
Universidade do Minho
Escola de Engenharia

Tânia da Conceição Araújo Esteves

Flexible Tracing and Analysis
of Applications’ I/O Behavior

outubro de 2023U
M

in
ho

 |
 2

02
3

Tâ
ni

a
Es

te
ve

s
Fl

ex
ib

le
 T

ra
ci

ng
 a

nd
 A

na
ly

si
s

of
 A

pp
lic

at
io

ns
’ I

/O
 B

eh
av

io
r

Tânia da Conceição Araújo Esteves

Flexible Tracing and Analysis
of Applications’ I/O Behavior

Tese de Doutoramento
Doutoramento em Informática

Trabalho efetuado sob a orientação de
João Tiago Medeiros Paulo
Rui Carlos Mendes Oliveira

Universidade do Minho
Escola de Engenharia

outubro de 2023

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution 4.0 International

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgements

A longa jornada que termina com a entrega deste documento revelou-se enriquecedora, mas também

desafiadora, e não teria sido possível sem o apoio de diversas pessoas com as quais tive a oportunidade

de trabalhar e conviver. A todos agradeço profundamente por me terem apoiado e acreditarem em mim.

Em primeiro lugar quero agradecer ao meu orientador, Professor João Paulo, por estar sempre

disponível para me ouvir e discutir dúvidas e novas ideias, e pela incansável ajuda, motivação e exce-

lente orientação ao longo de todo este processo que foi sem dúvida fundamental para atingir este ponto.

Agradeço também ao Professor Rui Oliveira, que coorientou este trabalho, por todas as sugestões e

dicas que foram essenciais para o sucesso e qualidade deste trabalho.

Quero também expressar um especial obrigado à Cláudia Brito e ao Ricardo Macedo por toda a ajuda

e conselhos e boa companhia ao longo deste percurso. Agradeço também ao Bruno Pereira, Francisco

Neves, João Marco e Rui Pedro Oliveira pela colaboração em artigos resultantes deste trabalho, e ao

Nuno Machado e Rogério Pontes pelas sugestões que tornaram o meu trabalho mais vigoroso. I am also

grateful to Jason Haga for hosting me for a remote internship at AIST and for his insightful suggestions.

Agradeço igualmente aos demais colegas do laboratório, nomeadamente: Alberto Faria, Ana Alonso,

Catarina Leones, Daniel Cruz, Diogo Couto, Diogo Ribeiro, Fábia Pereira, Fábio Coelho, Francisco Cruz,

Francisco Maia, João Dias, Luís Meruje, Mariana Miranda, Miguel Peixoto, Paula Rodrigues, Ricardo Vilaça,

Rita Moutinho, Rui Miguel, Rui Monteiro, Rui Pedro Oliveira, Susana Marques, Vitor Enes, e demais corpo

docente, por todos os momentos de companheirismo, desabafo e alegria.

Quero também agradecer aos meus amigos que me acompanharam e apoiaram, e tornaram esta

jornada mais interessante e alegre, nomeadamente: Andreia Barros, André Marinho, Bruno Ribeiro, Ed-

uardo Cunha, Gabriel Fernandes, José Lima, José Monteiro, José Santos, João Afonso, João Fernandes,

Luís Marques, Luís Pedro, Luís Viana, Mario Real.

Não posso deixar de agradecer à minha família, em especial aos meus pais, Teresa e Jorge, e ao

meu irmão, Ricardo, por acreditarem em mim e sempre me apoiarem ao longo da minha vida. Muito

obrigada por poder sempre contar convosco.

Adicionalmente, agradeço às instituições que apoiaram o trabalho aqui apresentado. A Fundação para

a Ciência e Tecnologia (FCT) apoiou este trabalho através da bolsa de doutoramento DFA/BD/5881/2020.

O Departamento de Informática da Universidade do Minho, o HASLab, e INESC TEC ofereceram-me as

condições necessárias para o desenvolvimento deste trabalho.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

Braga October 31st, 2023,

(Tânia da Conceição Araújo Esteves)

iv

Resumo

Rastreio e Análise Flexíveis do Comportamento de E/S de Apli-
cações

A correção, confiabilidade e desempenho de aplicações centradas em dados e de sistemas distribuí-

dos (por exemplo, sistemas de ficheiros, bases de dados, plataformas de análise de dados e de aprendiza-

gem de máquina) são influenciados pela forma como estes acedem, trocam e persistem dados. Portanto,

compreender o comportamento de Entrada/Saída (E/S) destas soluções é fundamental para as explorar,

encontrar possíveis problemas e otimizar. Para tal, existem ferramentas de diagnóstico que dão suporte

à coleção, análise e visualização de padrões de E/S (por exemplo, chamadas de sistema, funções de

kernel). Nesta dissertação, argumentamos que estas ferramentas podem ser melhoradas para alcan-

çar soluções de diagnóstico integradas e automatizadas que permitam capturar informações detalhadas

sobre pedidos de E/S, suportar análises múltiplas e automatizadas dos dados colecionados, e fornecer

representações visuais que facilitam a interpretação de padrões de comportamento de E/S.

Estes objetivos são alcançados através de três novas plataformas de diagnóstico. Em primeiro lugar

apresentamos o CaT, uma solução orientada ao conteúdo que permite uma análise mais abrangente de

sistemas distribuídos, revelando como os dados fluem pelos distintos componentes até que sejam persisti-

dos. Através de dois casos de estudo reais mostramos que esta informação é fundamental para identificar

padrões de corrupção e adulteração de dados em soluções distribuídas. Em seguida propomos o DIO,

uma solução genérica para o diagnóstico de aplicações centradas em dados que oferece funcionalida-

des de coleção, análise e visualização detalhadas, flexíveis, e personalizáveis. Através de uma avaliação

experimental, com quatro aplicações utilizadas pela indústria, mostramos que a nossa solução facilita a

análise da origem de problemas conhecidos, e permite observar e validar padrões de E/S ineficientes

(e anteriormente desconhecidos). Por fim, apresentamos o CRIBA, uma plataforma que estende o DIO

para fornecer uma solução especializada e automatizada que permite caracterizar o comportamento de

E/S de ransomware criptográfico. O nosso estudo com cinco famílias de ransomware para Linux mostra

como o CRIBA permite a análise e observação dos seus comportamentos intrínsecos e complexos.

As contribuições anteriores facilitam e melhoram o diagnóstico de aplicações e de sistemas de arma-

zenamento. Acreditamos que soluções de diagnóstico detalhadas, flexíveis e personalizáveis, como as

propostas neste trabalho, são fundamentais para a construção de sistemas mais robustos e eficientes.

Palavras-chave: Diagnóstico de E/S, Rastreio, Análise, Visualização, Aplicações centradas em dados,

Sistemas de armazenamento

v

Abstract

Flexible Tracing and Analysis of Applications’ I/O Behavior

The correctness, dependability and performance of data-centric applications and distributed systems

(e.g., file systems, databases, analytical engines, machine learning frameworks) are highly influenced by

the way these access, exchange and persist data. Therefore, understanding the Input/Output (I/O) be-

havior of such solutions is key for efficiently exploring, debugging and optimizing them. This endeavor

is possible through diagnosis tools that provide support for the collection, analysis and visualization of

information (e.g., logs, system calls, kernel functions) from targeted applications and storage systems. In

this thesis, we argue that these tools can be further enhanced to achieve fully automated and integrated

diagnosis pipelines that allow capturing comprehensive information about I/O requests, supporting mul-

tipurpose and automated analysis of collected data, and providing informative and summarized visual

representations that ease the interpretation of I/O behavior patterns for users.

We accomplish these goals by proposing three novel diagnosis frameworks. First, we introduce CaT,

a content-aware solution that enables a more comprehensive analysis of distributed systems by revealing

how data requests flow across distinct components until these are persisted. We show that this informa-

tion is key for identifying data corruption and adulteration patterns in complex distributed solutions. Then,

we propose DIO, a general-purpose solution for diagnosing data-centric applications that offers flexible,

comprehensive and customizable tracing, analysis and visualization in near real-time. Through an exper-

imental evaluation including four production-level applications, we show that our solution eases the root

cause analysis of known issues and allows observing and validating inefficient (and previously unknown)

I/O patterns. Finally, we present CRIBA, a framework that extends DIO to provide a specialized and au-

tomated pipeline for characterizing the I/O behavior of cryptographic ransomware. Our study, including

five Linux ransomware families, shows that CRIBA enables the analysis and observation of intrinsic and

complex I/O behavior from malicious samples.

The previous contributions ease and improve the process of diagnosing applications and storage

systems for users. We believe that comprehensive, flexible and customizable diagnosis pipelines, such as

the ones proposed in this work, are key for building systems that are more robust and efficient.

Keywords: I/O diagnosis, Tracing, Analysis, Visualization, Data-centric applications, Storage systems

vi

Contents

List of Figures x

List of Tables xii

List of Algorithms xiii

List of Listings xiv

Acronyms xv

1 Introduction 1

1.1 Problem Statement and Objectives . 3

1.2 Contributions . 4

1.3 Results . 6

1.4 Outline . 8

2 I/O Diagnosis Background 9

2.1 Data Collection . 11

2.1.1 Application and System Logs . 13

2.1.2 Application Instrumentation . 14

2.1.3 Middleware Instrumentation . 15

2.1.4 OS Instrumentation . 16

2.2 Data Analysis . 19

2.2.1 Purpose . 19

2.2.2 Algorithms . 20

2.2.3 Backends . 22

2.3 Data Visualization . 23

2.3.1 Type . 23

vii

CONTENTS

2.3.2 Tools . 24

2.4 Lessons Learned . 24

3 Content-aware Tracing and Analysis for Distributed Systems 27

3.1 Falcon . 29

3.2 CaT in a Nutshell . 30

3.2.1 System Overview . 31

3.2.2 Architectural Componentes . 31

3.3 Algorithms and Prototype . 33

3.3.1 Content-aware Tracing . 33

3.3.2 Similarity-based Data Analysis . 35

3.3.3 Content Flow Visualization . 36

3.3.4 Implementation . 36

3.4 CaT in Action . 37

3.4.1 Observing TensorFlow’s Dataset Shuffle Pattern 37

3.4.2 Verifying the HDFS File Replication Protocol 38

3.4.3 Summary . 40

3.5 Experimental Evaluation . 40

3.5.1 TensorFlow . 41

3.5.2 BigDataBench . 42

3.5.3 Summary . 44

3.6 Related Work . 45

3.7 Summary and Discussion . 45

4 Practical and Timely Diagnosis of Applications’ I/O Behavior 47

4.1 Motivation . 49

4.2 DIO in a Nutshell . 51

4.2.1 System Overview . 51

4.2.2 Architectural Components . 52

4.3 Algorithms and Prototype . 53

4.3.1 Collected information . 54

4.3.2 File Path Correlation Algorithm . 57

4.3.3 Nanosecond Visualization . 57

4.3.4 Implementation . 57

4.3.5 Configuration and Usage . 58

4.4 DIO in Action . 59

4.4.1 Top-Down Exploration and Diagnosis of Elasticsearch 59

4.4.2 Identifying Fluent Bit’s Erroneous Actions That Lead to Data Loss 61

viii

CONTENTS

4.4.3 Finding the Root Cause of RocksDB’s Performance Anomalies 64

4.4.4 Performance Impact and I/O Events Handling 66

4.4.5 Summary . 68

4.5 Experimental Study . 68

4.5.1 Comparison With State-of-the-art Tracers 70

4.5.2 Inline Analysis Pipeline . 76

4.5.3 DIO’s Adaptability to Different I/O Rates 80

4.5.4 DIO’s Filters Impact . 81

4.5.5 Summary . 83

4.6 Related Work . 83

4.7 Summary and Discussion . 85

5 Comprehensive Analysis of Cryptographic Ransomware’s I/O Behavior 86

5.1 Ransomware Overview . 88

5.2 CRIBA in a Nutshell . 90

5.2.1 System Workflow . 90

5.2.2 Architectural Components . 90

5.3 Algorithms and Prototype . 92

5.3.1 Correlation Algorithms . 92

5.3.2 Implementation . 94

5.4 CRIBA in Action . 95

5.4.1 General Statistics . 97

5.4.2 Ransom Notes . 98

5.4.3 Dataset’s Files Access and Encryption 100

5.4.4 Dataset’s Files Selection and Evasion Techniques 102

5.4.5 Families Similarity and Summary . 103

5.5 Related Work . 104

5.6 Summary and Discussion . 105

6 Conclusion 106

6.1 Future Work . 107

Bibliography 109

ix

List of Figures

2.1 High-level design of a diagnosis pipeline. 9

2.2 Different data collection levels throughout the I/O stack. 11

3.1 Context vs content-aware tracing analysis. 28

3.2 CaT’s architecture. 31

3.3 CatStrace’s components. 33

3.4 CatBpf’s components. 34

3.5 CaSolver’s components. 35

3.6 CaT’s visualizer output example. 36

3.7 Disk access pattern for TensorFlow’s dataset shuffle. 38

3.8 HDFS replication of a file. 39

3.9 BigDataBench elapsed times. 42

4.1 Log file access pattern for Redis’s version including inefficient I/O patterns. 49

4.2 Log file access pattern for Redis’s version including the corrections. 50

4.3 DIO’s design and flow of events. 52

4.4 Kernel structures used by DIO. 55

4.5 Elasticsearch’s file access pattern. 60

4.6 Accessed file offsets for Fluent Bit (v1.4.0). 62

4.7 Fluent Bit (v1.4.0) erroneous access pattern. 63

4.8 Accessed file offsets for Fluent Bit (v2.0.5). 64

4.9 Fluent Bit (v2.0.5) correct access pattern . 64

4.10 99C⌘ percentile latency for RocksDB client operations. 65

4.11 Syscalls issued by RocksDB over time, aggregated by thread name. 65

4.12 Average execution time for Elasticsearch, Redis and RocksDB use cases with DIO, Sysdig

and Strace. 67

4.13 Filebench’s performance overhead and collected events for Strace, Sysdig, and DIO. . . 70

4.14 CPU usage by Strace, Sysdig, and DIO. 73

x

LIST OF FIGURES

4.15 Memory usage by Strace, Sysdig, and DIO. 73

4.16 Size of the traces generated by Strace, Sysdig and DIO when writing these to disk. . . . 74

4.17 Size of the indices generated by Sysdig and DIO when using Elasticsearch as storage back-

end. 74

4.18 Network usage by Sysdig and DIO with the Elasticsearch backend 75

4.19 Performance overhead, collected events, and resource usage for different ring buffer sizes

in DIO. 76

4.20 Performance overhead, collected events, and resource usage for different batches sizes in

Sysdig. 77

4.21 Performance overhead, collected events, and resource usage for different batches sizes in

DIO. 78

4.22 Execution times for inline and offline analysis approaches with Sysdig and DIO. 79

4.23 Performance overhead and collected events of DIO’s setups (with Elasticsearch backend)

when tracing Filebench with different I/O rates. 80

4.24 Performance overhead and collected events of DIO (with detailedPall setup and Elasticsearch

storage backend) when applying different filters. 82

5.1 CRIBA’s design and flow of events for the tracing and analysis phases. 90

5.2 Distribution of files’ size and extensions for the dataset used in CRIBA’s experiments. . . 96

5.3 Aggregated number of operations, per syscall, for three distinct threads launched by REvil. 98

5.4 Syscalls issued over time by RansomEXX’s encryption threads to file F10573.bqt.vmdk. . 101

5.5 File offsets accessed per family when reading and writing file F10573.bqt.vmdk. 102

5.6 CPU usage per ransomware family. 103

5.7 Heatmaps comparing the families regarding the type of issued syscalls, and accessed file

extensions and names. 103

xi

List of Tables

2.1 Categorization of diagnosis tools regarding data collection, analysis and visualization. . . 10

3.1 Performance and accuracy results for TensorFlow experiments. 41

3.2 Accuracy results for the BigDataBench experiments. 43

4.1 System calls supported by DIO. 53

4.2 Minimum DIO’s tracing mode for successfully diagnosing each use case. 66

4.3 Description of each setup used in the experiments for Strace, Sysdig, and DIO tracers. . 69

4.4 Comparison between DIO and related solutions. 84

5.1 List of syscalls supported by CRIBA. 92

5.2 SHA256 hashes and execution commands for the 5 ransomware samples analyzed with

CRIBA. 96

5.3 Execution time, process creation, accessed files and issued syscalls statistics for the ran-

somware families. 97

5.4 Top 3 syscall types issued per ransomware family. 97

5.5 Syscall sequences for ransom notes per family. 99

5.6 Syscall sequences issued per family over a small and large dataset file. 100

xii

List of Algorithms

4.1 DIO’s EventPath and file tag generation algorithm. 56

4.2 DIO’s file path correlation algorithm. 57

5.1 CRIBA’s algorithm for identifying a Depth First Search. 93

5.2 FSysSeq correlation algorithm provided by CRIBA. 94

xiii

List of Listings

4.1 System calls made by Elasticsearch to the .es_temp_file file and observable with

DIO. 60

4.2 Elasticsearch source code for accessing the .es_temp_file file. 61

xiv

Acronyms

API Application Programming Interface 12, 14, 58, 86, 90, 104

BCC BPF Compiler Collection 37

BFS Breadth First Search 93

C&C Command and Control 88, 89, 98

CPU Central Processing Unit 4, 6, 14, 25, 29, 34, 35, 37, 41, 42, 43, 44, 52, 67, 70, 72, 77,

