Immunohistochemical 

signals were then quantified by pulmonary structure and developmental stage.  

 

Experimental-CDH change the relative expression levels of bronchiolar and alveolar markers 

In the whole lung, the quantification of the relative expression levels reveals a consistent increase 

in CCSP, FOXJ1, and SP-C expression as the development of the normal lung progress (Fig. 1A-E). After 

CDH-induction, a significant increase in FOXJ1 (Fig. 1C) and CGRP (Fig 1D) expression were observed, 

whereas the expression of CCSP (Fig. 1B) and SP-C (Fig. 1E) remains exchanged at pseudoglandular stage. 

In contrast, all makers were revealed as increased at canalicular phase. Finally, the depletion of SP-C with 

the overexpression of FOXJ1 and CGRP identified the saccular stage in induced-CDH lungs (Fig. 1A-E).  

 These molecular changes were further explored in terms of spatiotemporal distribution in CDH 

versus normal lungs. Concomitant with the developmental stage, this analysis also reveals the expression 

profile by pulmonary structure.  

 

Similar spatiotemporal distribution for CCSP in normal and hypoplastic fetal lungs 

CCSP was expressed in all pulmonary structures from pseudoglandular-to-saccular stages in normal 

and hypoplastic fetal lungs (Fig 2AA-AF and Aa-Af). In fact, CCSP was observed in bronchi and primordia of 

bronchiole at E17.5 (Fig 2AA-AB and Aa-Ab); and bronchi, terminal bronchiole, and bronchioalveolar duct 

junction (BADJ) at canalicular (Fig 2AC-AD and Ac-Ad) and saccular stages of normal and nitrofen-exposed 

lungs. Finally, CCSP+ cells were detected at E21.5 in alveolar duct (Fig 2AE-AF and Ae-Af). 
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Quantification of IHC signals by pulmonary structure and developmental stage demonstrated CCSP 

to be overexpressed in BADJ at E19.5 and E21.5, and in bronchi at E21.5 after CDH-Induction (Fig. 2B). 

 

FOXJ1 expressed in BADJ at canalicular and saccular stages after CDH induction  

FOXJ1 was used to distinguish the ciliated profile in normal and hypoplastic fetal lungs. In normal 

lungs, FOXJ1 was expressed in bronchi (Fig. 3AA-AF) at all gestational ages; in primordia of bronchiole at 

E17.5 (Fig. 3AA-AB); and terminal bronchiole at E19.5 (Fig. 3AC-AD) and E21.5 (Fig. 3AE-AF). Conversely, 

in induced-CDH lungs, FOXJ1 was observed in BADJ at E19.5 (Fig. 3Ac-Ad) and E21.5 (Fig. 3Ae-Af), whereas 

the multi cilia that characterize the differentiated profile of ciliated cells in bronchi were (near) absent at 

E21.5 (Fig. 3AG-Ag).   

Quantification of IHC signals established FOXJ1 overexpressed in bronchi at E17.5, E19.5, and E21.5; 

in primordia of bronchiole at E17.5; and terminal bronchiole at E19.5 and E21.5 after CDH-induction (Fig. 

3B).  

 

Increased size of neuroepithelial bodies (NEBs) at canalicular and saccular stages in induced-CDH lungs  

Punctual (PNECs) or aggregated (NEBs) expression of CGRP characterize the neuroendocrine profile 

in the developing lung. Immunohistochemistry analysis showed CGRP expressed in bronchi at E17.5-to-

E21.5; primordia of bronchiole at E17.5 (Fig. 4AA-AB); and terminal bronchiole at E19.5 (Fig. 4AC-AD) and 

E21.5 (Fig. 4AE-AF) in normal and hypoplastic fetal lungs. 

Apart from the CGRP overexpression in bronchi and terminal bronchiole at canalicular and saccular 

stages that close on larger NEBs, no significant differences were observed in normal versus CDH lungs (Fig. 

4B). 

 

Experimental CDH induce the expression of SP-C in bronchi and BADJ 

The spatiotemporal profile of AT2 cells was detected by SP-C. In normal and nitrofen-exposed lungs, 

SP-C was expressed in bronchi at E17.5-to-E21.5 (Fig. 5AA-AF and Aa-Af); in primordia of bronchiole at 

E17.5 (Fig. 5AA-AB and Aa-Ab); in terminal bronchiole and BADJ at E19.5 (Fig. 5AC-AD and Ac-Ad) and 

E21.5 (Fig. 5AE-AF and Ae-Af); and in alveolar duct at E21.5 (Fig. 5AE-AF and Ae-Af). 

Semi-quantitative analysis of SP-C expression in induced-CDH versus normal lungs showed the SP-C 

overexpressed in bronchi from pseudoglandular-to-canalicular stages; in terminal bronchiole at E19.5; in 

BADJ at E19.5 and E21.5; and in the alveolar duct at E21.5 (Fig. 5B).  
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Discussion 

Single-cell transcriptomics and tracing-linage studies allowed the observation of precise numbers and 

positions for the distinct pulmonary cell types, their lineages, and differentiation (Guo et al 2017, Guo et al 

2019, Guo et al 2015, H et al 1998). CDH fetuses with decreased distal branching and alveoli manifest 

reduced respiratory function at birth (Ameis et al 2017, Donahoe et al 2016). Recently, we describe the 

proximodistal patterning to be impaired in nitrofen-induced CDH lungs from pseudoglandular-to-saccular 

stages (Gonçalves et al 2020). As such, we intend to go further and determine the relative expression levels 

and the temporospatial distribution for CCSP, CGRP, FOXJ1, and SP-C proteins in hypoplastic (in nitrofen-

induced CDH rat model) versus normal fetal lungs from pseudoglandular-to-saccular stages. The selected 

molecular markers: CCSP, CGRP, FOXJ1, and SP-C identified clara, PNECs/NEBs, ciliated and AT2 cells, 

respectively, when expressed in differentiated epithelial tissues. Conversely, when detected in 

undifferentiated epithelial tissues, they distinguish the cellular capacity to give rise to the above-mentioned 

epithelial cell types. At the pseudoglandular stage, our findings demonstrated FOXJ1 and CGRP 

overexpressed in bronchi and primordia of bronchiole after CDH-induction. As the epithelial cell 

differentiation goes through, we identified a general overexpression of CGRP in bronchi; FOXJ1, and CGRP 

in terminal bronchiole; and CCSP and SP-C in BADJ at both canalicular and saccular stages in induced 

CDH-lungs.  

Discussing these results, it must be knowledge the distinct contribution of the epithelial progenitors 

and specialized epithelial cells that populate conducting and respiratory airways. In fact, several studies tried 

to describe the function of the distinct epithelial cell types during the development of the lung and at birth, 

when the first breath takes place. PNECs/NEBs are described as airway sensors required for appropriate 

innate immune inflammatory response and fetal lung growth. Subsequently, we and others demonstrate 

PNECs/NEBs overexpressed in in vivo CDH lungs, whereas the exogenous administration of neuroendocrine 

products, like bombesin or ghrelin, stimulate fetal lung growth (Asabe et al 1999, H et al 1998, Nunes et al 

2008, Pereira-Terra et al 2015, Sakai et al 2014, Santos et al 2006, Sunday et al 1990). Clara is a secretory 

cell essential for airway epithelium reparation (Pan et al 2019, Reynolds & Malkinson 2010), that it is now 

described as overexpressed in bronchi and BADJ at canalicular and saccular stages in induced-CDH versus 

normal lungs. Ciliated  cells are reported as  terminally differentiated epithelial cells (Rawlins & Hogan 2008) 

working in mucociliary clearance at birth and thereafter (Bustamante-Marin & Ostrowski 2017). Now, in 

nitrofen-exposed CDH lungs, we detected FOXJ1 expressed in BADJ at E19.5 and E21.5 in opposition to the 

observed in normal lungs. More relevant, BADJ is formed and easily detected at the canalicular stage (Barre 

et al 2016, Barre et al 2014) that demarcates airway‐fated epithelial cells from alveolar‐fated epithelial cells 
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and works as stem cell niche in adult lung regeneration (Kuo & Krasnow 2015, Liu et al 2019). Indeed, 

BADJ represents the entrance of the small gas exchanging airways, with critical roles in the formation of 

both conducting and respiratory airways after injury (Kuo & Krasnow 2015, Liu et al 2019). We also 

described the multi cilia on the plasma membrane that characterize a normal bronchus at E21.5 as decrease 

in induced-CDH lungs. FOXJ1 is a master regulator of basal body docking, cilia formation, and motility 

(Vladar & Mitchell 2016, You et al 2004), whereas the multi cilia on the plasma membrane unequivocally 

identified their differentiated profile. As such, our observations describe a diffuse transition from conducting 

to respiratory airways in induced-CDH lungs and suggest an undifferentiated epithelium in hypoplastic lungs. 

AT2 cells produce pulmonary surfactant proteins and reduce the alveolar surfactant tension that in 

turn facilitate the first breath at birth. In nitrofen-exposed lungs, the impairment on surfactant production 

and secretion is evidenced by the low levels of phosphatidylcholine, the lipid component of surfactant, and 

the factors involved in stimulating the maturation of surfactant lipids, such as PTHrP, adipose differentiation-

related protein (ADRP), Thy1 and RA, whereas the inhibitor of surfactant phospholipid synthesis, TNFα, is 

overexpressed (Carroll et al 2002, Doi et al 2010, Friedmacher et al 2014a, Friedmacher et al 2014c, 

Gosemann et al 2012, Nakazawa et al 2007, Shima et al 1999). After CDH-induction, our results showed a 

general upregulation of SP-C expression in bronchi at pseudoglandular and canalicular stage; in terminal 

bronchiole at canalicular; in BADJ at canalicular and saccular; and in the alveolar duct at saccular. In 

addition, previous publications demonstrated an altered ratio of alveolar epithelial cells in CDH-associated 

lung hypoplasia, which was related to the dedifferentiation of AT2 into AT1 cells (Chapin et al 2005, Takayasu 

et al 2007c). More recently, Nguyen et al report a decrease in the number of AT1 in CDH lungs, while the 

AT2 population remains unchanged in mice at E17.5 (Nguyen et al 2019). These findings are probably due 

to the impossibility to distinguish the differentiated versus undifferentiated AT2 cell profile in these models. 

Collectively, the described cellular changes by gestational age certainly contribute to a better 

understanding of the epithelial profile in CDH fetuses and suggest a more careful analysis regarding the 

differentiated versus undifferentiated epithelial cell profiles in hypoplasia.  
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Figure Legends 

 

Figure  1 - Altered relative expression levels for clara cell secretory protein (CCSP), forkhead transcription 

factor 1 (FOXJ1), calcitonin gene-related peptide (CGRP), and surfactant protein-C (SP-C) after congenital 

diaphragmatic hernia (CDH)-induction. Western blot analysis for CCSP; FOXJ1; CGRP; and SP-C protein 

levels in normal (ctrl) and CDH lungs at embryonic day (E)17.5-to-E21.5. (A) Representative immunoblots 

are shown. Each lane represents a pooled tissue sample, and relative expression was determined against 

β-tubulin. Semi-quantitative analysis of three independent experiments is plotted (n≥9 per timepoint and 

experimental groups, respectively). Protein expression levels of (B) CCSP; (C) FOXJ1 and (D) CGRP, and (E) 

SP-C are shown at the distinct developmental stages of normal and CDH fetal lungs. Results are presented 

as mean±SD. Symbols indicate the main effects and non-redundant interactions of the two-way ANOVA. p< 

0.05: αvs ctrl; Ψvs E17.5-ctrl; &vs E17.5-CDH and E19.5-CDH. 
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Figure  2 - Clara cell secretory protein (CCSP) expression pattern during normal and hypoplastic fetal lung development. Representative immunohistochemical evidence 

for CCSP expression at (AA-AB and Aa-Ab) pseudoglandular, (AC-AD and Ac-Ad) canalicular, and (AE-AF and Ae-Af) saccular stages in normal (ctrl) and congenital 

diaphragmatic hernia (CDH) lungs, respectively. *bronchiole; ¤primordia of bronchiole; ¥terminal bronchiole; [bronchioalveolar duct junction; &alveolar duct. Original 

magnification x200. (B) semi-quantitative analysis of CCSP expression from embryonic day (E)17.5-to-E21.5 in normal and CDH lungs. Data are presented as 

mean±SD. Symbols indicate the main effects and non-redundant interactions of one-way ANOVA. αp<0.05. 
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Figure  3 - Spatiotemporal distribution of FOXJ1 in normal and induced-congenital diaphragmatic hernia (CDH) rat model at pseudoglandular, canalicular and saccular 

stages. Representative immunohistochemical evidence for FOXJ1 expression at (AA-AB and Aa-Ab) embryonic day (E)17.5, (AC-AD and Ac-Ad) E19.5, and (AE-AF and 

Ae-Af) E21.5 in normal (ctrl) and induced-congenital diaphragmatic hernia rat model (CDH) fetal rat lungs, respectively. *bronchiole; ¤primordia of bronchiole; ¥terminal 

bronchiole; [bronchioalveolar duct junction; &alveolar duct. Original magnification x200. (B) semi-quantitative analysis of FOXJ1 expression from pseudoglandular-to-

saccular stages in normal (ctrl) and CDH lungs. Results are presented as mean±SD. Symbols indicate the main effects and non-redundant interactions of one-way 

ANOVA. αp<0.05. (C) Representative immunohistochemical evidence for the absence of multi cilia on the plasma membrane of ciliated cells in bronchi at E21.5. 

Original magnification x600. 
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Figure  4 - Protein expression pattern of CGRP in nitrofen-exposed rat lungs at embryonic day (E)17.5-to-E21.5. Representative immunohistochemical evidence for 

CGRP expression at (AA-AB and Aa-Ab) pseudoglandular, (AC-AD and Ac-Ad) canalicular, and (AE-AF and Ae-Af) saccular stages in normal (ctrl) and nitrofen-exposed 

(CDH) rat lungs, respectively. Original magnification x200. (B) semi-quantitative analysis of CGRP expression from E17.5-to-E21.5 in normal (ctrl) and CDH lungs. 

Results are presented as mean±SD. Symbol indicates main effect and non-redundant interaction of one-way ANOVA. αp<0.05. 
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Figure  5 - Expression profile of surfactant protein-C (SP-C) in the normal and induced congenital diaphragmatic hernia (CDH) rat model. Representative 
immunohistochemical evidence for SP-C expression at (AA-AB and Aa-Ab) embryonic day (E)17.5, (AC-AD and Ac-Ad) E19.5, and (AE-AF and Ae-Af) E21.5 of normal 
and CDH phenotypes, respectively. *bronchiole; ¤primordia of bronchiole; ¥terminal bronchiole; [bronchioalveolar duct junction; &alveolar duct. Original magnification 
x200. (B) semi-quantitative analysis of SP-C expression from pseudoglandular-to-saccular stages in normal (ctrl) and CDH lungs. Results are presented as mean±SD. 
Symbols indicate the main effects and non-redundant interactions of one-way ANOVA. αp<0.05. 
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Chapter 5 – Intraluminal chloride in branching morphogenesis 

The results presented in this chapter are: 
 

i) Submitted for publication in an international peer-reviewed journal:  
 
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching 
morphogenesis: involvement of PIEZO1/PIEZO2. in revision  
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5.1. Chapter overview 

5.1.1. Rationale 

Experimental evidence showed the intraluminal lung fluid as a modulator of in vivo fetal lung growth 

that permits the development of FETO. FETO consists in in utero insertion of a balloon into the trachea that 

prevents the pulmonary fluid egress. The block of the tracheal efflux increase stretches on lung parenchymal 

cells and promotes lung growth, maturation, and remodeling of the pulmonary vasculature. FETO is under 

clinical investigation to be applied at 30-32 weeks in moderate and at 27 to 29 weeks in severe cases of 

human FLH, secondary to CDH. However, in extremely severe CDH cases, defined as > 30% liver herniation 

with o/e LHR < 25% (LHR < 0.71), early intervention should be considered, possibly as early as 22 weeks 

of gestation to better improve the neonatal outcome. Unfortunately, when applied, the fetoscopic procedures 

increase the risk for iatrogenic PPROM that complicate their therapeutic value (reviewed in Beck et al 2012, 

Tsao & Johnson 2020).  

Analysis of CDH and CDH+TO lungs in human and animal models demonstrated TO able to reverse 

several of the morphological defects associated with CDH. For instance, a hypoplastic-CDH lung has arrested 

branching morphogenesis with reduced alveolar space and alveoli. TO significant increase branching 

morphogenesis, alveolarization, and secondary crest formation in the improvement of the neonatal 

respiratory function. As such, multiple studies comparing the molecular profile of CDH and CDH+TO lungs 

have been performed and describe disorganized molecular networks that occasionally do not match in CDH 

and CDH+TO lungs (Engels et al 2016, Nelson et al 2005, Vuckovic et al 2013). In our interpretation, these 

observations indicate an additional challenge for our understanding of (ab)normal fetal lung morphogenesis 

since the molecular distinction between cause and consequences by morphological defect is dependent on 

the revealed basic mechanisms. Nevertheless, the difficulty that it is mimic or recapitulate in the lab the 

morphological aspects triggered by intraluminal lung fluid in fetal pulmonary growth further impairs the 

molecular/cellular studies.  

In this context, given the urgency of this research topic, we aimed to i) establish an ex vivo model for 

the study of lung fluid in fetal lung growth; and ii) reveal the mechanisms triggered by intraluminal fluid in 

fetal branching morphogenesis. 

5.1.2. Major Findings 

The major findings from this chapter are described below: 

 Effective intraluminal injection at day0 (D0) and D2 in ex vivo lung explant cultures with 

dynamic intraluminal movements at D4; 



 

90 
 

 Intraluminal chloride concentration ([Cl-]) modulates fetal branching morphogenesis; 

 PIEZO1/PIEZO2 expressed in PNECs/NEBs are activated by intraluminal [Cl-] that 

stimulates fetal lung growth; 

 Pharmacological inhibition of PIEZO1/PIEZO2 expression decreases the ex vivo branching 

morphogenesis under a mechanism independent of intraluminal [Cl-]. 
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Abstract 

Clinical and experimental evidence showed the lung fluid volume as a modulator of fetal lung growth 

with important value in the treatment of fetal lung hypoplasia. Unfortunately, the molecular/ cellular 

mechanisms underlying these morphological dynamics remain almost undetermined. Here, we describe 

effective intraluminal injections at day0 (D0) and D2 and demonstrate the existence of dynamic intraluminal 

movements at D4 of the ex vivo lung explant cultures. Chloride concentration ([Cl-]) is used as a modulator 

of sodium and water movements in the production of fetal lung fluid in the model. Distinct [Cl-] and Cl- 

channel inhibitors are injected into the lumen followed by the morphological and molecular analysis at D4. 

Immunofluorescence assay in in vivo and ex vivo branching morphogenesis showed the colocalization of 

PGP9.5 (a neuroendocrine marker) with PIEZO1 and PIEZO2 mechanosensors. In addition, the increase of 

intraluminal [Cl-], 715mM Cl-, promotes fetal lung growth through the overexpression of PIEZO1, PIEZO2, 

ghrelin, bombesin, myosin light chain 2 (MLC2), and alpha-smooth muscle actin (α-SMA). Oppositely, the 

depletion of cystic fibrosis transmembrane conductance regulator (CFTR) or calcium-dependent Cl- channel 

(CaCC) by CFTR inhibitor172 or CaCC inhibitorA01, respectively, equally decreases the fetal lung growth as 

well as the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of 

PIEZO1/PIEZO2 by GsMTx4 decreases the branching morphogenesis and the expression of ghrelin, 

bombesin, MLC2, and α-SMA in an intraluminal injection independent-manner. Our results identify a 

potential mechanism by which the intraluminal lung fluid composition modulates the fetal branching 

morphogenesis. 

 

Running Title: Intraluminal chloride in branching morphogenesis 

 

Keywords: chloride; branching; lung development; lung fluid; mechanotransduction 
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Key points 

 Intraluminal injections in ex vivo lung explant cultures are useful for the study of lung fluid 

composition in fetal branching morphogenesis; 

 PIEZO1 and PIEZO2 are expressed in pulmonary neuroendocrine cells/ neuroepithelial bodies in in 

vivo and ex vivo branching morphogenesis; 

 Intraluminal chloride concentration is a modulator of fetal branching morphogenesis through 

PIEZO1/PIEZO2 mechanosensors.  

 

Introduction 

Physical forces exerted on the developing fetal lung, namely by intraluminal lung fluid and peristaltic 

airway contractions, are important regulators of fetal lung branching morphogenesis. Concerning lung fluid 

and it is in utero intraluminal hydraulic pressure, lung fluid is secreted by the epithelial cells into the airway 

lumen, which are osmotically driven by active chloride (Cl-) secretion, through Cl- channels. This gives rise to 

a continuous forward flow of lung liquid that drains into the amniotic fluid. This physiological circulation of 

lung fluid filling the air spaces is critical to lung development. In fact, if it is disturbed lung growth and 

maturation are impaired. For instance, excess fluid drainage during fetal life or decrease of fluid pressure, 

due to premature rupture of the membranes or oligohydramnios, are associated with lung hypoplasia with 

underbranched lungs, which is a major cause of respiratory insufficiency and mortality in newborns 

(Moessinger et al., 1986; Harding et al., 1990; Copland & Post, 2004; Shi et al., 2007; Wilson et al., 2007; 

Jani et al., 2009; Jani & Nicolaides, 2012; Gonçalves et al., 2021). In opposition, experimental evidence 

shows the increase of lung fluid volume as a promotor of fetal lung growth (Dickson & Harding, 1987; 

Harding et al., 1990). In fact, prenatal tracheal occlusion increases lung fluid volume, luminal pressure, and 

expansion and, consequently, enhances the rate of branching (Fletcher et al., 2000; Khan et al., 2007; 

Wilson et al., 2007; Unbekandt et al., 2008; Jiménez et al., 2017). This evidence allowed the development 

of fetoscopic endoluminal tracheal occlusion (FETO) as a treatment for the more severe cases of pulmonary 

hypoplasia, in the context of congenital diaphragmatic hernia (CDH) (Ruano et al., 2013; Ali et al., 2016; 

Jiménez et al., 2017; Khoshgoo et al., 2019). 

Molecular studies have been performed to determine the mechanisms underlying lung fluid 

production and pulmonary expansion. In brief, the lung fluid is produced by a mechanism dependent on 

sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) pumps and Na+/K+/2chloride (Cl−) co-

transporters, located on the basolateral surface of pulmonary epithelial cells (Gillie et al., 2001; Finney et 

al., 2008; Bardou et al., 2009; Brennan et al., 2013, 2016), that stimulate the apical Cl- secretion via cystic 
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fibrosis transmembrane conductance regulator (CFTR) or calcium-dependent chloride (CaCC) (Olver & 

Strang, 1974; Olver et al., 1981; Welsh et al., 1982; Welsh, 1983; Finney et al., 2008; Bardou et al., 2009; 

Brennan et al., 2013, 2016). Finally, it is the increase of intraluminal Cl- concentration ([Cl-]) that favors the 

movement of sodium and water into the lumen and promotes the lung liquid formation and the consequent 

pulmonary expansion (Olver & Strang, 1974; Olver et al., 1981; Welsh et al., 1982; Welsh, 1983; Dickson 

& Harding, 1987). In addition, inhibition of the apical ionic channels, such as CFTR, TMEM16A, voltage-

sensitive chloride channel2 (ClC2) or the extracellular calcium receptor (CaR), induces key morphological 

defects in branching morphogenesis (Blaisdell et al., 2004; Larson & Cohen, 2006; Finney et al., 2008; 

Ousingsawat et al., 2009; Rock et al., 2009; Brennan et al., 2016; Meyerholz et al., 2018). 

An emergent area, mechanotransduction, showed cells able to translate a mechanical stimulus, like 

pressure, into biochemical signaling. However, the mechanisms by which pressure is sensed in the lung 

have not yet been determined (Morrisey & Hogan, 2010). In fetal lung, smooth muscle cells are essential 

for peristaltic airway contractions, while the pulmonary neuroendocrine cells (PNECs)/ neuroepithelial 

bodies (NEBs) are indicated as chemo- and mechano-sensors, particularly during the perinatal period. 