78, 79, 82, 87, 88, 89, 91, 96, 102, 103

CTF Common Trace Format 17

CUDA Compute Unified Device Architecture 37

DAG Directed Acyclic Graph 21

DBSCAN Density-Based Spatial Clustering of Applications with Noise 21

DFS Depth First Search 93, 97

DPDK Data Plane Development Kit 12

eBPF Extended Berkeley Packet Filter 5, 9, 17, 18, 25, 29, 33, 34, 35, 36, 37, 40, 42, 45, 48,

52, 55, 57, 58, 69, 72, 73, 75, 83, 94, 106, 108

ETW Event Tracing for Windows 14

FSA Finite-State Automaton 21

GPU Graphics Processing Unit 37, 41

gRPC Google Remote Procedure Call 11

xv

ACRONYMS

HDD Hard Disk Drive 37

HPC High-Performance Computing 20

I/O Input/Output 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52,

53, 54, 57, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 75, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 98, 104, 105, 106, 107

IT Information Technology 19

J2EE Java 2 Platform Enterprise Edition 15

JIT Just-In-Time 17

KVS Key-Value Store 22, 47, 64, 66

LoC Lines of Code 2, 36, 37, 47, 57, 58, 61, 65

LOF Local Outlier Factor 21

LSH Locality-Sensitive Hashing 35, 36, 37

LSM Linux Security Module 16, 17, 45

LSM-tree Log-Structured Merge tree 66

LTTng Linux Trace Toolkit Next Generation 9, 16, 17, 18, 25, 83, 108

ML Machine Learning 20, 21, 25, 31, 37, 45, 47, 86, 107, 108

MPI Message Passing Interface 11, 15, 16

NIC Network Interface Controller 11

NVMe Non-Volatile Memory Express 37, 57, 59, 96

OS Operating System 3, 9, 11, 13, 16, 17, 18, 25, 62, 72, 86, 87, 96, 108

OSD Object Storage Devices 23

PCA Principal Component Analysis 21

PID Process Identifier 5, 14, 15, 16, 17, 27, 31, 32, 33, 34, 36, 43, 48, 51, 52, 54, 84, 87, 88

POSIX Portable Operating System Interface 5, 6, 12, 47, 48, 51, 85, 106

PVFS Parallel Virtual File System 16

RAM Random Access Memory 4, 25, 29, 37, 42, 43, 44, 59, 91, 96

RPC Remote Procedure Call 15

xvi

ACRONYMS

SCI System Call Interface 3, 11, 12, 15

SCSI Small Computer Systems Interface 17

SDK Software Development Kit 14

SMT Satisfiability Modulo Theories 21, 32

SPDK Storage Performance Development Kit 12

SQL Structured Query Language 22

SSD Solid State Drive 37, 59, 96

SVM Support Vector Machine 21

TF-IDF Term Frequency-Inverse Document Frequency 94

t-SNE t-distributed Stochastic Neighbor Embedding 21

TID Thread Identifier 14, 48, 51, 52, 54, 81, 87, 98, 100

UPGMA Unweighted Pair Group Method with Arithmetic Mean 21

VFS Virtual File System 3, 11, 12, 18, 83

VM Virtual Machine 17, 89, 91, 96

xvii

1

Introduction

In the last decades, we have witnessed exponential growth in the amount of digital information generated.

Further, this data contains more and more information that is crucial for critical services such as health-

care, finance, and governance to work properly, which raises the need to design efficient, dependable and

secure solutions for storing and retrieving data [22]. As the complexity (i.e., codebase size, number of

components, Input/Output (I/O) optimizations) of data-centric applications and storage systems grows, it

becomes increasingly difficult to debug, validate, or even improve the aforementioned guarantees.

For example, to scale and reliably handle the sheer volume of data, applications and storage systems

typically adhere to distributed designs composed of several components, including coordination services,

communication middleware, databases and file systems. These components need to exchange data

among themselves and thus often implement complex protocols, such as data replication techniques,

that are susceptible to subtle errors [3].

As another example, the interaction between applications and storage systems is also complex and

subtle, both in distributed and local designs. Application developers must be knowledgeable about the

interface and characteristics (e.g., optimal I/O size, access pattern) of the underlying storage system to

take advantage of its optimizations (e.g., caching, scheduling) and extract the best performance from

it [31]. Also, the incorrect use of such interfaces (e.g., improper use of asynchronous I/O, absence of

fsync system calls to make data durable) can introduce critical bugs that compromise dependability, for

instance, leading to data loss [96].

In this thesis, we argue that it is crucial to comprehensively study and understand the intrinsic I/O

behavior of applications and storage systems and their interplay. This process, which we refer to as “I/O

diagnosis”, holds critical significance for various purposes.

Debugging. Be it due to human error, lack of detailed knowledge on how to efficiently and correctly

access the underlying storage (e.g., file system, block-device), or usage of high-level libraries that obfuscate

the actual I/O requests being made to storage systems, applications often exhibit: i) costly access patterns,

such as small-sized I/O requests or random accesses [31], ii) redundant operations, such as unnecessarily

re-opening and closing a given file;1 iii) I/O contention caused by having concurrent requests accessing

1Logging improvements issue from Redis’ GitHub repository: https://github.com/redis/redis/pull/10531

1

https://github.com/redis/redis/pull/10531

CHAPTER 1. INTRODUCTION

shared storage resources [12]; and iv) erroneous usage of I/O calls, for example, by accessing wrong file

offsets.2,3 Therefore, understanding the I/O behavior of applications is essential for uncovering the root

cause of errors, inefficiencies and unattained performance.

Validation. Studying applications and storage systems’ I/O patterns is also fundamental for validating

their implementations. For instance, it allows checking if applications are following the intended storage

access patterns (e.g., training dataset shuffling in deep learning frameworks [1]) or if complex distributed

protocols respect their specifications (e.g., synchronous data replication in distributed file systems [46]).

Further, by studying I/O patterns, one can also validate that the implementation corrections for a given

error or inefficiency found at the debugging phase are working properly.

Exploration. Lastly, understanding how applications and storage systems handle data requests is also

valuable for exploring new features and optimizations. For instance, by profiling the I/O requests made

by applications (e.g., random file access patterns), one can then configure and optimize storage systems

to achieve better performance [31]. Additionally, learning the I/O behavior of closed source applications

(i.e., whose source code is unavailable) can be valuable for security purposes, for instance, to uncover

specific patterns that characterize malware activity and that can be used in its detection [88].

Despite the importance and benefits of I/O diagnosis to the dependability and performance of key

information systems, as the preceding examples depict, how to do it efficiently remains an open challenge.

Understanding applications’ behavior through manual code inspection is a difficult, if not impossible, task.

First, the source code must be available, which is not the case for many applications (e.g., malware

binaries, commercial products). Even if the source code is available, the applications may have complex

and large codebases with components implemented in different programming languages and by different

developers. For example, Fluent Bit’s open-source project has around 5K files, most of them containing C

code, but it also includes files written in Python, Go, and Java. In total, the project contains ≈1M Lines of

Code (LoC) developed by more than 300 contributors. TensorFlow’s codebase has even more files, almost

20K, with more than 4M LoC written by 3K contributors in several programming languages. Exploring and

understanding these multi-language and extensive codebases is a hard and time-consuming endeavor.

Further, code inspection mainly focuses on the structure of the source code, not assessing the impact of

different program inputs on the application’s behavior, thus limiting the scope of the analysis [23].

These challenges motivate the use of diagnosis tools to automate the processes of I/O debugging,

validation, and exploration. The pipeline of these tools is typically divided into two main phases: i) data

collection and ii) data analysis and visualization.

The data collection phase involves collecting information related to the I/O requests that applications

and storage systems handle at runtime. This can be done by resorting to source code instrumentation,

which is the process of adding extra code (i.e., instrumentation code) in key parts of the codebase to

record, for instance, the values of function parameters and timing statistics [13, 45, 115]. Another widely

2Wrong offsets issue from Fluent Bit’s repository: https://github.com/fluent/fluent-bit/issues/1875
3Log missing issue from Fluent Bit’s repository: https://github.com/fluent/fluent-bit/issues/4895

2

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

1.1. PROBLEM STATEMENT AND OBJECTIVES

used strategy is to rely on tracing tools, which allow instrumenting lower layers of the Operating System

(OS) (e.g., the System Call Interface (SCI)) to collect information about the I/O requests submitted by the

application to this layer without requiring any modifications to its source code [32, 64, 109, 111].

The data analysis and visualization phase involves the analysis and exploration of the previously col-

lected information. The information captured for all I/O requests is inspected and correlated, for instance,

by checking the types of requests and their arguments, analyzing the time and order in which they oc-

curred, or identifying the processes and threads that originated different groups of requests. The output

of this analysis, which in some cases may be delivered to users through visual representations, is key to

better understanding the I/O behavior of applications and storage systems [18, 126].

Currently, many of the existing solutions only consider one of these phases (e.g., tracing tools aim

at data collection, and visualization tools focus on data analysis), while few solutions provide a complete

pipeline that includes components for collecting, analyzing and visualizing I/O requests.

1.1 Problem Statement and Objectives

Despite the considerable advantages brought by current I/O diagnosis tools, in this dissertation, we argue

that the diagnosis process can be made more flexible and practical and can be further automated by

overcoming the following challenges:

Tracing Transparency. Many data collection tools rely on source code instrumentation to obtain infor-

mation about the applications’ I/O requests [13, 45, 62, 74, 75, 115, 132]. While code instrumentation

solves some of the challenges associated with manual code inspection and exploration (e.g., by observing

the runtime I/O behavior of applications), it still requires a manual analysis of complex and extended

codebases to identify the key parts of the source code that must be instrumented. Moreover, code instru-

mentation is unsuitable for diagnosing closed source applications whose codebase is unavailable.

In this work, we explore non-intrusive approaches to intercept I/O requests at lower OS layers, achiev-

ing a transparent solution applicable to any traditional kernel-based storage application.

Tracing Accuracy. The OS layer where I/O requests are intercepted influences the detail of information

one can infer about the applications’ behavior. The lower the layer is at the OS (e.g., Virtual File System

(VFS), block device), the more optimizations like I/O merging and reordering are applied, thus masking

the exact requests submitted by applications [127]. Also, the amount of information captured for each I/O

request influences the types of analysis users can do. While capturing only the type (e.g., open, read,
write, close) and number of I/O requests already provides valuable insights about the applications’ I/O

behavior, collecting the requests’ arguments and return value can further expand the analysis possibilities,

for instance, to uncover scenarios where system calls are specified erroneously.

We study the most appropriate layer for intercepting I/O requests and explore the impact of capturing

more or less detailed information about these.

3

CHAPTER 1. INTRODUCTION

Tracing Overhead. Another key aspect that must be considered is the overhead imposed on the under-

lying storage and the targeted application’s performance when intercepting and collecting I/O requests.

By increasing the amount of information being collected, one is also increasing the storage space needed

to persist such traces for later analysis. Similarly, capturing more information can result in a higher con-

sumption of system resources (e.g., Random Access Memory (RAM), Central Processing Unit (CPU), and

disk), slowing down the targeted application and impacting its performance.

We explore different strategies to balance the amount of collected data (accuracy) with its impact on

performance overhead and resource usage.

Integrated and Automated Analysis and Visualization. Another challenge to bear in mind is the

need to provide mechanisms for facilitating the analysis and visualization of collected data. The sheer

number of storage operations generated by data-centric applications, ranging from hundreds to thousands

of operations per second, makes their analysis complex and time-consuming when done manually.

We enhance diagnosis pipelines with efficient and integrated components that allow collecting, ana-

lyzing, and visualizing I/O requests in a more practical way. Moreover, we provide mechanisms to further

automate the analysis process by preprocessing and correlating the collected data and outputting sum-

marized insights about the analyzed I/O requests.

Flexible and Comprehensive Diagnosis. Existing diagnosis tools are often designed for rigid analysis

scenarios, such as detecting unreproducible builds [98], observing file offset access patterns [102], or

identifying security issues [64, 126]. Thus, for multipurpose diagnosis tasks, one needs to combine

several tools and repeat the data collection and analysis phases multiple times for the same application.

We provide a more comprehensive solution that allows users to simultaneously debug, validate, and

explore different kinds of I/O behaviors. By offering users the flexibility to narrow or broaden both data col-

lection and analysis scopes, our solution allows them to explore a wider range of correctness, dependability

and performance issues that applications may exhibit.

1.2 Contributions

This thesis presents three main contributions, which are aligned with the aforementioned goals and that

advance the state of the art for I/O diagnosis.

Content-aware Diagnosis. As the first contribution, we explore how the contents of I/O requests can

be useful for improved diagnosis of distributed systems. Namely, we propose CaT, a novel framework for

collecting and analyzing storage and network I/O requests of distributed systems. The key insight and

novelty behind CaT relies on intercepting and analyzing the content of data buffers transmitted between

different components of a distributed deployment. By following this idea, CaT allows identifying duplicate

data as well as near-duplicate data (with a high degree of similarity, for instance, >80%) that was slightly

modified while flowing through different components (e.g., messages that include the same payload but

have a different metadata header).

4

1.2. CONTRIBUTIONS

To transparently intercept the applications’ I/O requests, CaT explores two kernel-level tracing tools,

Strace [109] and Extended Berkeley Packet Filter (eBPF) [76], which provide different tradeoffs regarding

resource usage, amount of collected information, and I/O performance impact.

Moreover, CaT uses hashing techniques to summarize the requests’ content and minimize the storage

space overhead, applies near-duplicate detection algorithms to find similarities between data from distinct

distributed events, and uses a color-based scheme to visually pinpoint I/O events handling near-similar

data. These algorithms are integrated into a complete pipeline that allows automating the process of

capturing, analyzing, and visualizing the context and content of applications’ I/O requests.

CaT’s content-aware approach enables detecting data adulteration, corruption, and leakage patterns

in complex systems and I/O flows that would go unnoticed with state-of-the-art context-based approaches.

Comprehensive and Flexible Diagnosis. As the second contribution, we explore how current tools

could be improved to aid in the diagnosis of a wider range of storage correctness, dependability and perfor-

mance issues that applications may exhibit. To this end, we propose DIO, a generic tool for observing and

diagnosing the I/O interactions between applications and in-kernel Portable Operating System Interface

(POSIX) storage systems.

DIO’s main insight is that by combining system call tracing with a customizable analysis pipeline,

one can achieve non-intrusive and comprehensive I/O diagnosis for applications. To that end, it offers

a new eBPF-based tracer that non-intrusively intercepts storage system calls submitted by applications,

collects a compressive set of information for each operation, and enriches such information with additional

context obtained from kernel structures (e.g., file offset for read and write operations). Nonetheless,

the amount and detail of collected information can be specified and filtered according to the needs of each

user, thus balancing the accuracy and performance/storage overhead of our tracing solution.