Indeed, the peristaltic airway contractions generate not only the flow of intraluminal fluid but also the periodic 

distension and relaxation of the end buds essential for branching morphogenesis (Schittny et al., 2000; 

Santos et al., 2007; Kim et al., 2015; Goodwin et al., 2019). Oppositely, PNECs/NEBs are promotors of in 

vivo and ex vivo fetal lung growth (Sunday et al., 1990; Santos et al., 2006; Nunes et al., 2008; Sakai et 

al., 2014; Pereira-Terra et al., 2015) and sensors for hypoxia, hypercapnia, acidosis, or airway stretch 

(reviewed in (Garg et al., 2019)) with undefined functions in fetal lung development. A recent publication 

showed PIEZO2, a known mechanosensor (Nonomura et al., 2017; Wang et al., 2017; Zeng et al., 2018) 

expressed in NEBs, indicating NEBs capable of sensing the mechanical stretch (Nonomura et al., 2017). 

This study also reports PIEZO2 expressed in sensory neurons as important in the regulation of lung expansion 

and efficient neonatal respiration in a mechanism dependent on the central nervous system (Nonomura et 

al., 2017). However, the inactivation of PIEZO2 in sensory neurons, but not in PNECs/NEBs, was essential 

for respiratory transition at birth (Nonomura et al., 2017), maintaining the importance of stretch sensation 

by PNECs unclear. 

PIEZO proteins, PIEZO1 and PIEZO2, are mechanically activated cation channels that form 

homomultimeric complexes sufficient to mediate mechanically induced currents (Coste et al., 2010, 2012; 

Ge et al., 2015). Previous work showed PIEZO1 as essential in the regulation of basal blood pressure and 

normal cellular volume in red blood cells in adulthood (Cahalan et al., 2015; Zeng et al., 2018), whereas 
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PIEZO2 mediated the sensory processes (Ranade et al., 2014; Woo et al., 2014; Feng et al., 2018) and the 

respiratory physiology (Nonomura et al., 2017). 

In this context, to investigate the mechanotransduction signaling intrinsic to fetal lung growth, we 

explore both the neuroendocrine cells and the mechanoreceptors as intermediators of intraluminal fluid 

composition during branching morphogenesis. 

 

Methods 

Ethical approval 

This study was carried out in strict accordance with FELASA guidelines (Benavides et al., 2019) and 

European regulations (European Union Directive 86/609/EEC). All animal experiments were approved by 

the Life and Health Sciences Research Institute (ICVS), University of Minho, and by the Direção Geral de 

Alimentação e Veterinária (approval No. DGAV 021328). 

 

Animals 

Female Sprague–Dawley rats (225 g; Charles-River; Spain) were maintained in appropriate cages 

under controlled conditions and fed with commercial solid food. The rats were mated and checked daily for 

vaginal plug. The day of plugging was defined as embryonic day (E) 0.5 for time dating purposes. Embryos 

were dissected at either E13.5 or E17.5 and the embryonic lungs were removed for posterior analysis.  

 

Lung explant cultures 

Harvesting and dissection of E13.5 lungs were made in PBS under a dissection microscope (Leica 

MZFLIII, Switzerland). Lungs were then transferred to the nucleopore membranes (Cat No. TETP01300, 

Whatman, USA) and cultured in a complete medium [50% DMEM low glucose, 50% nutrient mixture F-12 

(Gibco, USA) supplemented with 100 µg/mL glutamine (Cat. No 25030081, Gibco, USA), 100 units/mL 

penicillin-streptomycin, (Cat. No 15140122, Gibco, USA), 0.25 mg/mL l-ascorbic acid (Cat No. A4403, 

Sigma-Aldrich, USA) and 10% fetal bovine serum (FBS) (Cat No. 26140079, Gibco, USA)] (Gonçalves et al., 

2020). The fetal lung explants were incubated in a 5% CO2 incubator at 37°C for 96h, and the medium 

was replaced every 48h. 
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Lung fluid manipulation 

Crescent Chloride concentration 

According to in vivo (Olver et al., 1981) and ex vivo (Nemeth et al., 1998; Ma et al., 2002; Brennan 

et al., 2016) studies, 143mM Cl- was defined as basal [Cl-]. The manipulation of intraluminal [Cl-] was 

achieved using three experimental concentrations: 5.8, 29, and 715mM Cl-. Lungs were randomly assigned 

one of four experimental groups (n ≥ 12 per condition). After intraluminal injections at day 0 (D0) and D2, 

morphological and molecular dynamics were determined at D4.  

To strictly manipulate the [Cl-] maintaining the similar concentration of the remaining ions, the 

following chemical compounds were used: potassium chloride (KCl, Cat No. 7447-40-7, Merck, Germany), 

magnesium chloride (MgCl2, Cat No. 7786-30-3, Merck, Germany), calcium chloride (CaCl2, Cat No. C1016-

100G, Sigma-Aldrich, USA), potassium D-Gluconate (Cat No. G8270-100G, Sigma-Aldrich, USA), MgSO4 

(Cat No. M7506 Sigma-Aldrich, USA) and calcium D-gluconate (Cat No. C8231-100G, Sigma-Aldrich, USA). 

Specifically, KCl, MgCl2, and CaCl2 were used as donors of Cl-, K+, Mg2+, and Ca2+, while potassium D-gluconate, 

MgSO4, and calcium D-gluconate worked as replace compounds, as demonstrated in Supplementary Table 

S1a-b. Thus, the relative influence of the different chemical compounds for the lower and higher [Cl-] were 

as follow (in mM, adapted from (Raimondo et al., 2013)): 5.8mM Cl-: KCl (5.711), MgCl2 (0.049), CaCl2 

(0.041), D-glucose (10.000, Cat No. G8270-1KG, Sigma-Aldrich, USA), HEPES (5.000, Cat No. H3375-25G, 

Sigma-Aldrich, USA), potassium D-gluconate (698.290), MgSO4 (5.950, Cat No. M7506-1KG-M, Sigma-

Aldrich, USA), Calcium D-gluconate (4.960, Cat No. C8231-100G, Sigma-Aldrich, USA); 715mM Cl-: KCl 

(704.000), MgCl2 (6.000), CaCl2 (5.000), D-glucose (10.000), HEPES (5.000) as shown in Supplementary 

Table S1a-b. 

 

Chloride channel inhibitors 

9-carboxylic acid (A9C, Cat No. A89405, Sigma-Aldrich, USA) (Valenzuela et al., 2000; Al Khamici et 

al., 2015), CFTRinh (Cat No. C2992, Sigma-Aldrich, USA) (Li et al., 2007; Melis et al., 2014) or CaCC (Cat 

No. SML0916, Sigma-Aldrich, USA) (Boedtkjer et al., 2015; Nakazawa et al., 2016) were dissolved in 

dimethyl sulfoxide (DMSO, Cat No. D8418, Sigma-Aldrich, USA) according to the manufacture’s protocol 

guidelines. Lung explants were randomly assigned to one of four experimental groups: A9C (10µM), CFTRinh 

(5µM), CaCCinh (10µM), or matching volumes of DMSO for control. Lungs were randomly assigned one of 

four experimental groups (n ≥ 12 per condition). 

Inhibitors and DMSO were diluted in a standard solution containing (in mM): sodium chloride 

(135.000, NaCl, Cat No. 7647-14-5, Merck, Germany), KCl (5.000), MgCl2 (1.200), CaCl2 (1.000), D-glucose 
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(10.000), HEPES (5.000) were used as vehicle according to the previously published work adapted from 

(Brennan et al., 2016).  

 

Intraluminal injections 

Pulmonary tissues were punctured for intraluminal injections. For that, borosilicate glass capillaries 

(1.55 mm outer diameter, 1.15 mm inner diameter; HIRS9201590, VWR International, USA) were pulled 

using Flaming Brown Micropipette Puller (P500, Heat 545, Vel 13, Del 10; Model P-97, Sutter Instrument 

Co., USA). Lung explants were randomly selected and under the stereoscopic dissecting microscope 

(Olympus SZX16 stereomicroscope), the intraluminal injections were performed on day0 (D0) and day2 

(D2). The pulled borosilicate glass capillary was filled with one of the experimental solutions marked with 

trypan blue (Cat No. T8154, Sigma-Aldrich, USA) and the capillary was then slowly inserted into the lumen. 

The presence of trypan blue in the lumen was indicative of successful assessment. Only the lung explants 

with effective injections at D0 and D2 and perfectly placed in the nucleopore membrane were considered 

for analysis. 

 

PIEZO1/PIEZO2 inhibition 

GsMTx4 (Cat No. ab141871, Abcam, UK), a selective PIEZO1/PIEZO2 inhibitor, was diluted in water 

and at the final concentration of 5µM, GsMTx4 were supplemented to the culture medium on the day of 

intraluminal injections, D0 and D2, following the previously published work (Gnanasambandam et al., 2017; 

Wang et al., 2017; Maneshi et al., 2018). Lungs were randomly assigned one of four experimental groups 

(n ≥ 12 per condition). 

 

Morphometric analysis 

The branching morphogenesis was monitored daily by photographing the explants. At D0 (0h) and 

D4 (96h) of culture, the branching of all lung explants was determined by counting the number of peripheral 

airway epithelial buds of the developing respiratory tree (Massoud et al., 1993). For the morphometric 

analysis, the internal perimeter of the lung (epithelium) was assessed at D0 and D4 using Axion-Vision Rel 

4.3 (Carl Zeiss GmbH, Germany). Lastly, explants were processed for immunofluorescence or western blot 

assay. 
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Immunofluorescence 

For immunostaining, lungs at E17.5 and from the lung explant cultures at D4 were fixed in 4% 

paraformaldehyde for 2 hours or 15 minutes, respectively. Whole lungs and explants were then embedded 

in OCT (OCT compound, Cat No. 4582, Scigen, UK) sectioned (4μm) and placed on SuperFrost®Ultra Plus 

slides (11976299, Thermo Scientific, UK). 

Double immunostained using a 3-day protocol were next performed (adapted from (Bajanca et al., 

2004; Lazarus et al., 2011)). Slides were first boiled in 10mM citrate buffer (Cat No. AP-9003-125, Thermo 

Scientific, UK) for 20 minutes (in vivo samples) or 5 minutes (explant). Samples were blocked by incubation 

in 20% bovine serum albumin (Cat No. A3294, Sigma-Aldrich, USA) and 0.5% Triton X-100 (Cat No. 9036-

19-5, Merck, Germany) for 4 hours followed by 36 hours of incubation with primary antibodies at room 

temperature (RT). Sections were then washed and incubated with the corresponding secondary antibodies 

for 12 hours in 1% BSA in PBS at RT. Finally, samples were washed in PBS1x, incubated with 4′,6-diamidino-

2-phenylindole (DAPI, Cat No. D1306, Life Technologies, USA) for 1 minute at RT, and mounted in 

PermaFluor™ Aqueous Mounting Medium (Cat No. TA-006-FM, Life Technologies, USA). Visualization and 

image capture of immunofluorescence staining was performed using an Olympus Widefield Upright 

Microscope BX61 (Olympus Corporation, Japan). 

The primary antibodies used were PGP9.5 (1:150, Cat No. ab72911, Abcam, UK), PIEZO1 (1:50, 

Cat No. NBP1-78537, Novus Biologicals, USA), and PIEZO2 (1:50, Cat No. NBP1-78624, Novus Biologicals, 

USA). Negative control reactions included the omission of the primary antibody. The secondary antibodies 

were: Alexa Fluor 647-conjugated donkey anti-rabbit IgG(H+L) (1:500, Cat No. A31573, Life Technologies, 

USA) and Alexa Fluor plus 488-conjugated goat anti-mouse IgG(H+L) (1:500, Cat No. A32723, Life 

Technologies, USA). Different and unrepeated in vivo samples or lung explants were randomly selected, n ≥ 

4 per stage or condition/antibody for whole lungs and lung explants). 