Further, DIO follows an inline approach by automatically collecting the desired information and for-

warding it directly to the analysis pipeline, allowing users to query and visualize captured data in near

real-time. Moreover, DIO’s analysis pipeline is flexible and configurable, allowing users to implement

correlation algorithms and build custom visual representations that better fit their analysis requirements.

Through a comprehensive and integrated pipeline that automates the process of tracing, filtering,

correlating, and visualizing millions of system calls, DIO enables the diagnosis of a wide range of I/O

issues, avoiding the need for combining multiple tools and running the application multiple times.

Custom and Improved Analysis. As the third contribution, we explore how DIO’s analysis capabilities

can be improved through custom correlation algorithms. We focus on a new use case, namely analyzing

the I/O behavior of cryptographic ransomware, and on how this endeavor can help security analysts find

both characteristic and deviating I/O actions for building or improving detection tools.

Leveraging DIO’s pipeline, we built CRIBA, a tool for capturing, analyzing, and visualizing the behavior

of Linux cryptographic ransomware. CRIBA supports the collection and analysis of comprehensive infor-

mation about I/O system calls (e.g., type, arguments), their contextual information (e.g., Process Identifier

5

CHAPTER 1. INTRODUCTION

(PID), offset), and their correlation with other system metrics (e.g., CPU). Moreover, CRIBA offers auto-

mated analysis capabilities through six algorithms that ease the study and comparison of ransomware

samples by pinpointing their file system transversal, file access, and file extension manipulation patterns.

It also includes a predefined set of visualizations, organized into eight distinct dashboards, for summarizing

and exploring the collected information and the outputs of the correlation algorithms in a human-readable

and explainable fashion.

A comprehensive analysis and comparison of five Linux ransomware families shows that CRIBA auto-

mates the analysis and observation of generic behavior from ransomware samples (e.g., the number of

processes, type of system calls, file system transversal). Further, it enables the analysis and comparison

of intrinsic and complex I/O behavior (e.g., file access patterns, extension manipulation) related to the

creation of ransom notes, file encryption, and evasion techniques used by each family.

1.3 Results

Core Publications. The work discussed in this thesis resulted in a number of publications in international

conferences, journals, and workshops.

Tânia Esteves, Francisco Neves, Rui Oliveira, João Paulo. CaT: Content-aware Tracing and

Analysis for Distributed Systems. In 22nd International Middleware Conference, 2021.

This conference publication describes CaT, a novel framework for collecting and analyzing storage

and network I/O requests of distributed systems. CaT proposes a content-aware tracing and anal-

ysis strategy that correlates the context and content of events to better understand the data flow

of systems. Through a detailed evaluation of CaT’s open-source prototype with real applications,

we show that, depending on the target workload, it is possible to capture most of the I/O events

while incurring negligible performance overhead. Moreover, we showcase that CaT’s content-aware

approach can improve the analysis of distributed systems by pinpointing their data flows and I/O

access patterns. CaT is publicly available at https://github.com/dsrhaslab/cat.

Tânia Esteves, Ricardo Macedo, Rui Oliveira, João Paulo. Diagnosing Applications’ I/O Behav-

ior through System Call Observability. In 53rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops, 2023.

This workshop publication presents DIO, a generic tool for observing and diagnosing I/O interac-

tions between applications and in-kernel POSIX storage systems. DIO helps users diagnose I/O

issues through a pipeline that automates the process of tracing, filtering, correlating, and visualiz-

ing millions of system calls. Our experiments with the RocksDB and Fluent Bit systems show that

DIO provides key information for observing erroneous I/O access patterns that lead to data loss and

identifying resource contention in multithreaded I/O that leads to high tail latency. DIO is publicly

available at https://github.com/dsrhaslab/dio.

6

https://github.com/dsrhaslab/cat
https://github.com/dsrhaslab/dio

1.3. RESULTS

Tânia Esteves, Bruno Pereira, Rui Pedro Oliveira, João Marco, João Paulo. CRIBA: A Tool for

Comprehensive Analysis of Cryptographic Ransomware’s I/O Behavior. In 42nd Sym-

posium on Reliable Distributed Systems, 2023.

This conference publication describes CRIBA, a tool for simplifying and automating the exploration,

analysis, and comparison of I/O patterns for Linux cryptographic ransomware. CRIBA supports

the non-intrusive and comprehensive collection of I/O information from ransomware samples and

combines it with an integrated analysis and visualization pipeline. The latter is enhanced with six

custom correlation algorithms and different predefined dashboards. As shown in our experimental

study, these features are key for i) automating the analysis of ransomware families; ii) understanding

complex and intrinsic behavior from each sample; iii) and pinpointing common and distinct traits

across families. CRIBA is publicly available at https://github.com/dsrhaslab/criba.

Tânia Esteves, Ricardo Macedo, Rui Oliveira, João Paulo. Toward a Practical and Timely

Diagnosing of Applications’ I/O Behavior. In IEEE Access, 2023.

This journal publication extends DIO’s workshop paper by providing further details about the tool’s

design and implementation, introducing two new use cases with the Elasticsearch and Redis

production-level applications that demonstrate the readiness and relevance of our solution, and

providing new experiments that evaluate and compare DIO with related solutions. The conducted

experimental evaluation highlights the different tradeoffs in terms of performance impact, resource

usage, and data collection accuracy when using the different tracing modes and configurations

provided by DIO while validating our solution against two state-of-the-art system calls tracers:

Strace [109] and Sysdig [111]. Results show that when compared with an inline diagnosis pipeline

using Sysdig, DIO provides timely analysis for users and improves the number of captured events

by up to 28× while keeping performance overhead between 14% and 51%.

Complementary Publications. The following work was published in collaboration with multiple re-

searchers from both academia and industry. While complementary to the core contributions of this thesis,

these works leverage the topics discussed in it.

Mariana Miranda, Tânia Esteves, Bernardo Portela, João Paulo. S2Dedup: SGX-enabled se-

cure deduplication. In 14th ACM International Conference on Systems and Storage, 2021.

This conference publication describes S2Dedup, a secure deduplication system based on trusted

hardware. By supporting multiple schemes, S2Dedup can offer tailored deployments for applica-

tions with distinct security, performance, and space savings requirements. Moreover, compared

to state-of-the-art solutions, its novel Epoch and Exact Frequency scheme enables improved secu-

rity without sacrificing storage performance or deduplication space savings. S2Dedup is publicly

available at https://github.com/dsrhaslab/s2dedup.

7

https://github.com/dsrhaslab/criba
https://github.com/dsrhaslab/s2dedup

CHAPTER 1. INTRODUCTION

Tânia Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela, João Paulo, José Pereira, Danny

Harnik. TrustFS: An SGX-enabled Stackable File System Framework. In 38th International

Symposium on Reliable Distributed Systems Workshops, 2019.

This workshop publication describes TrustFS, a programmable and modular stackable file system

framework for implementing secure content-aware storage functionalities over hardware-assisted

trusted execution environments [41]. It extends the original design of the SafeFS system [91] to pro-

vide the isolated execution guarantees of Intel Software Guard Extensions [30]. A preliminary eval-

uation of a compression prototype built using TrustFS shows that it incurs reasonable performance

overhead under most workloads when compared to conventional storage systems, with throughput

degradation ranging from 6.5% up to 31.3%. TrustFS is publicly available at https://github.com/-

taniaesteves/TrustFS.git.

1.4 Outline

The rest of the document is organized as follows:

• Chapter 2. We introduce background concepts of the I/O diagnosis process and discuss the

approaches followed by existing diagnosis solutions regarding their techniques for data collection,

analysis and visualization.

• Chapter 3. We introduce the design, implementation, and evaluation of CaT, a novel framework

for collecting and analyzing storage and network I/O requests of distributed systems.

• Chapter 4. We discuss the design, implementation, and evaluation of DIO, a generic tool for

observing and diagnosing I/O interactions between applications and in-kernel storage systems.

• Chapter 5. We present the design, implementation, and evaluation of CRIBA, a tool built upon

DIO that simplifies and automates the exploration, analysis, and comparison of I/O patterns for

Linux cryptographic ransomware.

• Chapter 6. We discuss future research work and present the final remarks of this thesis.

8

https://github.com/taniaesteves/TrustFS.git
https://github.com/taniaesteves/TrustFS.git

2

I/O Diagnosis Background

The I/O diagnosis process includes two major phases: i) data collection, and ii) data analysis and visual-

ization (as depicted in Fig. 2.1). These phases are typically carried out by multiple components that work

together as part of a pipeline.

preprocesses

Tracer
I/O requests

Application

Resources
(e.g., disk, network)

Logs

generates

Parser

Intercepts

Backend
(e.g., file, database)

queries
& stores Analyzer Visualizer

Data Analysis & VisualizationData Collection

stores

accesses accesses

Figure 2.1. High-level design of a diagnosis pipeline.

The data collection phase comprises the process of obtaining information about the targeted appli-

cation, for instance, through a parser that preprocesses applications or system logs, or a tracer that

instruments applications, middleware components (e.g., network protocols or system libraries), or the OS

to intercept the applications’ requests. The data analysis and visualization phase is dedicated to process-

ing the collected data and presenting summarized insights to the user regarding the analysis’ findings. It

encompasses a backend component responsible for persisting both collected data and additional infor-

mation obtained from its analysis and correlation, which is done with the analyzer component. The final

component in this phase is typically the visualizer, which provides users with the means to explore and

visualize the collected data and the analysis’ findings.

Table 2.1 categorizes existing diagnosis tools regarding their strategies for data collection, analysis,

and visualization. We focus on solutions for diagnosing the storage I/O behavior of applications, although

some of these also consider network I/O. Further, we consider technologies whose purpose is data col-

lection (e.g., eBPF, Linux Trace Toolkit Next Generation (LTTng)), as long as these are used by full-fledged

diagnosis solutions included in the table.

9

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

Table 2.1. Categorization of diagnosis tools regarding data collection, analysis and visualization.

Sc
op

e

Collection Analysis Visualization

Lo
gs

Ap
pl
ic
at
io
n

M
id
dl
ew

ar
e

O
S

Pu
rp
os
e

Al
go

rit
hm

Ba
ck
en

d

Re
al
-ti
m
e

Po
st
m
or
te
m

Ty
pe

To
ol

In
te
ra
ct
ive

Logstash [10] C # # # — — — — — — — —
LogMine [54] C # # # — — — — — — — —
Xu et al. [124] CAV # # # P D D # S ∗ #
SherLog [128] CAV # # # R A D # S ∗ #

lprof [131] CAV # # # P S N # M L
LogLens [36] CAV # # # P A N M F

LongLine [126] CAV # # # P D N M F
Falcon [82] CAV # # R A D # S L #
Horus [84] CAV # # R G N S F

Magpie [13] CA # P D D # — — —
Pivot Tracing [74, 75] CA # # # P S — # — — —

Stardust [115] CAV # P G R S L #
X-Trace [45] CAV # # P G R # S ∗ #

Zipkin [132], Jaeger [62] CAV # # # P S RN M ∗

Darshan [108] C # # # — — — — — — — —
EZIOTracer [81] C # # — — — — — — — —

Pinpoint [24] CA # # # R D D # — — —
ScalaIOTrace [117] CA # # # P S D # — — —

IOPin [67] CA # # # P S R # — — —
Dapper [106] CAV # # # P S N M ∗

DXT [122] CAV # # # P S D # ∗ ∗ ∗
DXT Explorer [18] V — — — — — — — — — M L

Strace [109], Sysdig [111]
Re-Animator [5], IOscope [102]

C # # # — — — — — — — —

CamFlow [89] C # # # — — — — — — — —
Tracee [116] CA # # # P A D ∗ — — —

S2Logger [110] CAV # # # P G R S ∗ ∗
RepTrace [98] CAV # # # R G D # S ∗ #

Daoud and Dagenais [32] CAV # # # P A D ∗ M F
Kohyarnejadfard et al. [68] CAV # # # P D D ∗ M F

PerSecMon [64] CAV # # # P S N M F
Properties
 Supported
Not supported∗ Unspecified
— Not Applicable

Scope
C - Collection
A - Analysis
V - Visualization

Purpose
P - Profiling &
anomaly detection
R - Root cause
analysis

Algorithm
S - Statist. methods
A - Alg. & models
D - Data mining & ML
G - Graphs

Backend
D - Disk
R - Relational DB
N - Non-relational DB

V. Type
S - Specific
M - Multiple

V. Tool
L - Libraries
F - Framework

10

2.1. DATA COLLECTION

In the following sections, we discuss each diagnosis phase in more detail. First, we present the

different levels and strategies for data collection (§2.1). Subsequently, we focus on the analysis phase,

covering aspects such as the different analysis purposes (§2.2.1), algorithms (§2.2.2), and backend

technologies (§2.2.3). We then detail different types of visualizations used in previous work (§2.3.1),

along with the tools that support these (§2.3.2). Finally, we summarize our findings and discuss open

research challenges in the I/O diagnosis field (§2.4).

2.1 Data Collection

Applications requiring data transmission and persistence must perform I/O operations (e.g., write, send).

These operations typically traverse middleware components and multiple layers within the OS before

reaching the intended physical device (e.g., disk, Network Interface Controller (NIC)).

More
context

More
generally
applicable

Systems Libraries (e.g., libc)
Middlware components(e.g., MPI)

Application

Block Device Driver

File System
(e.g., EXT4, NFS)

Virtual File System

System calls Interface

Physical devices

User space
Kernel space

Hardware

Li
nu

x
I/

O
 S

ta
ck

Application Application Application

Logs Logs Logs Logs

Sockets

Network Protocols
(e.g., TCP, UDP)

Packet SchedulerI/O Scheduler

Network Device Driver

Frameworks
(e.g., SPDK, DPDK)

Figure 2.2. Different data collection levels throughout the I/O stack.

As illustrated in Fig. 2.2, for many applications, I/O operations are initially handled by I/Omiddlewares

(e.g., Message Passing Interface (MPI), Google Remote Procedure Call (gRPC)) and/or system libraries

(e.g., libc, glibc) before reaching the SCI layer. The SCI lies on the boundary between user space and

kernel space, offering the means for user space programs to request the kernel to execute specific actions

on their behalf.

When a file system is being used, storage I/O operations that reach the SCI layer are redirected to the

VFS layer, which provides the file system interface to user space programs and acts as an abstraction within

11

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

the kernel that allows different file system implementations to coexist (e.g., Ext4, ZFS, NFS). From the VFS

layer, I/O operations are forwarded to the concrete file system implementation, which performs several

tasks of address resolution and translation, transforming logical I/O operations into physical operations

that are then submitted to the I/O scheduler. The latter is responsible for determining the order in which

operations are sent to device drivers. The block device driver layer is the one that actually handles the data

transfer operation, issuing the corresponding commands to the hardware interfaces of the disk controller.

Network I/O operations flow through a similar stack. For example, for applications and/or libraries

using traditional network sockets, from the SCI layer, the operations are redirected to the socket layer, the

network protocol layer, the packet scheduler layer, and finally, the network driver layer, which submits the

final network request to the physical hardware.

Although this is the traditional flow of I/O operations submitted by user space applications, there

are, however, some applications that use frameworks such as the Storage Performance Development Kit

(SPDK) [125] and the Data Plane Development Kit (DPDK) [61] to bypass the kernel and access directly

storage and network devices.

I/O Instrumentation. To intercept information about applications’ I/O requests, existing diagnosis tools

often instrument one or more of these layers [81]. The chosen layer(s) for collecting such information

impacts how much knowledge (context) one can gather from the actual I/O operations done by the appli-

cation(s) and how much the diagnosis solution is generally applicable to different types of applications.

In detail, when instrumentation is done at the application level, the diagnosis solution is application-

dependent. This means that to diagnose different applications, one must individually instrument multiple

source codes or binaries. If I/O instrumentation is instead done at the middleware level, the same diag-

nosis solution is applicable to all applications interacting with the instrumented middleware. Alternatively,

by instrumenting lower layers of the I/O flow, such as the SCI, it becomes applicable to all applications

interacting with the POSIX Application Programming Interface (API), even if these use different middleware

libraries to do so.

However, instrumenting lower layers provides less information (context) about the actual requests

done by specific applications. Namely, when traversing the I/O stack, requests are exposed to several

transformations, like I/O merging [127]. Thus, when intercepting requests at lower layers, such as the file

system or the block device, it may not be possible to uncover the concrete user space I/O operations that

originated such requests, and it may be hard to distinguish the processes that originated the requests.