 

Western blot 

Lungs explants were processed for Western blot analysis according to the previously described 

methods (Gonçalves et al., 2020). In brief, 15 µg of protein were loaded onto 10% acrylamide mini gels, 

electrophoresed at 100 V at room temperature, and then transferred to nitrocellulose membranes 

(HybondTM-C Extra, GE Healthcare Life Sciences, UK). Blots were blocked in 5% bovine serum albumin and 

probed with primary antibodies to ghrelin (1:250, ON, 4ºC; Cat No. sc10368, Santa Cruz Biotechnology 

Inc., USA), bombesin (1:250, ON, 4ºC; Cat No. H00002922-MO3, Novus Biologicals, USA), PIEZO1 (1:250, 

ON, 4ºC; Cat No. HPA047185, Sigma-Aldrich, USA), PIEZO2 (1:250, ON, 4ºC; Cat No. HPA040616, Sigma-
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Aldrich, USA), myosin light chain 2 (MLC2, 1∶250; ON, 4ºC; Cat No. #3672, Cell Signaling Technology Inc., 

USA), and alpha-smooth muscle actin (α-SMA, 1:500, ON, 4ºC; Cat No. NBP2-33006, Novus Biologicals, 

USA) according to the manufacturer's instructions. For loading control, blots were probed with GAPDH 

(1∶5000; Cat No. MAB5718, R&D system, USA). After this, membranes were incubated with the 

corresponding secondary antibodies, developed with Clarity West ECL substrate (Cat No. 1705060, Bio-Rad, 

USA), and the chemiluminescent signal was captured by the Chemidoc XRS (Bio-Rad, USA) (Gonçalves et 

al., 2020). 

Quantitative analysis was performed with Quantity One 4.6.5 1-D Analysis Software (Bio-Rad, USA). 

Three independent experiments were performed (n ≥ 4 were used per antibody/condition). 

 

Statistical Analysis 

All quantitative data are presented as mean ± standard deviation (SD). One-way ANOVA was 

performed for the number of peripheral airway buds, epithelial perimeter, and protein expression levels on 

[Cl-] (5.8, 29, 143, 715mM), and Cl- channels inhibitors (SS, A9C, CFTRinh, CaCCinh).  Two-way ANOVA 

was used in the analysis of both morphological (number of peripheral airway buds, epithelial perimeter) and 

the molecular (protein expression levels) effect after GsMTx4 exposure. The parametric test assumptions 

were previously verified, and an additional LSD test was used for post-test analysis. Statistical analysis was 

performed using the statistical software IBM SPSS Statistics 26.0. Statistical significance was confirmed at 

p < µ0.05, γ0.01, β0.001, and α0.0001. 

 

Results 

Intraluminal injection in ex vivo lung explant cultures.  

To establish the intraluminal injections in ex vivo lung explant cultures, lung tissue was punctured 

using pulled borosilicate glass capillaries and, for the first time, effective intraluminal injections at D0 and 

D2 were performed as demonstrated in supplementary movie1 and movie2, respectively. Furthermore, 

dynamic luminal movements were observed at D4 (supplementary movie3) that recognized the existence of 

fetal lung liquid in ex vivo lung explant cultures. 

 

Luminal chloride as a modulator of branching morphogenesis.  

To study the role of intraluminal composition in branching morphogenesis, ex vivo lung explants were 

cultured for 4 days after injection of crescent [Cl-]: 5.8, 29, 143, 715mM Cl- or Cl- channels inhibitors: SS, 

A9C, CFTRinh, CaCCinh. 
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Morphometric analysis revealed an opposite effect in branching morphogenesis after injection of 5.8 

and 715mM Cl-, indicated by the ratio of D4 and D0 in the number of peripheral airway buds (Figure 1a-b) 

and epithelial perimeter (Figure 1c). Specifically, when compared to basal [Cl-], 5.8mM inhibits, whereas 

715mM Cl- stimulates both the number of peripheral airway buds (Figure 1b) and the epithelial perimeter 

(Figure 1c). Unexpectedly, injection of 29mM was unable to change branching morphogenesis at D4 (Figure 

1a-c) 

Regarding the Cl- channels inhibitors, an important inhibitory effect in terms of the number of 

peripheral airway buds (Figure 1d-e) and epithelial perimeter (Figure 1f) were visualized after CFTRinh or 

CaCCinh injections when compared with SS, while unchanged lung growth was observed after A9C luminal 

injection (Figure 1d-f). 

 

PIEZO1 and PIEZO2 are expressed in pulmonary neuroendocrine cells during branching morphogenesis. 

To explore the molecular mechanism under branching morphogenesis and intraluminal composition, 

the spatial distribution of mechanosensors (PIEZO1 and PIEZO2), and neuroendocrine cell marker (PGP9.5) 

were determined in both in vivo and ex vivo branching morphogenesis. Immunofluorescence assay disclosed 

the colocalization of PIEZO1 and PIEZO2 with PGP9.5 at E17.5 (Figure 2a) and after intraluminal injection 

of SS or 143mM Cl- in ex vivo lung explant cultures (Figure 2b). Regarding the [Cl-] and Cl-  channels inhibitors, 

the similar expression profile observed for PIEZO1 and PIEZO2 in PGP9.5+ cells at 5.8 and 715mM Cl- (Figure 

2c) contrast with the more restricted PIEZO1 and PIEZO2 pattern visualized in neuroendocrine cells after 

injection of CFTRinh or CaCCinh (Figure 2d). 

 

Intraluminal chloride concentration regulates ghrelin, bombesin, PIEZO1, and PIEZO2, expression levels.  

Since the PIEZO1 and PIEZO2 are expressed in neuroendocrine cells in branching morphogenesis, 

we then quantified by western blot the relative expression levels of receptors: PIEZO1, PIEZO2; and 

neuroendocrine products: ghrelin and bombesin, at the above-mentioned experimental conditions. 

In comparison with 143mM Cl-, 715mM was an inductor of ghrelin (Figure 3a-b), bombesin (Figure 

3c), PIEZO1 (Figure 3d), and PIEZO2 (Figure 3e) expression, whereas 5.8mM Cl- restrict inhibited the relative 

expression levels of ghrelin (Figure 3a-e). Unchanged molecular profile in terms of ghrelin (Figure 3b), 

bombesin (Figure 3c), PIEZO1 (Figure 3d), or PIEZO2 (Figure 3e) were detected analyzing 29 versus 143mM 

Cl-.  

Regarding the Cl- channels inhibition, distinct effects on ghrelin (Fig. 3f-g), bombesin (Fig. 3h), PIEZO1 

(Figure 3i), and PIEZO2 (Figure 3j) expression were visualized after inhibition of ClCs by A9C, CFTR by 
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CFTRinh, and CaCC by CaCCinh as demonstrated in Figure 3f-j. Specifically, compared with SS, the injection 

of CFTRinh or CaCCinh were inhibitors of ghrelin (Figure 3f-g), bombesin (Figure 3h), PIEZO1 (Figure 3i), 

and PIEZO2 (Figure 3j) expression, whereas no significant modifications in the protein expression levels were 

observed after A9C injection (Figure 3f-j).  

 

PIEZO1 and PIEZO2 control branching morphogenesis.  

To evaluate the functional role of PIEZO1 and PIEZO2 expression in branching morphogenesis, the 

culture medium was supplemented with GsMTX4, a known pharmacological inhibitor of PIEZO1 and PIEZO2, 

on the day of intraluminal injections, D0 and D2. 

The morphologic analysis showed a similar number of peripheral airway buds and epithelial perimeter 

after simultaneously medium supplementation with GsMTx4 and intraluminal injection of 5.8, 143, or 

715mM Cl- (Figure 4a-c). Indeed, comparable branching morphogenesis was detected between 5.8mM Cl- 

without GsMTx4 and 5.8, 143, or 715mM with GsMTx4 (Figure 4a-c). Concerning the Cl- channels inhibition, 

the synchronous SS injection and PIEZO1/PIEZO2 downregulation triggered a relevant decrease in terms of 

the number of peripheral airway buds (Figure 4d-e). Oppositely, the decrease in branching morphogenesis 

induced by CFTR or CaCCs inhibitors versus SS without GsMTx4 was unchanged by PIEZO1/PIEZO2 

inhibition (Figure 4d-f). 

To better identify the PIEZO1/2 function in fetal lung growth, the relative expression levels of PIEZO1, 

PIEZO2, ghrelin, and bombesin were also evaluated at the aforementioned conditions. GsMTx4 treated-lung 

presented a decrease in PIEZO1 (Figure 5a-b), PIEZO2 (Figure 5c), ghrelin (Figure 5d), and bombesin (Figure 

5e) expression at 143 and 715mM Cl- when compared with the GsMTx4 untreated-lungs (Figure 5a-e). In 

contrast, unaffected expression levels of PIEZO1 (Figure 5a-b), PIEZO2 (Figure 5c), ghrelin (Figure 5d), and 

bombesin (Figure 5e) were visualized comparing the injection of 5.8mM Cl- with and without GsMTx4. 

Concerning the Cl- channels inhibitors, we reported the GsMTx4 as an inhibitor of PIEZO1 (Figure 5f-

g), PIEZO2 (Figure 5h) ghrelin (Figure 5i), and bombesin (Figure 5j) expression after intraluminal injection 

of SS. On the other hand, the simultaneous inhibition of PIEZO1/PIEZO2 and CFTR or CaCC injection had 

no additional effect on the relative expression levels of PIEZO1 (Figure 5f-g), PIEZO2 (Figure 5h), ghrelin 

(Figure 5i), or bombesin (Figure 5j).  

 

The molecular effect of intraluminal injections in airway smooth muscle cells.  

Previous work reported a morphological interaction between branching morphogenesis and peristaltic 

airway contractions. Thus, we then assessed the molecular profile of MLC2 and α-SMA+ at the above-
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mentioned experimental conditions (Figure 6a-c). Our findings revealed an opposite effect in the expression 

of MLC2 (Figure 6b) and α-SMA (Figure 6c) after injection of 5.8 or 715mM Cl-. Indeed, when compared 

with 143mM Cl-, 5.8 were exposed to be an inhibitor, while 715mM Cl- promotes the expression of MLC2 

(Figure 6b) and α-SMA (Figure 6c). Finally, the depletion of PIEZO1/PIEZO2 expression achieved by GsMTx4 

medium supplementation had a similar decrease in terms of the relative expression levels of MLC2 (Figure 

6b) and α-SMA (Figure 6c) at 143 and 715mM Cl- observed at D4. No differences in the relative expression 

levels were visualized after injection of 5.8mM Cl- with and without GsMTx4. 

Regarding the Cl- channel inhibitors, after the intraluminal injection of CFTRinh or CaCCinh versus 

SS, a significant inhibitory effect was visualized in terms of MLC2 (Figure 6d-e) and α-SMA (Figure 6f). In 

addition, the medium supplementation with GsMTx4 only decreased the relative expression levels of MLC2 

(Figure 6e), and α-SMA (Figure 6f) previously observed after SS intraluminal. No additional effects in MLC2 

(Figure 6e) or α-SMA (Figure 6f) were visualized after simultaneously GsMTX4 medium supplementation and 

intraluminal injections of CFTRinh or CaCCinh (Figure 6d-f). 

 

Discussion 

The fetal lung develops as a fluid-filled organ that maintains the lung in a constantly distended state, 

stimulating its growth and maturation (Alcorn et al., 1977; Harding et al., 1984; Hooper & Harding, 1995; 

Harding & Hooper, 1996). Unfortunately, the difficulty that it is capture or recapitulate these in vivo 

morphological dynamics in the lab compromise the study of the underlying mechanisms, particularly at early 

developmental stages. In this context, benefiting from the ex vivo lung explant cultures that maintain the in 

vivo physiologic architecture and the cellular interactions observed at pseudoglandular or branching stage 

(Massoud et al., 1993; Yeganeh et al., 2018), we established effective intraluminal injections at D0 and D2 

for which the dynamic movements observed at D4 into the lumen indicate the existence of lung liquid in the 

ex vivo model and validate this as a valuable method for the study of lung fluid composition in branching 

morphogenesis.  

On the strongly evidenced premise that the Cl- movement under the epithelium is an inductor of Na+ 

and water movements in the same direction (Olver & Strang, 1974; Olver et al., 1981; Welsh et al., 1982; 

Welsh, 1983), we manipulate the intraluminal lung fluid composition by injection of crescent [Cl-] or Cl- 

channel inhibitors, and then the branching morphogenesis was analyzed at D4. Our findings demonstrated 

the intraluminal [Cl-] is able to regulate fetal lung growth. In fact, the increase of luminal [Cl-] stimulates 

branching morphogenesis, whereas a significant decrease was observed after depletion of [Cl-] at 5.8mM of 

Cl-, CFTRinh or CaCCinh (Figure 7). Curiously, experiments in fetal sheep have demonstrated a direct link 
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between reduced distension due to fluid loss and lung hypoplasia. Conversely, tracheal obstruction in utero, 

leading to fluid accumulation and results in more rapid lung growth (Nardo et al., 1998). These differences 

in pressure between the airway lumen and surrounding tissue are essential for normal airway development, 

with tension and mechanical stretch playing additional roles in cellular differentiation and airway growth 

(Badri et al., 2008). Finally, the molecular inhibition of ionic channels, such as CFTR, ClC2, or CaR, critical 

for lung fluid secretion induces key defects in vivo and ex vivo branching morphogenesis (Blaisdell et al., 

2004; Larson & Cohen, 2006; Finney et al., 2008; Brennan et al., 2013, 2016; Meyerholz et al., 2018; He 

et al., 2020) that reinforce the value of our ex vivo model for the study of intraluminal fluid in fetal lung 

growth.  