Alternatively, by instrumenting the SCI layer, one can observe the actual user space operations (i.e.,

system calls of syscall for short) made by each application to the kernel (e.g., write, read, send,
receive). It can also be possible to obtain information about the process and/or thread that generated

each request. However, it still does not allow understanding the application’s logic behind a request, for

instance, which application function or method generated the intercepted syscalls. When such context is

required, diagnosis solutions must perform instrumentation at the application layer.

Next, we discuss the different approaches followed by current diagnosis tools for collecting data at four

12

2.1. DATA COLLECTION

different levels: application and system logs (§2.1.1), application instrumentation (§2.1.2), middleware

instrumentation (§2.1.3), and OS instrumentation (§2.1.4).

2.1.1 Application and System Logs

When an application experiences a failure or displays inefficient or erroneous behavior, the common

procedure followed by users is to inspect application or system logs. These can provide various types of

information, including program variable values, invoked program functions, error messages, etc.

Since manually analyzing and correlating large and often unstructured logs generated by data-centric

applications is a laborious and error-prone task, several solutions have been proposed to automate the

process of data extraction from logs. More precisely, these solutions aim at automating the parsing of

each log message by identifying their constants (i.e., fixed text written by developers) and variables (i.e.,

values of program variables that carry dynamic runtime information), and generating event templates that

allow transforming unstructured logs into structured data [56].

Handcrafted Regular Expressions. The traditional approach is to rely on handcrafted regular expres-

sions or ad-hoc scripts that separate log messages into different groups, where log messages in the same

group share the same event template [56]. Logstash [10] is an example of a log parsing tool that uses

a set of regular expressions defined by the user for parsing logs. Some tools, such as LongLine [126], a

visual analytics system for large-scale audit logs, rely on Logstash to parse log data.

Other solutions like Falcon [82] and Horus [84], two log-based analysis tools for distributed systems,

require the existence of dedicated drivers for each type of log (e.g., Log4j, TShark), which are responsible

for translating the library-specific log entries into events that can be effectively processed by these tools.

Although these approaches facilitate log parsing, they require users to manually write the rules for

processing each log message, which is still a time-consuming and error-prone process. Moreover, the

logging code in modern applications is constantly changing (e.g., by adding new logging messages or

changing the log message structure), forcing users to regularly update their parsing rules [55, 123].

Static Analysis. Another broadly adopted approach to ease log parsing is to statically analyze the appli-

cations’ source code. Solutions like Xu et al. [124] and SherLog [128] use static analysis to identify logging

statements in the applications’ source code and extract all possible format strings that can appear in log

messages. These format strings are then used to automatically generate a collection of regular expres-

sions for parsing the logs. While these solutions can automatically generate rules for parsing logs, they are

not always applicable as the applications’ source code may be unavailable (e.g., third-party components).

lprof [131] overcomes this issue by statically analyzing the applications’ binary code, searching for

logging statements with keywords (e.g., fatal, error, warn, info) often employed by commonly used logging

libraries (e.g., Log4j and SLF4j). With these statements, lprof generates the regular expressions for log

parsing. However, this solution is highly dependent on the logging libraries and programming languages

used by the applications and, therefore, hard to generalize.

13

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

Data Mining Techniques. More automated log parsing solutions employ data mining techniques for

extracting log templates and splitting raw log messages into different groups. For instance, LogMine [54]

follows a clustering-based approach, grouping log messages with high similarity into the same cluster, and

extracting, for each cluster, a representative log template. LogLens [36], a real-time log analysis system,

leverages LogMine to cluster preprocessed logs.

2.1.2 Application Instrumentation

While logs can provide valuable information about the behavior of applications, these often fail to provide

sufficient information for detailed diagnosis [129]. In fact, the data being registered is significantly influ-

enced by the type of application, the chosen logging method (i.e., logging library or ad hoc messages),

and the intended purpose of the log. For instance, an error log message may only indicate a system

failure without providing further context. Furthermore, while simple log messages can assist developers

in their tasks, they may not align with the end user’s diagnosis needs. Updating applications to log more

comprehensive data can have undesired effects on performance and information overload [75]. These

reasons led several tools to use source code or binary instrumentation, as it provides greater flexibility

when tracing applications’ requests and allows gathering a more comprehensive set of information to aid

in the diagnosis process.

Source Code Instrumentation. Zipkin [132] and Jaeger [62] are two examples of commercial dis-

tributed tracing systems that rely on source code instrumentation. While Zipkin offers a collection of li-

braries for adding instrumentation code to applications, Jaeger suggests users to use OpenTelemetry [87],

a collection of APIs, Software Development Kit (SDK)s, and tools for instrumenting, generating, collecting,

and exporting telemetry data (i.e., metrics, logs, and traces) for software’s performance and behavior

analysis. The added instrumentation code allows collecting data about applications’ requests, such as

timestamps at which they occur, duration, type of operation, and additional context added by users.

Magpie [13], a tool chain for automatically extracting systems’ workloads under realistic operating

conditions, relies on instrumentation for capturing control paths and resource demands of applications’

requests as they are serviced across components and machines in a distributed system. Namely, it uses

the Windows event logging infrastructure, Event Tracing for Windows (ETW), to add custom event tracing to

application-level components, such as ASP.NET ISAPI, and middleware components, such as WinSock2.

The collected information includes events with a timestamp, an event identifier, and the values of zero or

more typed attributes (e.g., Thread Identifier (TID), CPU ID). For accounting the thread CPU consumption

and disk I/O usage of applications, Magpie combines user space tracing with kernel-level tracing.

Stardust [115], a tracing infrastructure for distributed storage systems, adds instrumentation code to

strategic locations in the application’s code for capturing the demand of a specific resource (e.g., when

a request is sent to disk and then again when it completes). Each generated event contains a common

header and a payload. The headers include a timestamp, a breadcrumb, the kernel-level PID, and the user-

level TID. The breadcrumb is used for correlating distinct events associated with a given request within and

14

2.1. DATA COLLECTION

across servers. The payload format depends on the request type. For instance, an event associated with a

disk request contains the disk ID, the logical block number, the size of the I/O request, and the operation

type. Similarly to Magpie, along with the applications’ source code, Stardust also modifies middleware

components (e.g., Remote Procedure Call (RPC) layer) and kernel functions (e.g., KernelProcessSwitch).

X-Trace [45], another tracing framework for distributed systems, relies on users to instrument their

applications by adding metadata to requests when an application task initializes (e.g., a web request).

By propagating the metadata down to lower layers through protocol interfaces, which may need to be

modified to carry X-Trace metadata, users can then understand the causal paths of requests in network

protocols. The X-Trace metadata may include information about the task identifier, IP options, TCP options

and HTTP headers.

Binary Instrumentation. Pivot Tracing [74, 75], which also aims at tracing distributed systems, follows

a similar approach to X-Trace, instrumenting applications to add and propagate baggage (i.e., metadata)

along the execution path of requests. The generated baggage can include information about the host,

timestamp, process name and PID. Unlike X-Trace and previous solutions, Pivot Tracing resorts to dynamic

instrumentation through the Javassist [28] library, dynamically rewriting and reloading Java class byte

code, which avoids the need to manually modify applications’ source code.

2.1.3 Middleware Instrumentation

Instrumenting source code allows obtaining the most precise and detailed information about the appli-

cations’ requests. Nevertheless, it can be difficult to understand what information one wants to record

and where to add the instrumentation code. Moreover, source code instrumentation often requires mod-

ifications to numerous files, potentially leading to implementation errors [67]. Besides, the applications’

source code may not always be available, which inhibits the use of such an approach.

In line with these challenges, some diagnosis tools apply instrumentation at the level of middleware

components. These components can be system libraries or network protocols that are commonly used

by applications when interacting with lower layers (e.g., SCI layer) or remote servers.

Examples of solutions that follow such an approach are Pinpoint [24], a framework for root cause

analysis on the Java 2 Platform Enterprise Edition (J2EE) platform, and Dapper [106], Google’s production

distributed systems tracing infrastructure. Pinpoint instruments the J2EE server platform to trace client

requests, avoiding modifications at the application level, while Dapper leverages the fact that Google’s

applications use the same threading model, control flow and RPC system to restrict instrumentation to a

small set of common libraries.

Other solutions like ScalaIOTrace [117], Darshan [108], DXT [122] and EZIOTracer [81] intercept

applications’ I/O calls (e.g., read and write operations) by instrumenting general-purpose parallel I/O

libraries, such as MPI, or system I/O libraries (e.g., libc). Adding instrumentation code to these libraries

can be done via compile-time wrappers for statically linked executables through the PMPI interface [59]

or the GNU linker, or library preloading for dynamic executables with the LD_PRELOAD mechanism.

15

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

IOPin [67] uses the Pin [72] tool to instrument the binary code of the MPI library and the underlying

Parallel Virtual File System (PVFS). By packing trace information into a structure and passing it into sub-

layers at runtime, IOPin is able to track the flow of the I/O call from the MPI library to the PVFS server.

2.1.4 OS Instrumentation

Even though middleware instrumentation allows collecting runtime information about applications’ I/O

requests without modifying their source code or binaries, it is not generally applicable as some applications

may not interact with the instrumented middleware components (as depicted in Fig. 2.2). A more broadly

applicable approach is to instead instrument the OS, capturing requests’ information at one or multiple

layers of the Linux I/O stack.

Ptrace. Strace [109] follows such an approach by leveraging the user-level ptrace mechanism to

intercept syscalls as well as read and write operations to memory and registers. Ptrace is itself a syscall

that provides the means for a process (e.g., Strace) to observe and control the execution of another process

(i.e., the targeted application) [92]. Whenever a syscall is invoked, the target application is temporarily

stopped, and Strace is notified to process the information about the syscall (e.g., capture information

about the syscall type, arguments, and return value). Once finished, Strace returns control back to the

targeted application, allowing it to resume execution.

Due to this constant context switching between processes, ptrace-based solutions like Strace are

known for highly impacting the targeted applications’ performance [51]. Nonetheless, Strace is widely

used by users and developers for debugging their applications, as well as by other diagnosis tools, such

as RepTrace [98], to collect information about I/O syscalls.

Custom Kernel Modules. Another approach for collecting information about I/O requests at the OS

level is to add instrumentation code inside the Linux kernel. For instance, Sysdig [111] offers a custom

Linux kernel module that captures all syscalls coming from applications and sends them to a user space

daemon for further processing. Similarly to Strace, Sysdig can capture information about the syscall type,

arguments and return value.

Linux Security Module (LSM). S2Logger [110] and CamFlow [89] leverage the LSM to hook onto

kernel syscalls. LSM is a framework often used by security systems such as SELinux [107] and AppAr-

mor [15] to enforce security policies on kernel functions [121]. Intending to track file provenance rather

than implement security policies, S2Logger and CamFlow use the LSM interface to log file and network-

related syscalls, recording information about timestamps, syscall types, process and parent PIDs, user

credentials, and syscall arguments.

Linux Trace Toolkit Next Generation (LTTng). Other solutions rely on the LTTng technology to

instrument one or more layers of the OS [37]. LTTng is a low-level tracing tool that allows users to

instrument i) kernel tracepoints – statically defined points in the source code of the kernel image or of a

kernel module; ii) kernel syscalls; iii) kernel probes – probes dynamically placed in the compiled kernel

16

2.1. DATA COLLECTION

code; and iv) user space probes – probes dynamically placed at the entry of a compiled user space

application or library function through the kernel.

Whenever one of these instrumentation points is reached (e.g., when a syscall reaches the kernel),

LTTng produces a new timestamped event with information (e.g., type, arguments) regarding the inter-

cepted request and writes it to ring buffers shared with consumer daemons at user space. A ring buffer is

a contiguous memory area that can be written (by producers) and read (by consumers) simultaneously.

Given its circular layout, when the buffer is full, incoming events may either replace the oldest ones or be

discarded until some events have been consumed from the buffer [51]. The consumer daemons collect

events from the ring buffers and persist them to disk or send them through the network in an optimized

binary format called Common Trace Format (CTF).

Re-Animator [5], Kohyarnejadfard et al. [68] and Daoud and Dagenais [32] use LTTng to trace syscalls,

capturing information about the process that submitted the request (e.g., PID) and details regarding the

request itself, such as its type, arguments, return value and duration. In addition to tracing syscalls,

Daoud and Dagenais [32] also use LTTng to instrument other OS layers. Specifically, they instrument

the block layer to observe when a request is created, inserted into the scheduler, issued to the disk, and

completed. Furthermore, they instrument the disk driver, namely the Small Computer Systems Interface

(SCSI) interface to track the I/O requests sent to the controller and verify if they were handled correctly, and

the network layer to collect information about network packet exchanges. Finally, they leverage LTTng’s

capabilities to instrument user space probes as well, intercepting requests from the storage daemons of

the Ceph [119] distributed storage system.

While LTTng is known for its small performance overhead over targeted applications, it is not integrated

into the mainline Linux kernel. Therefore, to enable kernel-level tracing with this technology, one must

load multiple kernel modules [50, 51]. Adding instrumentation code to the Linux kernel code or creating

and loading a poorly designed kernel module is always a substantial risk. A minor bug in such code can

cause disastrous results (e.g., kernel panic) [4]. Thus, solutions such as Sysdig, which develops its own

kernel module, as well as solutions based on LSM and LTTng must take extensive precautions to ensure

that their kernel modifications are safe and will not disrupt the stability of the system.

Extended Berkeley Packet Filter (eBPF). The eBPF technology, on the other hand, provides an

alternative approach for safely and efficiently instrumenting the kernel without requiring modifications

to its source code or the loading of new kernel modules [76]. In particular, eBPF is a Virtual Machine

(VM)-based framework that facilitates the injection of byte-code programs into the kernel for extending

its functionalities. Before an eBPF program is injected into the kernel, it undergoes validation by the

eBPF verifier. This verifier ensures the safety of the program by checking, for instance, for infinite loops,

uninitialized variables, memory access out of bounds, and program termination, among others[39].

Once approved, the eBPF program is compiled into native kernel code through a Just-In-Time (JIT)

compiler and attached to the defined hook (i.e., tracepoints, user space probes or kernel probes). When-

ever these hooks are triggered, the programs gather the desired information and exchange it with user

17

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

space via ring buffers or eBPF maps. The latter are in-kernel data structures (e.g., hash tables, arrays) use-

ful for sharing information between different runs of the same program, different programs or a program

and user space.

Considering the aforementioned advantages, Sysdig [111] shifted its core instrumentation technol-

ogy. Namely, Sysdig now offers an eBPF-based tracer as an alternative to its kernel module to intercept

syscalls [112]. Tracee [116] and IOscope [102] are other examples of eBPF-based solutions. Tracee

focuses on runtime security and forensics analysis, while leveraging this technology to collect information

about syscalls and network events. Moreover, Tracee collects security events that expose more advanced

behavioral patterns (e.g., detecting code injection via ptrace). IOscope is a tracer for profiling I/O pat-

terns of storage systems’ workloads and uses eBPF to collect information about I/O requests that are based

on the variations of read and write syscalls (e.g., pread, pwritev, readv, preadv, pwritev2).
To that end, it intercepts requests at both the VFS and block device layers.

To establish the causal relationship between log events from different machines, Falcon [82] and

Horus [84] combine applications’ logs with kernel-level events collected with the eBPF technology. Specif-

ically, they use kernel probes to capture i) process-related events, including the initiation, termination,

forking, and joining of processes or threads, and ii) network-related events, such as the establishment and

acceptance of network connections between two processes and the sending and receiving of messages.

EZIOTrace [81], given its goal of unifying user and kernel-level storage I/O tracing, also relies on eBPF

for kernel-level tracing, combining middleware instrumentation with OS instrumentation. Namely, it uses

the latter to keep track of the lifetime of read and write operations through the Linux I/O stack, placing

probes at the VFS, page cache, Ext4 file system, and block device layer.