Our data detected PIEZO1 and PIEZO2 colocalized with PGP9.5, a molecular marker for 

PNECs/NEBs. Interestingly, PIEZO1 and PIEZO2 receptors are sensors for mechanical stretch, like pressure, 

with major roles in the regulation of blood pressure and respiratory function at birth, respectively (Coste et 

al., 2010; Nonomura et al., 2017; Zeng et al., 2018). In contrast, PNECs/NEBs are described as airway 

sensors with little-understood functions (reviewed in (Garg et al., 2019)). Literature also shows the secreted 

neuroendocrine products, ghrelin, and bombesin, as promotors of the in vivo and ex vivo fetal lung growth 

(Sunday et al., 1990; Santos et al., 2006; Nunes et al., 2008; Sakai et al., 2014; Pereira-Terra et al., 2015). 

To further investigate these dynamics, neuroendocrine products (ghrelin, bombesin) and mechanoreceptors 

(PIEZO1 and PIEZO2) were quantified at the aforementioned conditions. We detected the intraluminal [Cl-] 

as a modulator of ghrelin, bombesin, PIEZO1, and PIEZO2 expression in branching morphogenesis. Briefly, 

the decrease of luminal [Cl-], 5.8mM Cl-, was an inhibitor of ghrelin with no significant effects in the 

expression of the remaining markers (Figure 7). Surprisingly, 715mM Cl- stimulated ghrelin, bombesin, 

PIEZO1, and PIEZO2 expression, whereas the luminal injection of CFTRinh or CaCCinh inhibited fetal lung 

growth and equally inhibited the four markers (Figure 7). 

Dickson et al (Dickson & Harding, 1987) described the lung liquid as a regulator of fetal lung growth 

in a mechanism independent of the lung fluid secretion and indicated the lung as unable to respond to 

alterations in lung liquid volume (Dickson & Harding, 1987). Indeed, the decrease in pulmonary growth was 

related to reduced tracheal pressure and tracheal efflux rate in the fetal sheep model (Dickson & Harding, 

1987). Now, our analysis demonstrated the molecular players (PIEZO1, PIEZO2, bombesin) overexpressed 

at 715mM Cl- and unchanged at 5.8mM Cl-, when compared with the basal [Cl-], 143mM. As such, it is 

important to define the fundamental responses in fetal lung growth after PIEZO1/PIEZO2 inhibition. For that, 

we next inhibited the PIEZO1/PIEZO2 on the day of intraluminal injections by GsMTx4. We demonstrated a 

significant inhibition in terms of neuroendocrine products and branching morphogenesis after GsMTx4 
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medium supplementation. More importantly, these inhibitions were independent of the intraluminal [Cl-]. In 

fact, apart for 5.8mM Cl- where no significant differences between GsMTx4-treated and -untreated lungs were 

observed, the intraluminal injection of 143, 715mM Cl- or SS with the synchronized inhibition of 

PIEZO1/PIEZO2 by GsMTx4 similarly decreased the morphological and molecular profiles. These findings 

indicate the PIEZO1 and PIEZO2 as major regulators of the mechanosensor pathway in branching 

morphogenesis. A recent publication showed PIEZO2 as regulator of pulmonary function in both neonates 

and adults (Nonomura et al., 2017). Indeed, the global and sensory neuron-specific ablation of mechanically 

activated ion channel PIEZO2 causes respiratory distress and death in newborn mice, whereas the induced 

ablation of PIEZO2 in the sensory neuron of adult mice causes decreased neuronal responses to lung 

inflation, an impaired Hering-Breuer mechanoreflex (Nonomura et al., 2017). In this context, our 

investigation suggests the PIEZO1/PIEZO2 expressed in PNECs/NEBs as sensors of branching 

morphogenesis in the fetal lung development.  

Physiology also showed the movement of intraluminal fluid through epithelial tubules as a 

consequence of the peristaltic activity of fetal airway smooth muscle (ASM) that maintains positive pressure 

in the lumen area to keep the tubules in a distended state (Hooper & Harding, 1995). The formation of new 

airspaces during branching morphogenesis early in gestation is closely followed by the differentiation of 

mesenchymal cells into ASM cells. Evidenced by cellular expression of the contractile protein α-SMA as an 

early differentiation marker (Leslie et al., 1990), ASM progenitor cells have been identified in both the 

proximal and distal lung mesenchyme (Mailleux et al., 2005; Shan et al., 2008). This differentiation of ASM 

simultaneous produce the MLC filaments in fetal lungs (Lowey & Trybus, 1995; Schittny et al., 2000; Santos 

et al., 2007; Kim et al., 2015; Yu et al., 2016; Goodwin et al., 2019; Álvarez-Santos et al., 2020). To 

determine the molecular effect of intraluminal Cl- composition in airway smooth muscle cells, we evaluated 

α-SMA and MLC2 at the aforementioned experimental condition with and without GsMTx4. We observed the 

increase of [Cl-] and branching morphogenesis related to the overexpression of MLC2 and α-SMA. 

Oppositely, the decrease in α-SMA and MLC2 were associated with reduced [Cl-] and branching 

morphogenesis (Fig. 7). These results indicated the intraluminal composition and the neuroendocrine 

activation upstream of airway smooth muscle contraction and branching morphogenesis. Interestingly, the 

hypoplastic phenotype observed in CDH context was connected to decrease on α-SMA and MLC2 from 

pseudoglandular-to-canalicular (Santos et al., 2007), whereas the tracheal occlusion in in vivo mouse model 

was inductor of α-SMA and MLC2 expression at later canalicular stage (Seaborn et al., 2008), suggesting 

the PIEZO1/PIEZO2 pathway as a potential target for the treatment of fetal pulmonary hypoplasia. 
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Collectively, our findings offer a mechanistic basis for previous in vivo studies that report the excess 

of fluid drainage during fetal life or decrease of fluid pressure associated with lung hypoplasia with 

underbranched lungs (Moessinger et al., 1986; Harding et al., 1990; Copland & Post, 2004; Shi et al., 

2007; Wilson et al., 2007; Jani et al., 2009; Jani & Nicolaides, 2012; Gonçalves et al., 2021). Here, we 

described key information on the specific pathway of action by which the intraluminal Cl- composition 

regulates fetal lung growth. We demonstrate how the intraluminal [Cl-] activate the PNECs/NEBs through 

PIEZO1/PIEZO2 mechanoreceptors that in turn regulate the expression of ghrelin, bombesin, α-SMA, and 

MLC2 in the fetal lung growth (Figure 7). 
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Figure’s legends 

 

Figure  1 – Intraluminal chloride modulates branching morphogenesis. Upper panel: (A) represents lung 

explants at day0 and day4 after intraluminal injection of crescent chloride concentrations ([Cl-]): 5.8, 29, 

143, and 715mM Cl-, at day0 and day2. (B-C) Morphometric analysis of (B) number of peripheral airway 

buds and c epithelial perimeter at the different [Cl-]. Lower panel: (D) represents the fetal lung explants after 

intraluminal injection of distinct Cl- channels inhibitors: anthracene-9-carboxylic acid (A9C) to Cl- voltage-

gated channel (ClC); cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh) to CFTR; 

and calcium-dependent Cl- channel inhibitorA01 (CaCCinh) to CaCC. (E-F) Morphometric analysis of (E) 

number of peripheral airway buds and (F) epithelial perimeter. Lungs were randomly assigned one of eight 

experimental groups (n ≥ 12 per condition). Results are expressed as ratio of D4 and D0 (D4/D0) and 

presented as mean ±SD. Black rectangles define the control group. Scale bar, 1mm. p< α0.0001, β0.001, 

γ0.01, µ0.05. 
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Figure  2 - Spatial distribution of PIEZO1 and PIEZO2 in in vivo and ex vivo branching morphogenesis. 

Representative examples of immunofluorescence assay for PIEZO1, PIEZO2, and PGP9.5 staining at (A) 

embryonic day (E)17.5; and after intraluminal injections of (B) 143mM Cl- or standard solution (SS); (C) 

crescent chloride concentrations ([Cl-]): 5.8 and 715mM Cl-; and (D) Cl- channels inhibitors: anthracene-9-

carboxylic acid (A9C) to Cl- voltage-gated channel (ClC); cystic fibrosis transmembrane conductance 

regulator inhibitor172 (CFTRinh) to CFTR; and calcium-dependent Cl- channel inhibitorA01 (CaCCinh) to 

CaCCs. 143mM Cl- and standard solution (SS) represent the control condition for [Cl-] and Cl- channels 

inhibitors, respectively. n ≥ 4 per stage or condition/antibody for whole lungs and lung explants Scale bar 

50µm. 
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Figure  3 - Intraluminal chloride modulates the expression of ghrelin, bombesin, PIEZO1, and PIEZO2. (A-E) 

Upper panel represents the main effects of the crescent chloride concentrations ([Cl-]). (A) Examples of 

representative blots are shown. (B-E) Relative expression levels of (B) ghrelin, (C) bombesin, (D) PIEZO1, 

and (E) PIEZO2. (F-J) Lower panel shows the molecular effect of intraluminal Cl- channels inhibition by 

anthracene-9-carboxylic acid (A9C) to Cl- voltage-gated channel (ClCs); cystic fibrosis transmembrane 

conductance regulator inhibitor172 (CFTRinh) to CFTR and calcium-dependent Cl- channel inhibitor A01 

(CaCCinh) to CaCCs. (F) Examples of representative blots are shown. (G-J) Protein expression levels for (G) 
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ghrelin, (H) bombesin, (I) PIEZO1, and (J) PIEZO2. Black rectangles define the control group. Each lane 

represents a pooled tissue sample, and relative expression levels are determined against GAPDH. n ≥ 4 were 

used per antibody/condition. Results are presented as mean±SD. Symbols indicate the main effects and 

non-redundant interactions of the one-way ANOVA. p< α0.0001. 

  



 

114 
 

 

Figure  4 - GsMTx4, a PIEZO1/2 inhibitor, abolishes the effect of Cl- intraluminal manipulation and decreases 

the branching morphogenesis. (A-C) Upper panel represents the main cumulative effect of intraluminal 

injection of crescent chloride concentrations ([Cl-]) 5.8, 143, or 715mM Cl- and the medium supplementation 

with GsMTx4 at day0 (D0) and day2 (D2). (A) Represents lung explants at D0 and D4 for the crescent [Cl-]. 

(B-C) Morphometric analysis of (B) peripheral airway buds and (C) epithelial perimeter. (D-F) Lower panel 

shows the additional effect of PIEZO1/2 inhibition after intraluminal injection of Cl- channels inhibitors: cystic 

fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh) to CFTR; and calcium-dependent Cl- 

channel inhibitor A01 (CaCCinh) to CaCCs. (d) represents the fetal lung explants at D0 and D4 for the 

distinct Cl- channels inhibitors. (E-F) Morphometric analysis of (E) peripheral airway buds and (F) epithelial 

perimeter. 143mM Cl- and standard solution (SS) identified the control condition for [Cl-] and Cl- channels 

inhibitors, respectively. White and dotted rectangles represent the medium (continues on the next page) 
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(continuation of the previous page) supplementation with and without GsMTx4, respectively. n ≥ 4 were used 

per antibody/condition. Results are expressed as ratio of D4 and D0 (D4/D0) and presented as mean±SD. 