PerSecMon [64], a performance and security-aware monitoring framework, also leverages eBPF to

instruments multiple OS layers. First, user space probes are used to capture activity statistics for various

high-level language applications (e.g., Java, Python). These probes gather information regarding garbage

collection, the entry of a method, the start of a process call, and the completion of a process call. Memory

tracepoints are used to inspect the memory and check whether the allocated memory is released or

not after the process execution completes. Finally, kernel probes are used to intercept syscalls, VFS

operations, block device operations, and generic functions to track the kernel stack.

Although this technology provides a flexible and safe way to instrument the Linux kernel, it has some

limitations. For example, each eBPF program has a maximum number of instructions (e.g., 4096 instruc-

tions for kernels up to version 5.4 and 1 million instructions for newer kernels), its stack cannot exceed

512 KiB, and only bounded loops are allowed [48]. Moreover, similar to LTTng, since the ring buffers

used to exchange data from the kernel to user space have a circular layout, whenever the buffers are full,

eBPF starts discarding events.

18

2.2. DATA ANALYSIS

2.2 Data Analysis

As mentioned before, a crucial phase of the diagnosis process is the analysis of collected data. Given

the substantial volume of events produced each second by the systems under tracing (e.g., distributed

systems, data-centric applications), it is crucial to employ automated strategies to process these events,

extract relevant information from them, and efficiently persist the resulting data (i.e., collected data and

the outputs of the analysis algorithms).

We now review existing diagnosis tools based on their main analysis purpose (§2.2.1), data processing

algorithms (§2.2.2), and backends (§2.2.3).

2.2.1 Purpose

As shown in Table 2.1, existing diagnosis tools can be grouped into two major topics: i) profiling and

anomaly detection, and ii) root cause analysis.

Profiling and Anomaly Detection. Numerous solutions aim at profiling applications to gain insights

into their typical behavior. Such knowledge can then be leveraged to identify optimization opportunities

and discover irregularities or anomalies in applications’ executions.

In this context, many solutions focus on analyzing the applications’ performance [13, 32, 45, 62, 64,

67, 68, 74, 75, 106, 115, 117, 122, 124, 131, 132]. For instance, Magpie [13] proposes a solution for

automatically extracting a system’s workload, allowing to understand, for instance, how requests are ser-

viced. Stardust [115] provides information about clients’ request latency, showing where a request spends

its time as it is processed in the system. Similarly, Dapper [106] can determine which part of a system

is experiencing slowdowns, and IOPin [67] can understand the complex interactions across different I/O

layers from applications to the underlying parallel file system. The solution proposed by Xu et al. [124]

is able to detect performance anomalies such as a disproportionate number of aborting transactions, or

transient workload imbalance. Kohyarnejadfard et al. [68] can reveal anomalous subsequences of syscalls

based on their execution times and frequencies.

Other solutions apply profiling and anomaly detection for security analysis. LogLens [36] proposes a

real-time log analysis system for discovering security attacks such as spoofing attacks. LongLine [126]

provides a visual analytics solution for large-scale audit logs that allows detecting unexpected malfunctions

of systems or attacks against these. For example, through the analysis of audit logs collected from a

global Information Technology (IT) company, LongLine allowed the detection of unusual configuration

file changes on the data storage server. S2Logger [110] monitors systems’ executions to provide near-

real-time detection of data-related security policy violations such as data loss and leakage. Similarly,

Tracee [116] provides a runtime security and forensics tool to help uncovering malicious activities. For

instance, it has the capability to detect anti-debugging methods employed by malware to remain concealed

and obstruct its detection, identify code injection techniques utilized for executing malicious code, and

pinpoint the utilization of the LD_PRELOAD mechanism to alter applications’ behavior or load malicious

19

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

programs. PerSecMon [64] combines both performance and security analysis, providing a solution for

finding issues that may lead to performance degradation and unveiling security vulnerabilities within the

system.

Root Cause Analysis. Another common purpose of diagnosis tools is the root cause analysis of a

detected failure or anomaly. SherLog [128], for instance, combines source code analysis with information

collected from applications’ logs to identify the underlying reasons for software bugs (e.g., Apache web

server incorrectly handling EOF in the response stream when set up as a proxy server) and configuration

errors (e.g., CSV1 version control server incorrectly setting the permission for locking a directory). By

tracing requests as they travel through the system, Pinpoint [24] is able to automatically identify the root

cause of single-component failures, for instance, in e-commerce environments.

Falcon [82] and Horus [84] show that by combining log analysis with causality tracking, it is possible

to explain the reason behind unexpected behaviors in dependable distributed systems. RepTrace [98]

also leverages causality analysis to identify the root cause of unreproducible builds.

2.2.2 Algorithms

Diagnosis tools employ a wide variety of strategies to analyze collected data. While several solutions use

statistical methods to provide metrics about the targeted system, others opt for different algorithms and

models to perform mathematical analyses and establish correlations within the observed data. A different

set of tools rely on data mining and Machine Learning (ML) techniques, especially for detecting anomalies.

Finally, a considerable number of solutions leverage graph-based approaches to analyze collected events

and data dependencies.

Statistical Methods. Several diagnosis solutions rely on statistical methods to provide users with statis-

tics obtained from the data collection phase [62, 64, 67, 106, 117, 122, 131, 132]. For example,

IOPin [67] provides throughput and latency performance statistics for each layer of the kernel I/O stack.

ScalaIOTrace [117] replays collected traces and uses analysis interposition functions to obtain statis-

tics on the number of I/O operations and blocking/non-blocking communication calls across all nodes

of an High-Performance Computing (HPC) infrastructure. PerSecMon [64] relies on analytics features to

generate prompt messages depending on users’ requirements (e.g., set a flag for processes with latency

higher than a given threshold).

Pivot Tracing [74, 75] correlates metrics and events from arbitrary points in the system at runtime

(e.g., understand the disk bandwidth usage across a cluster of nodes, on a per client request basis). This

is done by propagating metadata (e.g., process name) along with the events and leveraging their causal

relationships to implement a happens-before join operator that groups events occurring within and across

process, machine, and application boundaries.

Algorithms and Models. Other solutions apply different algorithms and models to analyze collected

data. SherLog [128], for example, tries to infer execution paths from applications’ logs and static code

20

2.2. DATA ANALYSIS

analysis, while relying on a satisfiability constraint solver to prune infeasible paths. In a similar way,

Falcon [82] models the happens-before relationships between events and uses a Satisfiability Modulo

Theories (SMT) solver to yield an execution schedule in which events are guaranteed to be causally ordered.

Daoud and Dagenais [32] employ a fully incremental convex hull algorithm to synchronize user space

traces from Ceph’s storage daemons with kernel-level traces from various layers of the I/O stack, based on

the causality of events. LogLens [36] detects malfunctioning events by analyzing abnormal log sequences

based on a Finite-State Automaton (FSA) model.

Tracee [116] employs behavioral pattern matching methods to analyze and compare collected events

with a predefined set of malware behavioral signatures, alerting users when a potential threat is found.

Data Mining and Machine Learning. Another analysis strategy is to leverage data mining and ML

techniques. For instance, Xu et al. [124] use the Principal Component Analysis (PCA) anomaly detection

method to isolate repeating patterns in feature vectors and make abnormal log message patterns easier

to detect.

Kohyarnejadfard et al. [68] introduce a supervised anomaly detection method built on a multi-class

Support Vector Machine (SVM) classification model. Additionally, their work presents two other anomaly

detection techniques, one unsupervised and the other semi-supervised, both using the Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN) algorithm. Similarly, LongLine [126] employs unsu-

pervised non-linear dimensionality reduction and anomaly detection techniques, including the t-distributed

Stochastic Neighbor Embedding (t-SNE) and the Local Outlier Factor (LOF) algorithms, which are used to

identify unexpected malfunctions of applications or attacks over these.

Pinpoint [24] uses the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), a hierarchical

clustering algorithm, to correlate the failures and successes of requests and determine which application’s

components are most likely to be faulty. Magpie [13] identifies I/O events belonging to the same client

request by applying a form of temporal join, and then employs behavioral clustering to build workload

models of applications.

Graphs. Graph-based analysis is also a frequently utilized approach. Horus [84] uses Directed Acyclic

Graph (DAG) to explicitly encode causality, where nodes represent events and edges indicate the causal

dependencies between them. Similarly, RepTrace [98] uses dependency graphs to conduct causality

analysis over syscalls and identify the root causes for unreproducible builds.

X-Trace [45] leverages the causal relationships obtained from metadata propagation and builds a

graph that provides users with a comprehensive view of all the network operations executed as part of

a given client request. Likewise, Stardust [115] builds latency graphs that allow observing how requests

flow from component to component in the distributed system and where requests spend their time.

S2Logger [110] generates direct graphs to obtain an end-to-end overview of the data flow in distributed

virtualized environments. By using these graphs, S2Logger is able to perform real-time enforcement of

data protection policies.

21

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

2.2.3 Backends

The type of backend used to persist collected data, along with the output of its analysis, varies across

diagnosis tools. While some solutions store this information on disk, others rely on relational and non-

relational databases.

Disk. The majority of solutions store collected data directly in one or multiple files [13, 24, 68, 82, 98,

116, 117, 122, 124, 128]. The analysis phase is then conducted over such file(s), while the outputs are

stored on separate file(s) or shown through visual representations. To conduct different analyses, these

solutions may need to iterate over the full content of file(s) multiple times.

Daoud and Dagenais [32] follow a different approach by using the modeled state system [78, 79], a

disk-based data structure that keeps the state of the system in a tree-like fashion, allowing for its efficient

storage and access.

Relational Databases. Other tools store diagnosis-related information in relational databases, which

provide stronger data consistency and integrity, while offering the flexibility to execute Structured Query

Language (SQL)-based queries over stored data. Examples of used relational databases include SQLite [67,

115], MySQL [110], and PostgresSQL [45].

Non-Relational Databases. Non-relational databases can accommodate various data types (e.g.,

key/value pairs, JSON documents, graphs), efficiently manage large-scale distributed data, and pro-

vide good performance for specific use cases, such as real-time processing [63]. Examples of non-

relational databases utilized by existing diagnosis tools encompass document-oriented databases like

Elasticsearch [36, 64] and MongoDB [131], Key-Value Store (KVS) such as Cassandra [126], tabular

databases such as BigTable [106] and graph databases like Neo4j [84].

Multiple Backends. In some cases, diagnosis tools provide support for multiple database types. For

instance, Zipkin [132] uses Cassandra (a non-relational KVS) as the default storage backend. However, it

has native support for Elasticsearch (a non-relational document-oriented database) and MySQL (a relational

database). Similarly, Jaeger [62] has multiple built-in backends such as Cassandra and Elasticsearch,

and has support for several other backends, including InfluxDB (a non-relational time-series database),

ScyllaDB (a non-relational wide-column data store), and PostgreSQL (a relational database).

Postmortem vs. Real-time Analysis. Besides the aforementioned features, the chosen backend

also influences the timing for conducting the analysis phase. Specifically, while some database-based

solutions are capable of delivering inline (near-real-time) analysis [36, 64, 84, 106, 110, 115, 126],

the majority of disk-based solutions only mention support for offline (postmortem) analysis. The only

exception is Tracee [116], as its analysis process occurs simultaneously with the data collection process.

Furthermore, among the six database-based solutions that offer near-real-time analysis, only two of them

employ relational databases. Finally, Pivot Tracing [74, 75] is the only solution that does not include a

storage backend, which explains its lack of support for postmortem analysis.

22

2.3. DATA VISUALIZATION

2.3 Data Visualization

Although some tools analyze collected data and deliver the corresponding results in a raw format (e.g.,

through new files or messages printed in the standard output) [13, 24, 67, 74, 75, 116, 117], others

defend that providing analysis results through visual representations facilitates the diagnosis endeavor for

users. Next, we overview the different types of visual representations offered by current solutions (§2.3.1)

and the tools employed to create these visualizations (§2.3.2).

2.3.1 Type

According to their analysis’ purpose, solutions may provide a single or multiple types of visual represen-

tations.

Single Visualization. Falcon [82] and Horus [84] employ space-time diagrams to visually depict the

interactions between different components in distributed systems and the causal dependencies between

their events. Xu et al. [124] use decision trees to pinpoint types of abnormal behaviors and help users

quickly understand the anomaly detection result.

Other works rely on graph-based representations. RepTrace [98] uses dependency graphs to show

the root cause of unreproducible builds. X-Trace [45] uses task trees to depict all sub-operations of a

given main task (e.g., client request), and Stardust [115] depicts where clients’ requests spend their time

through latency graphs. SherLog [128] and S2Logger [110] use control flow and data flow graphs to

visually represent how requests and data flow through the targeted system.

Multiple Visualizations. A different approach is to provide multiple visual representations that best

fit the heterogeneity of the information being observed. For instance, Dapper [106] provides a web-

based user interface that allows observing tables with performance summaries, frequency histograms

over selected metrics (e.g., execution’s latencies), and trace trees, depicting the causal and temporal

relationships between spans (i.e., different events originated by the same request). Zipkin [132] and

Jaeger [62] offer web interfaces with representations for visualizing individual spans, including dependency

diagrams and Gantt charts. lprof [131] supports a web-based application with histograms and time-series

graphs to visualize requests’ latency over time, request count and trend over time, and average latency

per node.

LogLens[36], PerSecMon[64], DXT Explorer [18] and Kohyarnejadfard et al. [68] provide user inter-

faces with different types of visualizations, ranging from simple representations such as tables, pie charts

and histograms to more elaborate ones such as time-series and heat maps.

Besides supporting simple representations, Daoud and Dagenais [32] developed three types of visual-

izations tailored to observe their analysis findings. These include the Object Storage Devices (OSD) activity

view that shows the throughput of the storage devices supported by the cluster, the Ceph processes view

that provides low-level details about Ceph processes, and the Network view that summarizes the network

exchanges that happen between the different cluster nodes. LongLine [126] also includes representations

23

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

specific to their analysis’ goal, such as calendar views and two-dimensional visualizations. These ease

the work of security analysis when searching for abrupt changes in the large number of collected logs and

identifying anomalies by comparing the daily I/O patterns of observed applications.

2.3.2 Tools

While some diagnosis solutions rely on pre-existing visualization frameworks to customize their visual

representations, others rely on libraries to build their own visualization component.

Visualization Libraries. Falcon [82], lprof [131] and LongLine [18] implement their visualizer compo-

nents as JavaScript programs, using libraries such as SVG.js, Highcharts, and D3.js, respectively. DXT

Explorer [18] implements its web-based representations in R, resorting to the ggplot2 and Plotly libraries.

Visualization Frameworks. An alternative approach is to integrate existing visualization frameworks

with the diagnosis pipeline. These frameworks already provide visual representations, which can then be

customized by developers while avoiding the need to implement them from scratch through libraries.

Stardust [115] uses GraphViz, a graph visualization software, to build latency graphs, and Horus [84]

relies on ShiViz, a visualization engine that generates interactive communication graphs from distributed

system execution logs, to depict space-time diagrams. Kohyarnejadfard et al. [68] and Daoud and Da-

genais [32] use Trace Compass, a Java framework for observing the information contained at logs and

traces through both general and specific representations. LogLens [36] and PerSecMon [64] use Kibana,

a framework for visualizing data stored at Elasticsearch through dashboards that assist in the data analysis

and exploration process.

Interactive Visualizations. Several solutions further ease the diagnosis process through interactive

visualizations. These can include highlighting specific areas of representations (e.g., of tables, pie charts,

time-series graphs) to obtain more details about these. New visual representations can even be gener-

ated automatically to further explore the selected information. From the solutions based on visualization

frameworks, only Stardust [115] does not provide this functionality. As for the approaches using custom

visual components, only five out of eleven support interactivity [18, 62, 106, 131, 132].

2.4 Lessons Learned

We now summarize key insights provided by this chapter. Learned lessons are provided for the different

main tasks of the diagnosis process, namely data collection (CG), analysis (AG) and visualization (VG).

C1: Transparency. Source code instrumentation is often used to gather information about I/O requests.

This intrusive approach requires a considerable manual effort when applied to large codebases and/or

several components, being only applicable when source code is available. Ideally, data collection would

be non-intrusive, treating applications as opaque boxes and requiring the least possible knowledge about

the targeted system.