Symbols indicate the main effects and non-redundant interactions of the two-way ANOVA. p< α0.0001, 

β0.001, γ0.01, µ0.05. 
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Figure  5 – Decrease of PIEZO1 and PIEZO2 expression removes the molecular dynamics triggered by 

intraluminal chloride concentration. (A-E) Upper panel represents the main cumulative effect of 

intraluminal chloride concentration ([Cl-]) and medium supplementation with (dotted rectangles) and 

without (white rectangles) GsMTx4. (A) Examples of representative blots are shown. (B-E) Protein 

expression levels for (B) PIEZO1, (C) PIEZO2, (D) ghrelin and e bombesin are indicated. (F-J) Lower panel 

shows the additional effect of GsMTx4 after intraluminal injection of Cl- channels inhibitors: cystic fibrosis 

transmembrane conductance regulator inhibitor172 (CFTRinh) to CFTR; and (continues on the next page) 
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(continuation of the previous page) calcium-dependent Cl- channel inhibitor A01 (CaCCinh) to CaCCs. (F) 

Examples of blots are shown. (G-J) Relative expression levels of (G) PIEZO1, (H) PIEZO2, (I) ghrelin, and (J) 

bombesin. 143mM Cl- and standard solution (SS) represents the control condition for [Cl-] and Cl- channels 

inhibitors, respectively. White and dotted rectangles represent the medium supplementation with and without 

GsMTx4, respectively. n ≥ 4 were used per antibody/condition. Results are presented as mean±SD. Symbols 

indicate main effects and non-redundant interactions of the two-way ANOVA. p< α0.0001. 
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Figure  6 - Molecular effect of intraluminal chloride and GsMTx4 in smooth muscle cells. (A-C) The 

upper panel represents the main cumulative effect of intraluminal chloride concentration ([Cl-]) 

and medium supplementation with and without GsMTx4. (A) Examples of representative blots are 

shown. (B-C) Protein expression levels for (B) myosin light chain 2 (MLC2), and (C) alpha-smooth 

muscle actin (α-SMA) are quantified. (D-F) Lower panel shows the additional effect of PIEZO1/2 

inhibition after intraluminal injection of Cl- channels inhibitors: cystic fibrosis transmembrane 

conductance regulator inhibitor172 (CFTRinh) to CFTR and; calcium-dependent Cl- channel 

inhibitor A01 (CaCCinh) to CaCCs. (D) Examples of representative blots are shown. (E-F) Relative 

expression levels of (E) myosin light chain 2 (MLC2), and (F) alpha-smooth muscle actin are 

showed. 143mM Cl- and standard solution (SS) represents the control condition for [Cl-] and Cl-

channels inhibitors, respectively. White and dotted rectangles represent the medium 

supplementation with and without GsMTx4, respectively. Each lane represents a pooled tissue 

sample, and the relative expression levels were determined against GAPDH. n ≥ 4 were used per 

antibody/condition. Results are presented as mean±SD. Symbols indicate the main effects and 

non-redundant interactions of the two-way ANOVA. p< α0.0001, β0.001, γ0.01, µ0.05. 
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Figure  7 – Schematic representation of the role of intraluminal chloride concentrations in fetal 

branching morphogenesis. α-SMA, alpha-smooth muscle actin; CaCCinh calcium-dependent Cl- 

channel inhibitorA01; CFTRinh, cystic fibrosis transmembrane conductance regulator inhibitor172; 

MLC2, myosin light chain 2; SS, standard solution. 
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Supplementary information 
 
 
Table S1. Summary of chemical compounds in the injected solution used for manipulation of the 

intraluminal fluid. (a) show the chemical concentration by compound for standard solution (SS) and crescent 

chloride concentrations, [Cl-]: 5.8, 29, 143, and 715mM. (b) demonstrates the ionic composition in terms 

of chloride (Cl-), potassium (K+), magnesium (Mg2+) and calcium (Ca2+) in SS, 5.8, 29, 143 and 715mM Cl- 

 

 
 

 
Movie1. Intraluminal injection at day0 (D0). 

Movie 2. Intraluminal injection at day2 (D2). 

Movie 3. Dynamic intraluminal fluid at day4 (D4). 
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Chapter 6 – General discussion 
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Research regarding the prediction of FLH and the mechanisms underlying normal and hypoplastic 

fetal lung development are two sides of the same coin. If prediction is critical for familiar counseling and 

neonatal assistance, the understanding of causality between morphology and the molecular/cellular 

pathways allows us the development of new therapeutic strategies to improve pulmonary growth/maturation 

during fetal life.  

In this thesis, we first analyzed the value of available noninvasive methods, 2D- and 3D-US and MRI, 

in the prediction of lethal pulmonary hypoplasia before birth (Chapter 2). Regarding the molecular/cellular 

mechanisms, epithelial cell markers were evaluated in normal and hypoplastic fetal lungs (Chapter 3 and 

4). ROBO was assessed in the context of branching morphogenesis, and it was described as a regulator of 

SOX2 versus SOX9 molecular profile. Spatiotemporal distribution and the relative expression levels of 

receptors (ROBO1 and ROBO2) and epithelial progenitors (SOX2 and SOX9) were also compared in normal 

and hypoplastic lungs from embryonic-to-saccular stages (Chapter 3). We then extended our studies to 

investigate the impact of lung fluid composition, namely chloride concentration ([Cl-]), in branching 

morphogenesis, and the potential of ex vivo lung explant cultures to study lung fluid composition in fetal 

branching morphogenesis (Chapter 5). 

In light of the major findings achieved throughout this thesis, the particular aspects 

of undifferentiated and differentiated epithelial cells in nitrofen-induced CDH rat model and the relative 

contribution of ROBO in branching morphogenesis are discussed. Furthermore, intraluminal Cl- in the 

modulation of ex vivo branching morphogenesis through PIEZO1/PIEZO2 is debated under the 

mechanotransduction value. Finally, a general discussion of how these findings can contribute to the body 

of knowledge in (ab)normal fetal lung development and in the improvement of fetal lung growth after tracheal 

occlusion will be provided. 

6.1. Imagiological methods predict lethal pulmonary hypoplasia before birth 

Secondary for multiple disorders with intra or extrathoracic causes, FLH is evaluated in terms of 

neonatal respiratory function. Respiratory function depends on the overall epithelial cell surface that 

correlates with fetal lung volume, making reasonable the use of imagiological methods to detect macroscopic 

hypoplastic lungs. Subsequently, focusing on two fundamental topics: 1) detect general gaps regarding the 

clinical experimental design; and 2) describe the more predictive method for lethal FLH, our systematic 

review compares published articles that assessed the predictive capacity of 2D-, 3D-US, or MRI to recognize 

lethal FLH secondary to general diseases, PPROM or CDH.  
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Our systematic review indicated the US as valuable method to detect lethal pulmonary hypoplasia. 

We reveal discrepant statistical values for similar US methods, for which data normalization for 

uncomplicated pregnancies and medical centers were constant factors of superior predictive values 

(Gonçalves et al 2021). Comparing the 2D and 3D-US, our research identified 3D-fetal lung volume to body 

weight ratio (3D-FLB) and 2D-lung area (LA) with similar predictive capacities of lethal FLH in groups with 

0% survival. In contrast, an unchanged accuracy for 3D-US with the progressive decrease on 2D-US 

correlates with the decrease in disease severity degree (Gonçalves et al 2021). These differences are easily 

explained in the light of the individual specification by method and their association with neonatal respiratory 

function. In fact, since the pulmonary function depends on the overall alveolar surface area that correlates 

with lung volume, the virtual organ computer-aided analysis technique (VOCAL) that constructs a 3D lung 

from a sequence of 6 sections of each lung around a fixed axis, each after a 30º rotation from the previous 

one (Strizek et al 2015) is an obviously better predictor than the 2D measurements. Interestingly, Gerards 

et al (Geralds et al 2008) compare the 2D and 3D-US in prediction of lethal FLH in general diseases, renal 

anomalies, and skeletal and neuromuscular malformations and also report 3D as better predictor than 2D-

US. However, the precise analysis of the results showed improvements in 2D- and 3D-US accuracies after 

disease segregation according with their etiology. This discussion is relevant considering the typical 

equipment’s available in medical centers. In fact, the better (observed-to-expect total fetal lung volume) and 

the used (2D-o/e-LHR) method to predict FLH in CDH fetuses corroborate this descrepacy.  

Our results also detected increased predictive values after disease segregation according to etiology. 

These improvements are understandable considering the multiple factors, e.g. severity degree, gestational 

age at insult and duration, gestational age at delivery, or additional abnormalities, that not only define the 

intra and extrathoracic causes of FLH but also distinguish the effects on fetal lung growth or maturation. 

Indeed, the comparison of fetal lung growth observed in PPROM as CDH easily illustrates these differences, 

with the lung growing bilaterally and symmetrically in PPROM (Cavoretto 2012), whereas in CDH the 

maximum compression of the contralateral lung occurs laterally rather than longitudinally. Subsequently, 

Jozan et al (Jozan et al 2018) described total o/e-LHR adjusted for prematurity and persistent 

oligohydramnios as useful to detect lethal FLH in pre-viable PPROM (Jozan et al 2018). However, the 

reported statistical value is lower than the described by 2D-(chest area-heart area)x100/chest area in 

prediction of FLH, secondary to PPROM (Gonçalves et al 2021). Concomitant with these observations, 

clinical studies also report additional elements for estimation of neonatal respiratory function. For instance, 

lung volume, femur length to abdominal circumference ratio, chest circumference to abdominal 

circumference ratio, and the presence or absence of polyhydramnios in skeletal dysplasia (Milks et al 2017); 
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the secondary persistent pulmonary hypertension in CDH; and the gestational age at rupture of membranes 

and latency period in PPROM, are all important predictive factors of respiratory function at birth that 

genuinely depends on etiology (Soylu et al 2010, Toukam et al 2019, Winn et al 2000).  

Since an immature pulmonary system may not oxygenate, another predictive method for the neonatal 

outcome is fetal lung maturation (Johnson et al 2019, Yarbrough et al 2014). Biochemical tests that 

measure the concentration of particular components of pulmonary surfactant are traditionally used to 

estimate pulmonary maturation. In contrast, a recent publication describes the ability of fetal lung maturation 

tests as poor (approximately 20-50%) in the prediction of immature lungs and suggests the discontinuity of 

these tests (Johnson et al 2019). Meanwhile, the US has long been proposed as a noninvasive alternative 

to amniocentesis in the prediction of fetal lung maturity. Generally, these studies showed a good correlation 

with neonatal respiratory morbidity, but the diagnostic accuracy was insufficient for clinical use. Over recent 

years, image resolution of fetal US and computer image processing has evolved immensely, allowing the 

development of quantitative texture analysis. As such, Palacio et al (Palacio et al 2017) described the echo 

texture analysis as an indirect approach to estimate the neonatal respiratory function. This method extracts 

information from medical images and quantifies tissue changes not visible to the human eye, whereas uses 

an indirect approach to estimate lung maturity (Blitz et al 2021, Palacio et al 2017). Authors show a decrease 

in fetal lung heterogeneity US imaging when applied to pregnancies at high risk for hypoplasia and suggest 

this image-processing technique as helpful for the improvement of risk stratification and treatment 

approaches for pulmonary hypoplasia (Blitz et al 2021). 

In conclusion, our observations recommend restrict studies for disease groups with increasing severity 

degrees and correlating prenatal FLH, survival at birth, and the need for neonatal respiratory support. The 

use of quantitative texture analysis must also be considered as an additional method to estimate FLH. 

6.2. Altered epithelial cell profile in induced-CDH lungs 

The recognized alterations in hypoplastic lungs detected by quantitative texture analysis (Blitz et al 

2021, Palacio et al 2017) reinforce the study of the cellular dynamics by pulmonary structure and 

developmental stage to qualify the tissue heterogeneity in hypoplasia. In CDH lungs, the arrested branching 

morphogenesis at early and reduced airways with alveoli notably thicker at later developmental phases are 

the major indicators of neonatal respiratory failure. 

In this Ph.D. thesis, the spatiotemporal distribution of SOX2/SOX9 allowed us to demonstrate the 

proximodistal patterning to be altered in the nitrofen-induced CDH rat model, for which the unexpected 

SOX2+ cells in primordia of bronchiole at pseudoglandular and alveolar duct at saccular stage were evident 
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(Table 1) (Gonçalves et al 2020). Furthermore, the downregulation (near zero) of SOX2 in BADJ at 

canalicular and saccular stages indicated a diffuse transition from conducting to respiratory airways (Table 

1) (Gonçalves et al 2020). Conversely, the more relevant alterations in SOX9 expression occurred at later 

developmental stages, with SOX9 overexpressed in proximal and downregulated in distal airways (Table 1). 