24

2.4. LESSONS LEARNED

C2: Applicability. Data collection can be done at different levels of the I/O stack (e.g., applications,

libraries, middlewares, OS). The choice on which levels to consider must be based on: i) the diagnosis

purpose(s); iii) the amount of context needed regarding the original application’s requests; and iii) how

much one needs the diagnosis solution to be transparent and generally-applicable.

C3: Comprehensiveness. The detail of collected data is highly related with the analysis purpose of

each tool. Consequently, for multi-purpose diagnosis tasks, users need to combine several tools and

repeat the data collection process multiple times. Ideally, diagnosis tools should capture comprehensive

information from I/O requests to enable a more efficient and richer study of these.

C4: Performance Impact. Intercepting I/O events requires extra processing in the critical path of

requests. Depending on the I/O stack level where these are intercepted and the tracing technology being

used (e.g., ptrace, eBPF, LTTng), one can add undesired performance overhead over the application,

and even hide subtle concurrency issues such as I/O contention or starvation [51]. Data collection should

aim at reducing performance overhead over applications to support timely and accurate diagnosis.

C5: Resource Usage. The amount of captured information and the chosen tracing technology also

impact the usage of system’s resources (e.g., CPU, RAM, disk). Having resource-efficient data collection

is important to lower I/O diagnosis’ hardware requirements and to avoid competition between targeted

applications and tracers for system’s resources, which can affect the traced information’s accuracy.

C6: Accuracy. To reduce tracing performance overhead and resource usage, many solutions wittingly

discard sets of I/O requests, for instance, by using sampling [106]. However, missing rare but important

requests can have a direct impact on the analysis’ accuracy [75]. Therefore, diagnosis solutions must

strive to find an appropriate balance between accuracy, performance overhead and resource usage.

C7: Flexibility. When diagnosing applications, one might want to capture as much information as

possible to explore unknown I/O behaviors, or capture only events of interest to debug specific issues.

Therefore, data collection should be flexible regarding the amount of intercepted requests and the detail

of information captured from these to accommodate these different needs.

A1: Automation and Summarization. While efficient data collection is important for diagnosing appli-

cations, by itself it is not sufficient. Given the potentially large number of collected events, solutions must

support automatic strategies to analyze such events, while highlighting useful insights about these in a

concise fashion.

A2: Multi-purpose. Current tools resort to a vast set of algorithms, which is explained by their different

and specific analysis requirements. For example, ML is widely used for anomaly detection, while graphs

and solvers are often used to infer the causal order of distributed requests. Ideally, multi-purpose diagnosis

solutions should provide support for these different algorithms.

A3: Real-time and Postmortem. Real-time analysis is useful for users to debug and explore their

applications in a timely fashion. At the same time, saving collected data for posterior analysis is key for its

postmortem exploration, for example, to try out other algorithms or compare the I/O behavior of different

25

CHAPTER 2. I/O DIAGNOSIS BACKGROUND

applications. Therefore, solutions should aim to support both real-time and postmortem analysis.

V1: Informative. Most of the existing tools avoid generic visualizations, focusing instead on one or more

visual representations aligned with their diagnosis goals and analysis algorithms. This is an important

feature as it allows users to focus on the most relevant information and easily interpret the analysis’

findings.

V2: Versatility. It is hard, if not impossible, to find a single visualization that accurately depicts col-

lected data and the outputs of multiple analysis algorithms due to their potential heterogeneity. Therefore,

solutions should support multiple representations tailored for different types of information (e.g., tables,

charts, time-series graphs).

V3: Exploration and Customization. Current solutions based on frameworks like Kibana and Trace

Compass enable users to build new visual representations and customize existing ones. Also, these allow

users to interact with the representations (e.g., filter or select specific time frames). These features are

important for diagnosis tasks with a more exploratory nature.

26

3

Content-aware Tracing and Analysis for Distributed
Systems

The development, configuration, and management of distributed systems are usually difficult, costly, and

challenging tasks. A distributed deployment can easily become a complex system due to the heterogeneity

of software and hardware components, diversity of protocols, programming models and interfaces, sheer

concurrency, asynchrony of events, faults, etc.

Diagnosis frameworks can assist these tasks by facilitating the observation of the applications’ I/O

requests as they propagate through the distributed system, and by providing valuable insights into how

the system’s state evolves over time. Such knowledge is key for performance analysis, diagnosing anoma-

lies, and even for assessing correctness or security properties [86]. However, to efficiently diagnose a

distributed system, one must consider several of the challenges discussed in §2.4:

Challenge C1. Distributed systems are composed of several components whose source code may be

difficult or even impossible to instrument, thus requiring non-intrusive solutions for tracing their I/O

operations.

Challenges C4, C5 and C6. As distributed systems may generate a large volume of storage and net-

work I/O requests, one must aim at reducing data collection’s (tracing) performance impact and

resource usage, while capturing all the relevant information for making an accurate analysis of the

system’s behavior.

Challenges A1 and V1. Given the size and complexity of the collected traces, one must automate the

analysis and visualization of the events contained in these, while preserving their causal order to

provide accurate insights about the I/O flows of the system.

Current diagnosis solutions targeting distributed systems either take an intrusive approach, requiring

source code or binary instrumentation [24, 74, 106], or only take into account the requests’ context [82,

89, 110], such as, in general, timestamps and PID, for network messages their source, destination and

protocol, and for files their descriptor, name and offset.

27

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

SEND
12

2

4
5

RECEIVE
12

SEND
12

RECEIVE
12

node1 node2

1

3 WRITE
echo.txt,12

(a) Context-based tracing

SEND
"Hello world!",12

2

4
5

RECEIVE
"Hello world!",12

SEND
"!dlrow olleH",12

RECEIVE
"!dlrow olleH",12

node1 node2

1

3 WRITE
"!dlrow olleH",
echo.txt,12

(b) Content-based tracing

Figure 3.1. Context vs content-aware tracing analysis.

Indeed, the context of requests provides useful insights about different components interactions (e.g.,

it can tell when a file is written or an application sends data via a socket). As an example, let us consider

an echo application sending a message to be persisted in a file on another node, while expecting to receive

the same message from that node as the reply. From the captured I/O events, context-based solutions

can provide an analysis similar to the one shown in Fig. 3.1a. Namely, one node is sending 12 bytes to

another, which stores 12 bytes in file echo.txt and replies with another message of 12 bytes, suggesting

that the application is acting as expected.

However, we defend that the analysis of the requests’ content, transmitted and stored by the system’s

different components, can further enrich these tools when validating distributed solutions. For instance,

by analyzing the requests’ contents from the previous example (Fig. 3.1b), it is possible to see that,

despite storing 12 bytes and replying with a message of the same size, node 2 is actually storing and

sending different contents. This can happen due to data adulteration or corruption, which is not visible

when looking only at the requests’ context (i.e., type of operation, filename, and size). Therefore, in this

chapter, we innovate by also exploring the network messages’ payload and contents of storage accesses.

Namely, to address the previously identified challenges, this chapter proposes CaT, a novel framework

for analyzing both the context and content of distributed system’s I/O requests. CaT is the first framework

to combine: i) kernel-level tracing tools to capture the context and content of network and storage events

in a non-intrusive fashion; ii) summarization and similarity-based techniques to efficiently correlate the

content of captured events and visually depict their data flows. In detail, this chapter makes the following

contributions:

Content-based Tracing. A novel algorithm that captures and analyzes the context and content of appli-

cations’ I/O requests. It resorts to hashing techniques to summarize the requests’ content while reducing

storage space overhead and applies near-duplicate detection algorithms to find similarities between data

of distinct distributed events. By performing a similarity-based analysis, CaT can identify duplicate data,

as well as near-duplicate data (with a high degree of similarity (e.g., > 80%)) that was slightly modified

while flowing through different components (e.g., messages that include the same payload but have a

28

3.1. FALCON

different metadata header). This knowledge is key to detecting data adulteration, corruption or leakage

for similar I/O messages.

Non-intrusive Tracing. The previous algorithm is integrated with two kernel-level tracing tools (Strace[109]

and eBPF[77]) for capturing storage and network I/O requests in a non-intrusive fashion. These two tech-

nologies provide different tradeoffs in terms of resources usage (e.g., CPU, RAM and disk space), accuracy

(amount of collected information), and I/O performance. Also, these can filter requests from specific pro-

cesses or file paths to collect only events of interest.

Pipeline Integration and Prototype. An open-source prototype that provides a fully integrated pipeline

to capture, analyze and visualize the context and content of I/O requests. The pipeline design allows

decoupling the tracing from the analysis phase, enabling an offline (postmortem) analysis that can even

be performed at different and more powerful servers. Therefore, the main focus of this work, and the

conducted experimental evaluation, resides on the tracing phase as it has a direct performance impact

on the critical I/O path of applications.

Evaluation. A detailed evaluation with two real Big Data applications: TensorFlow [1] and Apache

Hadoop [46]. Experimental results show that it is possible to trace how data flows over a distributed

system while incurring negligible performance overhead. Moreover, usability experiments demonstrate

how CaT can improve distributed systems analysis while adding new and relevant insights on how data

is handled in complex multi-node systems. Namely, we show that, with CaT, users can validate the data

access patterns performed by TensorFlow when reading the training dataset or verify if the Apache HDFS

replicated file system is correctly storing data across the replicas (dependability and correctness). For the

latter application we also show that CaT can help identifying erroneous or suspected flows that may lead

to security flaws, namely data corruption or adulteration.

All artifacts discussed in this chapter, including CaT, workloads, and scripts are publicly available at

https://github.com/dsrhaslab/cat.

3.1 Falcon

In mind with the challenges described earlier, we have selected one of the most recent solutions from the

state of the art, named Falcon, to use as the basis for building our framework.

Falcon[82] is a log-based analysis tool for distributed systems whose components operate together

as a pipeline, allowing it to combine several logging sources and generate coherent space-time diagrams

of distributed events in a non-intrusive way. Its design contains three main components:

Trace Processor. This module is responsible for translating entries frommultiple log sources into events

to be processed by Falcon. Namely, it can extract useful knowledge about the system execution from

logging libraries (e.g., log4j) and network sniffers (e.g., libpcap-based tools). The extracted information is

then organized into process (fork, join, start, end) and socket (connect, accept, send, receive) events.

29

https://github.com/dsrhaslab/cat

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

Happens-Before Model Generator. After the input data normalization procedure, this module or-

ganizes the events according to their logical clocks and their happens-before relationship constraints,

building a single causally-consisted schedule. A constraint can, for instance, state that a send event must

happen-before the corresponding receive event.

Visualizer. In the end, the Visualizer component generates a space-time diagram depicting both the

events executed by each process and the inter-process causal relationships.

By combining the application’s logs with kernel-level tracing tools, Falcon can observe the system’s

behavior, creating causal traces without needing to known the target system’s architecture and the inter-

actions among its components.

In CaT, events collected by our novel content-aware tracers are provided to Falcon’s Trace Processor.

As Falcon can only analyze the context of network requests, its pipeline was extended to provide context

and content-aware analysis capabilities for both network and storage I/O requests. These modifications

are detailed in the next sections.

3.2 CaT in a Nutshell

CaT is a non-intrusive content-aware tracing and analysis framework for distributed systems that highlights

how their components interact with each other and how data flows through the system.

Its design enables the capture of information related to I/O network and storage events, such as

the context of the request and the data processed by the event. With this information, CaT proposes an

analysis of the events content based on their similarity, allowing the detection of data flow patterns that

are not visible when inspecting only the context of events. CaT’s design is built over five core principles:

Kernel-level Tracing. CaT resorts to kernel-level tracing tools to capture the context and content of

network and storage I/O requests, without requiring previous knowledge about the application or the

instrumentation of its source code.

Accuracy vs Performance. CaT’s modular design enables the support of different tracing tools, each

providing different tradeoffs in terms of the total percentage of collected requests (accuracy), I/O perfor-

mance, resource usage and storage space overhead.

Summarization. CaT uses hash functions to persist digests of requests’ content instead of their full

data, thus reducing the storage space of trace logs.

Causality Inference. CaT extends Falcon to correlate and infer the causality of distributed I/O events [82].

Similarity-based Analysis and Visualization. To automate the analysis process, CaT resorts to sim-

ilarity estimation techniques to compare and highlight data dependencies of complex systems. Also, a

color-based scheme is used to visually pinpoint I/O events handling near-similar data.

30

3.2. CAT IN A NUTSHELL

3.2.1 System Overview

CaT is designed to assist developers and system administrators in analyzing their system behavior and

identifying erroneous or suspected I/O flows that may lead to protocol or security flaws.

CATRACER TRACE
PROCESSOR

HB
MODEL

 GENERATION

CASOLVER VISUALIZER

CatLog

Causal
Trace

Similarity
Causal Trace

.log .pcap ...Collector1

4

.log .pcap

SigComp3

Handler2
CatLog ...

5

SMT
Solver

SigComp6

DataAnalysis7

8

x y z

< type, timestamp, pid, content, ...> < type, timestamp, pid, content, id, order, dependencies, ... > < type, timestamp, pid, content, id, order, dependencies, similarities, ... >

 New componentsFalcon's unmodified componentsFalcon's modified components

Figure 3.2. CaT’s architecture.

As depicted in Fig. 3.2, CaT operates as a pipeline that allows combining multiple data sources and

assessing the happens-before relationships between events, while adding the functionality of capturing

and analyzing their content. First, the CaTracer component runs along with the targeted application to

intercept its I/O requests and outputs a file (CatLog) containing the captured events’ information. Then,

the CatLog file is passed as input to the Trace Processor component, which parses the events and shares

the information with the HB Model Generator. The latter causally correlates the events and produces a

new file, the Causal Trace, containing both the events and their causal relationships. The Causal Trace is

then passed to the CaSolver component, which computes the events’ similarities and outputs a Similarity

Causal Trace file with the inferred similarity information. Finally, a web page is provided to the user through

the Visualizer component for visualizing the data contained in the latter file (i.e., the events, their causal

relationships and their data similarities).

3.2.2 Architectural Componentes

CaT extends Falcon’s architecture for analyzing data in transit and at rest, while providing further informa-

tion about the targeted system. Next, we detail each of CaT’s main components.

CaTracer. The pipeline’s first component is the CaTracer, which is responsible for collecting I/O events

information. It runs simultaneously with the targeted system, observing requests from the different compo-

nents and storing them as events in a log file (CatLog). Its collector submodule (1) resorts to kernel-level

tracing facilities to intercept the context (e.g., type of event, timestamp, PID) and content of network (e.g.,

send, receive) and storage (e.g., read, write) requests in a non-intrusive way. Namely, this component

captures the following type of requests: connect / accept (connection / acceptance of a socket),

send (SND) / receive (RCV) (writing / reading from a socket), open (opening a file), and write (WR)

/ read (RD) (writing / reading from a file descriptor). Note that the interception of requests is performed

at the kernel-level of I/O calls, thus allowing CaT to be used transparently for different applications (e.g.,

databases, analytical and ML frameworks).

31

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

To minimize the tracing performance and storage overheads, the CaTracer offers the possibility of

saving only events of interest. It can filter events by i) PID and ii) file path. The former sets CaTracer to

collect only the events of a given PID and its child processes, discarding all requests that do not belong

to them. The latter allows recording only storage events (i.e., open, write, read) that work within a

given path or group of paths (e.g., a file or subdirectory). By combining these two filters, CaTracer can

significantly reduce the number of captured events, saving only the most relevant ones.

The captured information is then sent to the handler submodule (2) that parses and organizes it into

the CatLog events format. This log file holds the events’ type, context, and content. For instance, for the

example shown in Fig. 3.1, the resulting CatLog file would contain the event: {"type":"SND", "pid
":123, "socket":"TCP", "src":"node1", "dst":"node2", "size":12, "message":
"Hello world!"}. To minimize the resulting log size, CaTracer offers the option to compute hash

sums of events’ content, at the Signature Computation (SigComp) submodule (3). When this submodule

is enabled, the CatLog file will store the corresponding hash sums instead of the full data buffers’ content

being intercepted. The CaTracer’s submodules are further detailed in §3.3.1.

Trace Processor. After collecting the events, which is done at runtime (i.e., at the target system’s critical

I/O path), the remaining pipeline initiates the analysis phase that is performed in background and even at

different servers. First, the CatLog file is forwarded to the Trace Processor (4). This component parses

and organizes events into different data structures according to their type. Specifically, a SocketEvent
data structure groups information about network-related events, including the socket type, source and

destination addresses, and the data buffer transmitted. Similarly, a StorageEvent data structure gath-

ers information related to storage events, comprising the file’s path, descriptor and offset, as well as the

data buffer read / written. This component is identical to the one provided by the Falcon solution, with

the exception of some minor design modifications to support the CatLog file as input and to include the

parsing of storage events metadata (e.g., file’s path, descriptor and offset).

HB Model Generator. The next step is to find the happens-before relationships between the events,

which is done at the Happens-Before (HB) Model Generator (5). This component accesses the data

structures (in memory) created by the Trace Processor and combines the events into a single causally-

consistent schedule. With the aid of an off-the-shelf SMT solver, the HB Model Generator outputs a new file

(Causal Trace) with an identifier for each event (ID), the order it happened, and its dependencies (e.g., the

ID of the network send event from which a receive event depends on). For instance, the Causal Trace

of the example from Fig. 3.1 would indicate that the RCV events with ID 2 and 5 depend on the SND events

with ID 1 and 4, respectively, and that the events from node2 happened after event 1 and before event 5.

This component is identical to the one provided by Falcon without any design modifications required.

CaSolver. The Causal Trace is then forwarded to the CaSolver module, which analyzes the events’

content. The module selects the content for each event, which can either be signatures (hash sums) that

were provided by the tracer (3), or the full data buffers. In the latter case, the CaSolver module resorts

to its SigComp submodule to compute buffers’ signatures in place (6). By having a SigComp submodule

32

3.3. ALGORITHMS AND PROTOTYPE

in the CaSolver component, we allow using CaT with third-party log sources that cannot provide a priori

the events’ content signatures. After obtaining all the signatures, the CaSolver relies on the DataAnalysis

submodule (7) for applying data similarity estimation algorithms to find events with a high probability of

operating over the same data. These algorithms are further detailed in §3.3.2. The inferred similarity

information (i.e., list of similar events) is then added to the original Causal Trace data, producing the

Similarity Causal Trace. For the example from Fig. 3.1, the CaSolver would indicate that events 1 and 2

have 100% of similarity between their content as well as events 3, 4 and 5.

Visualizer. The pipeline’s last component is the Visualizer (8), which receives the Similarity Causal

Trace file and builds a space-time diagram representing the targeted system execution, the events causal

relationships and their data flows. A more detailed description of the Visualizer is provided in §3.3.3.

3.3 Algorithms and Prototype

CaT’s open-source prototype is based on the Falcon project (commit #997b531 [83]). As depicted in

Fig. 3.2, the latter was extended to include the new CaTracer and CaSolver components, while the Visu-

alizer was modified to provide a visual representation for content flow across I/O events. Next, we detail

these novel functionalities: content-aware tracing (§3.3.1), similarity-based data analysis (§3.3.2) and

content flow visualization (§3.3.3).

3.3.1 Content-aware Tracing

CaT’s prototype supports two implementations of the new CaTracer component, one based on the Strace

tool (CatStrace) and the other based on the eBPF technology (CatBpf). These two tracing technologies

were chosen since they provide different tradeoffs regarding accuracy, I/O performance, and resource

usage, as shown in §3.5.

CatStrace. The Strace-based tracer uses Strace to trace an application’s execution, capturing network

(e.g., connect, recvfrom) and storage-related (e.g., openat, pwrite64) syscalls, and then parses

its output into a CatLog file. Fig. 3.3 shows CatStrace’s components.

CollectorCollector Handler

user space

Strace
Storage /
Network

1 2 Event3 SigComp5
CatLog

kernel space

6
strace.out

Parser 4

Handler

Figure 3.3. CatStrace’s components.

The collector module spawns a process that runs Strace for a given command or PID. Strace in-

tercepts the syscalls issued by the traced process (1) and saves them to a file (strace.out) (2). The

33

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

collected information is then parsed by the handler module (3). Specifically, a parser submodule starts

by producing, for each syscall, a generic JSON structure with the type (e.g., pwrite64), timestamp, PID,

arguments (e.g., filename, buffer, size, offset), and the return value (e.g., number of bytes written). With

this information, the handler is then able to generate the corresponding events structures (4). Then,

each event structure goes through the SigComp submodule (5) that checks if it has content and resorts

to the MinHash algorithm (described later in §3.3.2) to compute the content’s signature. The event with

its content signature is then persisted into the CatLog file (6).

CatBpf. The eBPF-based tracer relies on the eBPF technology to capture process (e.g., fork), network
(e.g., sendmsg) and storage (e.g., write) requests. As pictured in Fig. 3.4, it has a collector module

that runs at kernel space and an handler module that runs at user space.

Handler

user
space

Collector
eBPF programs

eBPF maps

1

2
eventContext
 - process id
 - timestamp
 - type

eventContent
 - buffer
 - size4

Event5

3

SigComp6
CatLog

kernel
space

ring
buffer

7

Figure 3.4. CatBpf’s components.

The collector module contains an eBPF program that defines the code to run when an I/O request

(e.g., write) is intercepted. Namely, it first checks if the request was issued by the targeted process and

builds a structure (eventContext) that gathers contextual information (e.g., type, PID, timestamp). If

the request is handling data (i.e., has content), for instance a write request persisting a buffer to disk, the

collector builds another structure (eventContent) that gathers the data buffer and its size.

EventContent structures are placed in an eBPF map of type per-CPU array (1) that can be ac-

cessed from user space, while eventContext structures are submitted to user space via a ring buffer

(2). At user space, the handler is continuously polling events’ context from the ring buffer (3) and, when

applicable, gets their content from the per-CPU array (4). It then merges all the collected data into an

Event structure (5), computes its signature (6), and persists it to the CatLog file (7). CatBpf’s SigComp

submodule is similar to the one from CatStrace.

Our strategy of splitting the context and content of events into two different structures is based on that

of unixdump[38] to reduce event loss. As the ring buffer (data structure used to submit the events from

kernel to user space) has a circular format and a fixed size, once the buffer is filled, the collector module

starts rewriting the buffer from the beginning. If the handler module cannot process events at a fast pace,

the ring buffer’s data can be overwritten or lost. From preliminary experiments, we observed that the larger

the size of the structure submitted to the ring buffer, the higher the percentage of lost data. Therefore,

by splitting the events’ content from the context, we can submit a smaller structure (eventContext) to

34

3.3. ALGORITHMS AND PROTOTYPE

the ring buffer and access the corresponding eventContent directly via the per-CPU array.

Although this separation allows decreasing the number of lost events, it can result in incomplete

events. Namely, the number of elements on the per-CPU map has to be statically defined due to the limi-

tations imposed by the eBPF Verifier. Thus, once the map positions are filled, the old ones start being over-

written. If, after collecting the request’s context, the handler cannot access the specific eventContent
in time, the event is persisted only with the context details. Even though this approach can lose the events’

content, it can still capture their context, thus enabling a context-based analysis.

3.3.2 Similarity-based Data Analysis

The similarity-based analysis of events’ content is performed in two phases: i) the signatures computation

(at the SigComp submodule), and ii) the processing of events’ signatures (at the DataAnalysis submodule),

as depicted in Fig. 3.5.

DataAnalysis
Candidate

pairs

Jaccard
index

sig.1
sig.2
sig.3

...

sig.n

 LSH
buckets

A
B

A
B
C

C D

SigComp
Shingling (k=4)

CONTENT

Hashing (n=3)

613
246 154

521 249
610
196112478
390839137sh

in
gl

es

hashed values Signature

196154137

Figure 3.5. CaSolver’s components.

In the first phase, the Minwise Hashing (MinHash) algorithm is used to summarize the content of each

I/O event into a small set of signatures [21]. In a nutshell, the MinHash algorithm applies = different hash

functions to each shingle (i.e., consecutive overlapping sequences of : bytes) of the content buffer. Then,

for each hash function output it is selected the smallest value, resulting in a signature with = values.

To assess the similarity between the content of two events, at the second phase, we calculate the

Jaccard index of their signatures, which determines the percentage of identical values present in them [52].

However, computing the Jaccard index for all signature pairs (i.e., all events captured by CaT) is a costly

operation, whose complexity increases exponentially with the number of signatures to compare. Thus,

to efficiently compare all MinHash signatures and find the pairs with a similarity greater than a given

threshold, we rely on the Locality-Sensitive Hashing (LSH) algorithm [60]. This algorithm uses several

hash functions to group MinHash signatures referring to similar content into the same bucket. This way,

the Jaccard index is only computed for strong candidate pairs (i.e., signatures placed at the same bucket).

In the end, the CaSolver outputs a list of tuples indicating the ID of similar events and their Jaccard

index. Such information will allow the Visualizer to represent the events data flow and dependencies.

Namely, by looking at the Jaccard index, the Visualizer can highlight both identical data (i.e., 100% similar)

and similar data (e.g., 80% similar) that have undergone slight changes when flowing across components

(e.g., addition of metadata headers).

35

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

3.3.3 Content Flow Visualization

The Visualizer generates a space-time diagram depicting the events executed in each host and the inter-

host causal relationships. Moreover, by relying on the similarity information computed by the CaSolver

module, the Visualizer employs a color-based scheme that depicts the events’ content similarities.

Figure 3.6. CaT’s visualizer output example.

Fig. 3.6 shows the Visualizer output for the example from Fig. 3.1. Each host’s events are represented

as circles positioned along a dashed line according to the order in which they occurred. For instance, two

events occur on host node1, a network send (1) followed by a network receive request (5). Each event

is accompanied by its ID (e.g., 1, 5) and type (e.g., SND, RCV).

Causal relationships are represented by a line linking two events (e.g., line between events 1 and 2).

Data dependencies (i.e., events whose content is similar) are colored with the same color (e.g., events 1

and 2 , and events 3 , 4 and 5). Events whose content is unique are assigned with the black color (X).

When selecting a specific event or relationship (i.e., line) it is possible to observe additional information.

Fig. 3.6 shows such information for event 1 . Namely, it states that it is a send request of 12 bytes from

node1 (port 5000) to node2 (port 6000), issued by a process with PID 123. Moreover, it summarizes the

event’s similarities, showing that its content is 100% similar to the one from event 2 .

3.3.4 Implementation

CatStrace is implemented in Python with ≈1K LoC. For capturing syscalls information, the tracer uses

Strace [109]. For parsing Strace’s output, CatStrace extends the strace-parser tool [58]. For computing

the hash sums of events’ content, CatStrace’s SigComp submodule uses pylsh, a Python implementation

of LSH with the MinHash algorithm [73].

CatBpf is implemented in ≈2K LoC, divided into two parts: i) the eBPF programs that run in kernel

space (collector module) and ii) the user space code including the remaining tracer’s logic (handler mod-

ule). The eBPF programs (25 in total attached to 15 kernel probes and 10 tracepoints) are implemented

in restricted C (≈900 LoC) and are responsible for collecting and filtering relevant I/O requests. The user

space code is implemented in >1K LoC written in Go (v1.14) and is responsible for enabling the desired

probes (i.e., attaching eBPF programs to tracepoints and kernel probes), specifying the user-defined filters

to apply at kernel space, gathering and parsing the information collected in the kernel, and saving it to

36

3.4. CAT IN ACTION

disk. This is done using the BPF Compiler Collection (BCC) framework through the gobpf lib (v0), which

provides an abstraction for creating, attaching, and interacting with eBPF programs. For the SigComp

submodule we use a Go implementation of the Minhash algorithm provided by the minhash-lsh lib (v0).

The CaSolver has two implementations with ≈300 LoC, one in Python to use with CatStrace, and

another in Go to use with CatBpf, that use pylsh and minhash-lsh, respectively, for computing the MinHash

and LSH algorithms. The Trace Processor and Visualizer extend Falcon’s original components and are

implemented in ≈2K LoC in Java and 2K LoC in JavaScript, respectively. The HB Model Generator is

identical to the one provided by Falcon and is implemented in Java with ≈800 LoC.

3.4 CaT in Action

To showcase CaT’s usability, we next evaluate the new insights it can offer with its content-aware approach.

To that end, we selected two widely used Big Data applications, TensorFlow [1] and Apache Hadoop [46],

and analyzed (with CaT) their data access patterns and the correction/adulteration of their protocols.

Testbed Configuration. TensorFlow experiments are deployed on a server equipped with a 8-core Intel

Core i9-9900K, 16 GiB of RAM, a 1 TiB Non-Volatile Memory Express (NVMe) Solid State Drive (SSD), and

a NVIDIA GeForce RTX 2070 Graphics Processing Unit (GPU) with Compute Unified Device Architecture

(CUDA) (v10.2). Hadoop (v2.7.1) experiments consider three DataNodes, one NameNode, and one client

running on servers equipped with a 6-core Intel Core i5-9500 CPU, 16 GiB of RAM, a 500 GiB Hard Disk

Drive (HDD) and a 250 GiB SSD, interconnected by a switched 10 Gigabit Ethernet network.

3.4.1 Observing TensorFlow’s Dataset Shuffle Pattern

Next, we show how CaT can be used to analyze TensorFlow’s training phase and observe the access

pattern used to read the dataset from disk.

TensorFlow is an ML platform used for the training and inference of deep neural networks [1]. During

the training phase, TensorFlow performs disk I/O operations to read the dataset being used to build the

deep-learning model.

In this use case, CaT is used to capture TensorFlow’s interactions with the storage medium while read-

ing a sample of the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) dataset [101],

often used for computer vision research, with the LeNet CNN model [69], which, due to its disk I/O-bound

nature, provides a scenario where CaT’s tracers must capture efficiently multiple disk operations [103].

A dataset is typically split into three groups: train, validation, and test. During the training phase,

TensorFlow uses the training set to train the model for a given number of times (epochs). The training

set of the dataset sample used in these experiments includes 64 TFRecords with a total of 64 images1.

Moreover, on each epoch, it is usual to randomly shuffle the data records that are going to be read to

1A detailed description of the original dataset is provided in §3.5

37

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

keep the model general while avoiding overfitting and decreasing its accuracy. If shuffling is disabled, all

epochs will fetch (read) data records in the same order. Therefore, in these experiments, the LeNet model

runs for two training epochs with shuffling enabled and disabled. CatBpf executes along with TensorFlow

to capture its I/O events, and the resulting CatLog file is then provided to the remaining CaT’s pipeline.

epoch 1 epoch 2

(a) Shuffle enabled

epoch 1 epoch 2

(b) Shuffle disabled

Figure 3.7. Disk access pattern for TensorFlow’s dataset shuffle.

Fig. 3.7 shows the disk access pattern output of CaT’s Visualizer. For clarity purposes, only the first

ten disk read events are compared for each training epoch. Each event is represented as a rectangle.

Events with the same color (and symbol) have similar content while events colored as black do not match,

in terms of content, to any other depicted event.

With the shuffling mechanism enabled (Fig. 3.7a), TensorFlow accesses disk records (ImageNet im-

ages) in random order. Thus the order in which data is read differs between epochs. The only similarities

found are between events 7 and 15 (A) and events 8 and 19 (B). While on the first epoch, event 7 is

the eighth operation, on the second epoch, the same data is read in sixth place (event 15). The same

happens for events 8 and 19. The uniqueness of data and the different order used to read the same data

on the two epochs shows how, with the shuffling mechanism, TensorFlow reads the data randomly.

When the shuffling mechanism is disabled (Fig. 3.7b), TensorFlow reads the train set files in the same

order (deterministic access pattern) at each epoch, as depicted by CaT’s output.

3.4.2 Verifying the HDFS File Replication Protocol

Now, we use CaT to verify the replication protocol of HDFS, the Apache Hadoop’s distributed file system.

Apache Hadoop is a framework for distributed storage and processing of Big Data, which resorts to

the HDFS distributed filesystem for persisting and retrieving data [46]. The latter has a master/slave

architecture, with a NameNode responsible for managing metadata operations and several DataNodes

where the data is actually persisted.