Literature shows SOX2 and SOX9+ cells as upstream targets for bronchiolar and alveolar lineages that later 

differentiate and form the conducting (allows the continuous passageway of the air) and respiratory (where 

gas exchange takes place) airways. Given the fundamental role of these epithelial cell types in both fetal 

lung development and future pulmonary function, we decide to go further and reveal the spatiotemporal 

dynamics and the relative expression levels of the distinct epithelial cell markers in CDH-induced versus 

normal fetal lungs (Gonçalves et al submitted). Importantly, the reported markers: FOXJ1, CCSP, CGRP, and 

SP-C identified ciliated, clara, PNECs/NEBs, and AT2 profiles, respectively, when expressed in differentiated 

epithelial tissues. Conversely, when expressed in undifferentiated epithelium recognize the cellular progenitor 

capacity to give rise to the above-mentioned epithelial cell types.  
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Table 2 - Summary of the major findings about epithelial cell makers in hypoplastic versus normal fetal lungs 

at pseudoglandular, canalicular and saccular stages. Nitrofen-induced congenital diaphragmatic hernia 

(CDH) rat model was used for the study of epithelial cell profiles in hypoplastic lungs. SRY-related HMG BOX 

2 (SOX2) identified proximal and SOX9 distal epithelial progenitor cells, whereas forkhead box protein J1 

(FOXJ1), clara cell secretory protein (CCSP), calcitonin gene-related peptide (CGRP), and surfactant protein-

C (SP-C) recognized ciliated, clara, pulmonary neuroendocrine cells/ neuroepithelial bodies, and alveolar 

type 2 profiles, respectively. Spatiotemporal distribution was quantified by pulmonary structure and 

developmental stage in the hypoplastic versus normal fetal lungs. up and down represent the up and 

downregulated proteins, respectively, in induced-CDH versus normal lungs. Black rectangles evidence the 

more relevant losses or gains of expression. BADJ:  bronchioalveolar duct junction; E: embryonic day; NE: 

not expressed. (Gonçalves et al 2020, Gonçalves et al submitted). 

 

We have reported aberrant expressions for FOXJ1, CGRP, CCSP, and SP-C by pulmonary structure 

and developmental stage after CDH induction (Table 1). These findings arose from the overexpression of 

FOXJ1 and CGRP in bronchi and primordia of bronchiole at pseudoglandular; and the increased expression 

of CGRP in bronchi; FOXJ1 and CGRP in terminal bronchiole; and CCSP and SP-C in BADJ at both 

canalicular and saccular stages in induced CDH-lungs (Table 1) (Gonçalves et al submitted). Previous work 

regarding the mechanisms controlling the epithelial cell differentiation indicated a preferable formation of 

PNECs/NEBs instead of clara cells at the canalicular stage in nitrofen-induced CDH rat model (Makanga et 

al 2013, Santos et al 2007, Sivakumar & Frank 2019). Now, our results by developmental stage and 

pulmonary structure evidenced a peculiar spatiotemporal distribution for SOX2 and FOXJ1 in induced-CDH 

lungs. In fact, at the same pulmonary structure (BADJ) and developmental stages (E19.5 and E21.5), we 

 
Pseudoglandular  

E17.5 
Canalicular 

E19.5 
Saccular 
E21.5 

 Bronchi 
Primordia 

for 
bronchiole 

Bronchi 
Terminal 

Bronchiole 
BADJ Bronchi 

Terminal 
Bronchiole 

BADJ 
Alveolar 

Duct 

SOX2 = new = up 
near 
zero 

up up 
near 
zero 

new 

SOX9 up up up up up up up = down 

FOXJ1 up up up up new = up new = 

CCSP = = down = up up = up = 

CGRP up up up up NE up up NE NE 

SP-C up = up up up = = up up 
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showed SOX2 to be downregulated (near zero), whereas FOXJ1 was unexpectedly expressed (Gonçalves et 

al 2020, Gonçalves et al submitted). Interestingly, SOX2 is a progenitor marker of the bronchiolar lineage 

that gives rise to ciliated, clara, or PNECs, while FOXJ1 that identifies the ciliated cell profile regulates the 

basal body docking, cilia formation, and motility (Vladar & Mitchell 2016, You et al 2004). As such, our 

findings linked the induced CDH-lungs with a diffuse transition from conducting to respiratory airways, while 

demonstrate a preferable expression of FOXJ1, SP-C, and CCSP in the bronchioalveolar transition zone 

(Gonçalves et al submitted). BADJ is formed at the canalicular stage (Barre et al 2016, Barre et al 2014) 

and demarcates airway‐fated epithelial cells from alveolar‐fated epithelial cells that work as stem cell niches 

in adult lung regeneration (Kuo & Krasnow 2015, Liu et al 2019).  

At the saccular stage, morphological studies in induced-CDH lung identify arrested airway branching 

with very narrow air spaces that contrast with the normal terminal sac observed in healthy lungs. These 

observations make obvious the increased interest in fetal pulmonary maturation in CDH lungs. As such, 

multiple studies have demonstrated a general impairment on surfactant production and secretion, evidenced 

by the low levels of phosphatidylcholine, and the factors involved in stimulating the maturation of surfactant 

lipids, such as PTHrP, ADRP, Thy1, and RA in the nitrofen-induced CDH rat model, whereas the inhibitor of 

surfactant phospholipid synthesis, TNFα, was overexpressed (Carroll et al 2002, Doi et al 2010, Friedmacher 

et al 2014a, Friedmacher et al 2014c, Gosemann et al 2012, Nakazawa et al 2007, Shima et al 1999). 

Now, at E21.5, we described CCSP and CGRP in bronchi; FOXJ1 and CGRP in terminal bronchiole; CCSP 

and SP-C in BADJ; and SP-C in the alveolar duct as the major overexpressed markers by pulmonary structure 

in induced-CDH lungs. We also identified a significant absence of the differentiated profile in terms of ciliated 

cells in bronchi at E21.5 that suggest an undifferentiated epithelium in CDH lungs (Gonçalves et al 

submitted).  

Since the primordial function of SOX2 and SOX9 in fetal lung development is defined the proximodistal 

patterning at branching morphogenesis and differentiate into bronchiolar and alveolar lineages at canalicular 

and saccular stages, we intend to further contribute to the body of knowledge with the analysis of potential 

upstream targets that define SOX2 versus SOX9 molecular profiles. Interestingly, during the development of 

CNS (Borrell et al 2012), mammary gland (Ballard et al 2015, Harburg et al 2014, Macias et al 2011), and 

pancreas (Escot et al 2018), ROBO/SLIT signaling regulates the epithelial progenitor cell profile. In fetal 

lungs, genome-wide studies in CDH versus normal lungs indicated ROBO/SLIT signaling as potential 

therapeutic target for CDH. More relevant, Robo1/2 knockout-mice induce a delay in diaphragm formation, 

whereas the absence of Robo1 impairs the neonatal respiratory function (Domyan et al 2013, Nakamura et 

al 2020, Xian et al 2001). In this context, we hypothesize a molecular function for ROBO1 and/or ROBO2 
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in fetal lung development, and particularly in branching morphogenesis. Our experimental research 

established unaffected branching morphogenesis after ROBO1 inhibition that decreases the expression of 

BMP4 and promotes SOX2. In contrast, the decrease on ROBO2 expression stimulates fetal lung growth 

through activation of BMP4 and β-Catenin that in turn promote SOX9 instead of SOX2 molecular profiles. 

Together, these observations suggest ROBO1/2 as molecular intervenient of SOX9 versus SOX2 expression 

in a mechanism dependent of BMP4 and β-Catenin (Gonçalves et al 2020). Concomitant with these findings, 

bibliography showed the molecular differentiation of SOX2 and SOX9 as dependent on BMP4 and β-Catenin, 

in which the progressive decrease in BMP4 and β-Catenin expression promote the SOX2 expression at the 

proximal airways, whereas the high levels of BMP4, β-Catenin, and FGF10 at the distal tip of the lungs 

stimulates the SOX9 expression at pseudoglandular stage (Hashimoto et al 2012, Mucenski et al 2005, 

Mucenski et al 2003, Shu et al 2005, Volckaert et al 2013). Furthermore, in the adjacent literature, the 

molecular regulators of SOX2/SOX9 profiles (WNT, FGF, or BMP) have been confusedly reported in induced-

CDH lungs with undefined conclusions (Doi & Puri 2009, Gosemann et al 2013, Makanga et al 2013, 

Takahashi et al 2013, Takahashi et al 2017, Takayasu et al 2007a). In part, these observations are explained 

by the limited information that can be taken from the protein quantification in the whole lung, once the 

assessed markers work as a proximodistal patterning. Indeed, when we are looking for formation of the 

conducting and respiratory airways, the molecular and cellular analysis by pulmonary structure could be 

relevant since distinct mechanisms can be at work. As such, we postulate the ROBO1 or ROBO2 expression 

to be damaged at pseudoglandular-to-saccular phases in induced-CDH lungs. 

Our in vivo observations showed an opposite effect on ROBO1 and ROBO2 expression at 

pseudoglandular and saccular stages in a pulmonary structure-dependent manner. For instance, the 

overexpression of ROBO1 with the downregulation of ROBO2 identified the terminal bronchiole at saccular 

stage, whereas the inversive effect was observed in bronchi and primordia of bronchiole at pseudoglandular 

and in BADJ at saccular stages (Gonçalves et al 2020). Regarding our in vivo and ex vivo findings, we 

revealed the overexpression of ROBO2 in lung hypoplasia, while the significant decrease in ROBO2 

expression promotes the ex vivo branching morphogenesis that indicates a concordant role for ROBO2 in in 

vivo and ex vivo branching morphogenesis. On the other hand, there is similar inhibition of ROBO1 and 

overexpression of ROBO2 and SOX9 in bronchi and primordia of bronchiole with loss of SOX2+cells only in 

primordia of bronchiole in experimental-CDH (Gonçalves et al 2020). This contrasts with the consistent 

opposite effect on SOX2 and SOX9 expression triggered by ROBO2 inhibition in ex vivo branching 

morphogenesis, providing evidence of the complexity of the in vivo model. Collectively, our observations 
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report an upstream target, ROBO2, that forms SOX9 instead of SOX2+ cells at branching morphogenesis, 

whose expression is damaged in nitrofen-induced CDH lungs. 

In conclusion, the molecular analysis of the epithelial cell profile along the fetal lung development 

identified the proximodistal patterning to be damage in induced-CDH lungs, for which the relevant findings 

in terms of SOX2 and FOXJ1 expression were particularly relevant in BADJ with indication of a diffuse 

transition from conducting to respiratory airways. In addition, the undifferentiated profile of ciliated cells in 

bronchi at saccular stage makes reasonable the assumption of an undifferentiated epithelium in induced-

CDH lungs. Finally, the described effect of ROBO2 in branching morphogenesis through SOX2/SOX9 

molecular profile and the significative differences in terms of expression and spatiotemporal distribution for 

receptors (ROBO1 and ROBO2) and epithelial progenitor cell markers (SOX2 and SOX9) reinforce the opened 

question concerning the differentiated or undifferentiated tissues in hypoplastic fetal lungs. 

6.3. Intraluminal lung fluid composition modulates fetal lung growth 

During the fetal life, the future airways are filled with a liquid (fetal lung liquid) that is secreted by the 

lungs. This luminal liquid maintains the lung in a constantly distended state, stimulating its growth and 

maturation. In fact, clinical and experimental evidence demonstrated the increase in lung fluid volume as 

promotor of intraluminal pressure, lung expansion, and growth (Fletcher et al 2000, Jiménez et al 2017, 

Khan et al 2007, Unbekandt et al 2008, Wilson et al 2007). This evidence allowed the development of FETO, 

which is currently under clinical investigation to be applied in the treatment of the more severe cases of 

FLH, secondary to CDH (Ali et al 2016, Jiménez et al 2017, Khoshgoo et al 2019, Ruano et al 2013). FETO 

impairs the in vivo tracheal efflux that increases intraluminal lung fluid volume and stimulates lung growth. 

In addition, the prenatal removal of the balloon is recommended before birth since facilitates delivery and 

allows the AT2 cell maturation, surfactant production, and improves neonatal survival (Flageole et al 1998, 

Jiménez et al 2017, Tsao & Johnson 2020). These in vivo observations indicate a sustained development of 

the lung under FETO therapy and expose the underlying mechanisms as an urgent topic of research. 

However, the difficulty that is capture or recapitulates these in vivo morphological dynamics in the lab harms 

the study of fetal lung expansion, particularly at earlier developmental stages.  

In this Ph.D. thesis, we performed effective injections into lung lumen at D0 and D2, for which the 

visualized movements in intraluminal lung fluid at D4 validate the presence of lung fluid in ex vivo lung 

explant cultures. Subsequently, we postulate this ex vivo model as useful for the study of the effects of lung 

fluid composition in branching morphogenesis (Gonçalves et al in revision). Importantly, lung explant culture 

is a validated model used in the study of branching morphogenesis since maintain the in vivo physiologic 
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architecture and the cellular interactions observed at pseudoglandular stage (Yeganeh et al 2018). In 

addition, electrophysiology and in vivo studies showed Cl- movement under the epithelium as an inductor of 

Na+ and water movement in the same direction that produces the fetal lung fluid (Olver et al 1981, Olver & 

Strang 1974, Welsh 1983, Welsh et al 1982). Experimental evidence regarding the lung fluid composition 

in sheep and mice allowed us to fix 143mM Cl- as basal concentration and establish the remaining 

experimental [Cl-] as follows, 5.8, 29, and 715mM Cl-. We have demonstrated that higher [Cl-], 715mM, 

induce branching morphogenesis, whist it was inhibited by lower, 5.8mM [Cl-]. Furthermore, the injected Cl- 

channels inhibitors, CFTRinh and CaCCinh, equally decrease branching morphogenesis, whereas no 

significant alterations were detected after injection of anthracene‐9‐carboxylic acid (A9C, inhibitor of ClCs) 

(Gonçalves et al in revision). Interestingly, the ClC family, CaCC, and CFTR are all expressed in fluid-secreting 

fetal epithelial cells with functions in fetal lung development. Indeed, inhibition of ionic channels, i.e. CFTR, 

ClC2, or extracellular calcium receptor (CaR), decrease the fetal lung morphogenesis (Blaisdell et al 2004, 

Brennan et al 2013, Brennan et al 2016, Finney et al 2008, He et al 2020, Meyerholz et al 2018), whereas 

the in utero gene transfer of CFTR improve the fetal lung development in the nitrofen-induced CDH rat model 

(Larson & Cohen 2006). Furthermore, the molecular profile of a CDH and CDH+TO lung showed other ionic 

channels (ENaC, or CLC2,3) and cotransporters (NKCC) to be downregulated in CDH and overexpressed in 

CDH+TO, supporting a functional role of these molecules in fetal lung development (Seaborn et al 2008, 

Sozo et al 2006, Vuckovic et al 2013, reviewed in Wallace et al 2014). Together, our findings showed the 

intraluminal [Cl-] as a modulator of fetal lung growth. As consequence, our next interest was to reveal the 

mechanisms triggered by lung fluid composition in the regulation of fetal lung growth. 

An emergent area, mechanotransduction, meaning the conversion of mechanical stimuli into 

biochemical signaling has highlighted our understanding of the molecular mechanisms involved in many 

biological processes. In fetal lungs, PNECs/NEBs are chemo- and mechano-sensors, for which the secreted 

products, ghrelin, bombesin, or serotonin, regulate the in vivo and ex vivo lung growth in both normal and 

hypoplastic lungs (Nunes et al 2008, Pereira-Terra et al 2015, Sakai et al 2014, Santos et al 2006, Sunday 

et al 1990). In addition, Pan et al 2006 showed mechanical stretch as an inductor of serotonin release from 

cultured PNECs, exposed to sinusoidal cyclic stretch (Pan et al 2006). Unfortunately, the true value of this 

mechanosensory capacity in fetal lungs remains almost undetermined. As such, we postulate the 

intraluminal lung fluid able to active the PNECs/NEBs in the ex vivo branching morphogenesis. Our 

investigation demonstrates the secreted neuroendocrine products, ghrelin, and bombesin, overexpressed at 

715mM [Cl-], while they were downregulated after the injection of CaCCinh or CFTRinh. Conversely, the 

injection of 5.8mM [Cl-] only decreases the ghrelin expression (Gonçalves et al in revision). These results 
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seem to be in line with the morphological dynamics observed after in vivo lung fluid manipulation, in which 

the increase in lung fluid volume stimulates fetal lung expansion, whereas their decrease impairs fetal lung 

growth. This study also reports the increased pulmonary growth as dependent upon increased tracheal 

pressure and rapid efflux of liquid from the trachea, while the significant decrease in fetal lung size was 

supported by reduced tracheal pressure, near cessation of tracheal efflux rate, and unchanged lung fluid 

secretion rate (Dickson & Harding 1987). 

To further explore these morphological dynamics and detect the molecular sensor in fetal lung growth, 

we analyzed the PIEZO1 and PIEZO2 receptors. We showed a similar co-localization between PIEZO1, 

PIEZO2, and PGP9.5 (a marker for PNECs/NEBs) expressed in in vivo pseudoglandular stage (E17.5) and 

in ex vivo lung explant cultures at D4, after injection of 143mM [Cl-]. Concerning the injection of the 

remaining intraluminal [Cl-] and Cl- channels inhibitors, we described the increase on intraluminal [Cl-], 

715mM [Cl-], able to stimulate PIEZO1/PIEZO2 expression, whereas it was inhibited by CaCCinh or CFTRinh 

intraluminal injections, (Gonçalves et al in revision). PIEZO1/PIEZO2 are mechanically activated cation 

channels that sense and respond to mechanical stimuli in the modulation of multiple physiologic functions, 

e.g. vascular development, sensory transduction, or respiratory physiology at birth or thereafter (Alcaino et 

al 2018, Cahalan et al 2015, Coste et al 2012, Feng et al 2018, Maneshi et al 2018, Nonomura et al 2017, 

Ranade et al 2014b, Wang et al 2017, Woo et al 2014, Zeng et al 2018). Interestingly, a recent publication 

showed PIEZO2 expressed in NEBs at term with, however, an undefined role since the neonatal respiratory 

function was mediated by PIEZO2 expressed in global and sensory neurons (Nonomura et al 2017). As 

such, we then hypothesize the intraluminal pressure as an activator of PIEZO1/PIEZO2 that in turn 

stimulates the production of neuroendocrine factors. Our complementary work regarding the simultaneous 

intraluminal lung fluid manipulation and PIEZO1/PIEZO2 inhibition demonstrated a significant decrease in 

ghrelin and bombesin expression as well as in branching morphogenesis. This effect was independent of the 

injected intraluminal solution, crescent [Cl-] or Cl- inhibitors, that reinforce the role of PIEZO1/PIEZO2 in ex 

vivo branching morphogenesis (Gonçalves et al in revision). 

It is well known among lung developmental biologists that spontaneous phasic contraction of fetal 

ASM is critical for normal branching morphogenesis by regulating the ASM differentiation and intraluminal 

fluid movement. In fact, the periodic distension and relaxation of the end buds of the lung are generated by 

the peristaltic activity of fetal ASM contraction under the movement of intraluminal fluid. More relevant, the 

fetal lung growth is concentrated at these end buds with stretch and the early differentiation of ASM cells as 

modulators of branching morphogenesis (reviewed in Lam et al 2019). Since our molecular, cellular, and 

morphological research showed a significant effect of intraluminal pressure in branching morphogenesis, we 
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intend to go further and analyze key molecular markers (myosin light chain 2, MLC2, and α-SMA) of ASM 

cells and explore this potential interdependency. Importantly, MLC2 and α-SMA are restricted expressed in 

ASM cells in the developing lung, in which the expression of contractile protein α-SMA and the smooth 

muscle actin filaments recognize the airway smooth muscle progenitor cells that later promote the movement 

of lung fluid from proximal to the distal tip of the lung (Bokka et al 2015, Jesudason 2009, Jesudason et al 

2006, Schittny 2017, Schittny et al 2000). We demonstrate a similar effect in MLC2 and α-SMA expression 

after intraluminal manipulation of [Cl-]. For instance, the increase of [Cl-] stimulate MLC2 and α-SMA 

expression in the promotion of branching morphogenesis, whereas the significant decrease in fetal lung 

growth after depletion of [Cl-] relates with decrease in MLC2 and α-SMA expression. In addition, the 

simultaneous PIEZO1/PIEZO2 inhibition and the intraluminal injection of crescent [Cl-] or Cl- channels 

inhibitors, shows an unaltered inhibitory effect on MLC2 and α-SMA expression as well as in branching 

morphogenesis (Gonçalves et al in revision). These results indicate the intraluminal composition and the 

neuroendocrine activation upstream of airway smooth muscle contraction and branching morphogenesis. 

Interestingly, the hypoplastic phenotype observed in CDH context was connected to decrease on α-SMA and 

MLC2 from pseudoglandular-to-canalicular (Santos et al., 2007), whereas the tracheal occlusion in in vivo 

mouse model was inductor of α-SMA and MLC2 expression at later canalicular stage (Seaborn et al., 2008) 

that suggests the PIEZO1/PIEZO2 pathway as a potential target for the treatment of fetal pulmonary 

hypoplasia. 

Collectively, we demonstrated that injections of high [Cl-] enhanced lung branching and upregulated 

the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In concordance, injections of 

diverse Cl- channel inhibitors had the opposite effect on lung branching and protein expression. Finally, we 

further demonstrated, through pharmacological inhibition experiments, that these effects require PIEZO and 

Cl- channel activation. 
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Chapter 7 – General conclusion 
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Having in mind the overall aim of the present Ph.D. thesis to provide novel insights regarding the 

prediction and (patho)physiology in (ab)normal fetal lung development, the main conclusions are listed 

below. 

Overall, the work indicates US methods useful for lethal pulmonary hypoplasia prediction and 

suggests specific studies by disease type and severity degree to improve the US predictive value. Concerning 

fetal lung development, we characterize the hypoplastic lung and demonstrate a significant impairment on 

proximodistal patterning from pseudoglandular-to-saccular stages in induced-CDH lungs. In addition, the 

disrupted expression of CCSP, SP-C, CGRP, and the unexpectedly FOXJ1+ cells in BADJ describe a diffuse 

transition from conducting to respiratory airways at canalicular and saccular phases after CDH-induction. 

Conversely, the decreased differentiated profile of ciliated cells in bronchi at term opens the possibility for 

an undifferentiated epithelial tissue in hypoplasia. Finally, we demonstrate the decrease in ROBO2 

expression as stimulator of ex vivo branching morphogenesis through SOX9 instead of SOX2 expression, 

indicating ROBO2 as upstream target of SOX9/SOX2 profile with functions in hypoplasia. The in vivo 

experiments identify the spatiotemporal distribution of ROBO2 to be dysregulated from pseudoglandular-to-

saccular stages in induced-CDH lungs. 

Regarding the study of the mechanisms underlying fetal lung growth, we describe an ex vivo model 

that allows the molecular analysis of lung fluid composition in branching morphogenesis. We show that 

increasing the intraluminal [Cl-] in cultured developing rat lung explants leads to increased branching 

morphogenesis and expression of neuroendocrine products, PIEZO channels, and smooth muscle markers. 

We further demonstrate, through pharmacological inhibition experiments that these effects require PIEZO 

and Cl- channel activation, indicating the PIEZO1/PIEZO2 pathway as a potential target to increase the in 

vivo fetal lung growth. 

Despite all the new findings in (ab)normal fetal lung morphogenesis reported in this thesis, the current 

more relevant questions are those for one we remain unanswered. In fact, albeit our investigation 

characterizes an induced-CDH lung in terms of epithelial cell profile and identified a mechanism that 

promotes fetal lung growth/expansion under intraluminal lung fluid manipulation, these research points are 

far to be complete. Indeed, understanding the more relevant in vivo differences and similarities in hypoplastic 

lungs with distinct etiologies and neonatal outcomes are fundamental questions to predict and treat FLH. In 

addition, the use of biomarkers to detect the fetal lung capacity to grow and maturate or the description of 

new therapeutic targets to improve fetal lung development remains a fascinating and current topic of 

research. Crucial for that are the basic mechanisms that explain fetal lung growth or maturation since not 

only improve our understanding of the abnormal fetal lung development but also open new opportunities for 
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the treatment of FLH. In this context, we consider the interdependency between clinical and experimental 

research as the key future points of investigation.  
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