In this use case, CaT is used to intercept network and disk I/O calls across HDFS client, NameNode,

and DataNodes. More precisely, four instances of CatBpf are executed, one running on the client machine

38

3.4. CAT IN ACTION

to capture events issued by the HDFS copyFromLocal command, and the others running along with

the three DataNodes. The resulting CatLog files are then fed into CaT’s pipeline.

Briefly, the HDFS replication protocol, with a 3-factor replication, works as follows: after interacting

with the NameNode, the client receives a list of available DataNodes. Then, it selects one of them to whom

it will send the file. Once the elected DataNode receives the data, it sends a copy to another DataNode

and persists it to disk. This process is repeated until all three DataNodes have a copy of the data.

CL DN3 DN2 DN1

(a) Normal execution

DN3 DN2 CL DN1

(b) Storage corruption

DN3 DN2 CL DN1

(c) Network corruption

Figure 3.8. HDFS replication of a file.

Fig. 3.8a depicts the visual output from CaT’s pipeline. Event 81 corresponds to sending (SND) the

file’s content by the client (CL) to DataNode 3 (DN3). In turn, DN3 receives the data in two receive (RCV)

events (15 and 16), forwards it to DN1 (17), and then saves the corresponding data (18) and metadata

(19) on disk. DN1 does the same process, sending the data to DN2. Circles with the same color identify

similar content. From this example, it is possible to observe the client’s data path (blue color), going

from the client’s machine through all the DataNodes. Moreover, it shows that the three DataNodes have

persisted a copy of the data (X) and the metadata (X) to disk.

In order to further prove how the similarity of events’ content can add useful information about the

system, we modified the source code for DN2 to observe two adultered behaviors: i) storage corruption,

where DN2 alters the file content before persisting it on disk (Fig. 3.8b); and ii) network corruption, where

DN2 sends the wrong data content to another DataNode (Fig. 3.8c).

For the first case (Fig. 3.8b), DataNodes 1 and 3 have a write event (81 and 109) with the same color

as the send event from the client (53), indicating that their content is similar. However, the write events

from DN2 (16 and 17) have a black color, as the data and metadata persisted is no longer equal to the

one DN2 received (14), or to other data being handled by the system. As the chunk checksum verification

is only performed once, upon the data arrival to the DataNode, and the data corruption happened when

writing data to disk, HDFS did not reported any inconsistency.

In the second case (Fig. 3.8c), the client sends a file (52) to DN2 (11). Then, DN2 forwarded the

data to DN3 (12) and persisted it to disk (13). While event 13 has the same color as events 52 and 11,

event 12 has a different color, meaning that DN2 sent different content to DN3. This time, along with the

39

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

chunk adulteration, we also modified its checksum (e.g., mimicking a possible man-in-the-middle attack)

to match the new content. Thus, DataNodes 3 and 1 were unaware of the data corruption, and both

persisted wrong copies of the client’s data and metadata.

3.4.3 Summary

The previous use cases showcase the advantages of combining the tracing and analysis of both the con-

text and content of I/O network and storage requests. CaT provides a more complete strategy to analyze

complex systems which can pinpoint correctness and dependability flaws that are not visible when using

context-based state-of-the-art tools and are not detected by the integrity mechanisms of the applications.

Even for scenarios where the data is encrypted, therefore limiting the ability to find equal data (as differ-

ent ciphertexts can correspond to the same plaintext data), CaT can be used to ensure that encryption

algorithms are being correctly applied. For instance, when using a probabilistic encryption scheme, the

content of different events should never have high similarity degree.

3.5 Experimental Evaluation

We now focus on the evaluation of CaT’s content-aware tracers for answering the following questions:

• What is the performance, resource usage, and storage overhead of CaT’s tracers at the application’s

critical I/O path2?

• How do the two different tracers vary in terms of accuracy (number of captured events)?

To accomplish this, we compare the performance and accuracy of CatStrace and CatBpf when tracing

the aforementioned Big Data applications (TensorFlow and Apache Hadoop) with I/O intensive workloads.

Setups. Experiments include three distinct setups:

• Vanilla: The targeted application running isolated (i.e., without any tracing tool).

• CatBpf: The eBPF-based tracer running simultaneously with the targeted application and intercept-

ing its events. To optimize the number of I/O events handled, CatBpf was configured to capture

only the first 4 KiB of content from each request. As shown by the results, this configuration allows

capturing the context and content of more events while still providing useful content-aware insights.

• CatStrace: The Strace-based tracer intercepting the targeted application’s events, while capturing

256 KiB of requests’s content, which allowed obtaining the full content buffers for most events.

Workloads. For TensorFlow experiments, we use the LeNet model [69] with the entire ImageNet

dataset [101], which includes 1.28M images for training (≈138 GiB) and 50K images for validation (≈6
GiB), distributed across 1K classes. The dataset was previously converted to the TFRecord format, result-

ing in 1152 TFRecords files (1024 for training and 128 for validation), occupying ≈144 GiB.

2Note that the remainder of CaT’s pipeline components run in background.

40

3.5. EXPERIMENTAL EVALUATION

For Apache Hadoop experiments, we resort to BigDataBench (v5.0) [118], a Big Data benchmark suite

that provides representative real-world datasets. BigDataBench is used with the Naive Bayes algorithm (a

classification algorithm used in data mining) and the Amazon movie review dataset. The experiments also

consider the loading phase of the dataset into the HDFS store with two dataset sizes (16 GiB and 32 GiB).

Collected Metrics. Besides measuring the elapsed time and throughput metrics, the Dstat [90] tool is

used to observe CPU and memory usage on each cluster node. The events’ statistics reported by each

tracer are also collected, including handled (i.e., the total of events processed by each tracer), saved (i.e.,

events persisted in the CatLog file), incomplete (i.e., events including only context information), truncated

(i.e., events whose content was truncated to a smaller size due to their original request buffer size being

greater than the captured size), and lost events. The experiments were conducted in the same testbed as

described in §3.4 and considered two runs for TensorFlow and three runs for BigDataBench tests.

3.5.1 TensorFlow

The TensorFlow experiments consist of running the training workload (for the sample dataset) for 20

epochs with one GPU and a batch size of 64.

Table 3.1. Performance and accuracy results for TensorFlow experiments. ‘—’ indicates that the metrics
are not applicable, while ‘∗’ means that the values cannot be measured.

Setup
Performance Events

Elapsed time (mins) Images per second Handled Incomplete Truncated Lost
Vanilla 170 2,528 — — — —
CatBpf 174 2,496 11,836,041 0 11,788,963 0

CatStrace 611 703 ∗ — ∗ —

Performance Impact and Accuracy. Table 3.1 shows the elapsed training time, the number of images

processed per second, and the events’ statistics. As expected, the vanilla setup processes the highest

number of images per second (≈2,528) and executes in the shortest time (170 mins).

Comparing to the vanilla setup, the CatBpf deployment decreases the images processed per second by

1.3% and increases the elapsed training time by 2.4%. CatBpf collects all the events and their content (i.e.,

there were no incomplete or lost events). For the TensorFlow use case, most events correspond to read

requests targeting different files of the ImageNet dataset. As each read operation has approximately 256

KiB, the captured content is truncated to the first 4 KiB, resulting in 99.6% truncated events. The resulting

CatLog file, with all the collected events and corresponding context metadata and content signatures,

occupies approximately 5.1 GiB.

The performance impact imposed by CatStrace is higher, achieving only 703 images processed per

second (a decrease of 72.2% of vanilla throughput), with an elapsed time of 611 mins, almost 3.6× more

than the vanilla execution time. Moreover, the Strace command invoked by CatStrace produced a file

41

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

(strace.out) with 7.6 TiB of the collected information. As the generated file exceeded the disk capacity, we

could not save and posteriorly analyze all the collected information (depicted as ‘∗’ in Table 3.1).

Resource Usage. For the TensorFlow tests, the Vanilla deployment used 5.6 GiB of RAM and 43% of

CPU. The CatBpf setup increased those values up to 12.1 GiB and 54.0%, respectively. This increase

is justified by the extra processing done at the critical I/O path and the size of the ring buffer and eBPF

maps necessary to obtain more accurate logs. Conversely, the CatStrace deployment required only 4.8

GiB of RAM and 14.5% of CPU. As CatStrace delays I/O requests and generates less load on the system,

resource utilization is also lower.

Takeaways. Results show that CatBpf offers the best balance in terms of I/O performance, storage

space usage and accuracy for this specific scenario. Although truncating the events to 4 KiB, it im-

poses negligible performance overhead and collects all events. On the other hand, CatStrace collects

the full content of requests but imposes high performance and storage overheads.

3.5.2 BigDataBench

The BigDataBench experiments include a loading phase (load), where the dataset is written to HDFS, and

a running phase (run), where the Naive Bayes algorithm is executed.

 0

 10

 20

 30

 40

 50

 60

 70

E
la

p
s
e
d

 t
im

e
 (

m
in

s
)

Vanilla CatBpf CatStrace

Load-16GiB Run-16GiB Load-32GiB Run-32GiB

Figure 3.9. BigDataBench elapsed times.

Performance Impact. Fig. 3.9 depicts BigDataBench elapsed times for each phase and dataset size

(16 GiB and 32 GiB). The elapsed times for the vanilla setup round the 5.2 mins for load-16GiB and 11

mins for load-32GiB. The CatBpf setup increases the elapsed time by almost 1.20×, taking about 6.3

and 13.1 mins for load-16GiB and load-32GiB, respectively. The CatStrace setup lasts around 10.1 mins

for load-16GiB and 21.1 mins for load-32GiB (almost 1.93× more than the vanilla setup). Concerning

the run-16GiB test, the vanilla setup runs in 31.4 mins, while CatBpf and CatStrace executions last for

32.2 and 33.6 mins, respectively. As for run-32GiB, the elapsed times are 61.5, 64.9 and 66.9 mins for

vanilla, CatBpf and CatStrace setups, respectively.

Accuracy. The loading phase generates more I/O requests in a shorter time span when compared to

the running phase, explaining why the performance impact is more significant in the former. As shown

in Table 3.2, at the loading phase, CatBpf captures all the network and storage requests (around 8M on

42

3.5. EXPERIMENTAL EVALUATION

Table 3.2. Accuracy results for the BigDataBench experiments. ‘—’ indicates that the metrics are not
applicable.

Events
Load-16GiB Run-16GiB Load-32GiB Run-32GiB

CatBpf CatStrace CatBpf CatStrace CatBpf CatStrace CatBpf CatStrace

Handled 8 M 16 M 18 M 7 M 17 M 32 M 35 M 14 M
Saved 8 M 6 M 18 M 6 M 17 M 12 M 35 M 12 M

Incomplete 0.8 M — 16 M — 1 M — 33 M —
Truncated 3 M 1 2 M 1 7 M 1 4 M 2

Lost 0 — 337 — 0 — 235 —

the load-16GiB test and 17M on the load-32GiB test), with approximately 9.18% of incomplete events and

truncates the captured content of 42% of handled events. The CatStrace setup collects about 16M and

32M requests for the loading phases of 16 GiB and 32 GiB, respectively. CatStrace saves all relevant

events to the CatLog file and only truncates 2 content buffers that are larger than 256 KiB.

As for the running phase, CatBpf loses up to 337 events for run-16GiB test and only saves the content

for 89% of the 18M handled events. For the run-32GiB test, it loses 235 events and saves as incomplete

93% of the 35M handled events. The percentage of truncated content from the handled events is up to 13%

for both dataset sizes. CatStrace handles around 7M of requests for run-16GiB and 14M for run-32GiB.

Again, CatStrace saves all relevant events to the CatLog file and only truncates 3 of them.

Tracers are configured to only capture HDFS’s data and metadata operations, while requests to third-

party libraries and applications (e.g., Java) are ignored. While the requests that reach the CatBpf handler

(handled events) no longer include ignored operations, as these are filtered at kernel space, the same does

not happen for CatStrace where requests are only filtered by the handler at user space. This explains the

difference between the number of handled events observed for both tracers, and the difference between

handled and saved events for CatStrace. Moreover, while CatStrace collects requests from a given PID or

command and their newly created processes, CatBpf also captures events from running processes that

were created by the target application before the tracing phase. That is why the number of saved events,

specially for the running phases, is higher than the one from CatStrace.

Resource Usage. Regarding BigDataBench load experiments, the vanilla setup uses 3.7 GiB of RAM on

the client node, 0.8 GiB on the NameNode, and 0.6 GiB on DataNodes. CatBpf requires additional 3 GiB,

for each type of node, while CatStrace reduces RAM consumption by 1 GiB at the client node. For the

remaining nodes, CatStrace uses around the same amount of RAM as the vanilla setup.

For the same experiments, the vanilla setup uses 1.5% of CPU on the NameNode, 10.3% on the

DataNodes, and 98.2% on the client node. CatBpf increases CPU usage by 15% for the NameNode and

30% for the DataNodes. The values for the CatStrace setup are similar to the vanilla ones, except for

the CPU usage on the client machine that requires 70% of CPU. As for BigDataBench run experiments,

the vanilla setup uses 1.9 GiB of RAM on the client node, 1 GiB on the NameNode, and 2.4 GiB on the

DataNodes. CatBpf imposes an increase of 2 GiB on each server while CatStrace uses 1 GiB less at the

43

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

client node. CPU usage is similar for the vanilla and CatStrace setups, ≈0.4% for the client node, 1.3% for

the NameNode and 46% for DataNodes. CatBpf increases CPU usage by 15% across all nodes.

Takeaways. Results show that CatStrace captures all the events, truncating almost none of them,

but generates significant performance overhead and a large output trace log. For example, it creates

a file of 120 GiB when tracing only the network and storage events for one of the HDFS DataNodes

during the running phase of 32 GiB. Once again, the CatBpf deployment shows to be the one with

the best tradeoffs, if the loss of content for some events can be tolerated, namely if it is still able to

provide insightful analysis information at the later phases of the pipeline. Although presenting a high

percentage of incomplete events at the running phase, it captures the context of almost all the events

while being the tracer that incurs the least performance overhead.

3.5.3 Summary

The previous results show that, depending on the workload, it is possible to collect the context and content

of I/O requests with negligible performance overhead.

CatBpf imposes the least performance and storage space overheads but captures only 4 KiB of each

request and can lead to events’ loss in scenarios with increased I/O loads. When tracing an application with

lower I/O throughput (e.g., TensorFlow with ≈1147 events/s), CatBpf can collect the content and context

of all requests. When tracing a more I/O intensive application (e.g., BigDataBench with ≈22,308 events/s

for load-16GiB), CatBpf starts losing information (i.e., presents a high percentage of incomplete events and

a few lost events). Moreover, CatBpf can increase resource consumption (CPU and RAM) considerably.

Yet, for scenarios where one wants to debug applications or trace non-CPU-intensive applications, CatBpf

is still a good approach.

When CPU consumption is a major criterion, CatStrace provides a good alternative. Contrarily to

CatBpf, CatStrace presents lower resources usage values and can capture all the events and their full

content for any I/O throughput, but it incurs significant performance and storage space overheads. Indeed,

CatStrace can easily create intermediate log files in the order of TiBs, while CatBpf, by computing hash

sums before storing the corresponding logs persistently, can reduce such values to few GiBs.

One aspect to take into account is the implications of lost information at the analysis phase. Namely,

when truncating the events’ content thus capturing only the first X bytes of their payload, events with

the same first X bytes but with a different payload for the remaining content will be matched as equal.

Additionally, incomplete or lost events do not provide sufficient information to apply our similarity-based

analysis. For lost events, the causality inference analysis is also impossible to conduct.

To sum up, if I/O performance overhead must be minimized and one can relax CPU and RAM usage

and accuracy criteria, CatBpf is the best option. On the other hand, if all events must be captured and

resource usage must be kept low, at the cost of additional I/O performance and storage space overhead,

CatStrace should be used.

44

3.6. RELATED WORK

3.6 Related Work

The analysis of systems’ behavior has been a subject of extensive research for diverse purposes such as

troubleshooting, debugging, performance analysis, and anomaly detection.

Applications’ Logs Analysis. A common approach is to use static analysis or ML algorithms to extract

information from application logs [36, 124, 128, 131]. However, the typical information available at

these logs makes it hard, if not impossible, to correlate events across heterogeneous and distributed

components.

Instrumentation-based Tracing. Another approach is to trace applications’ events by instrumenting

their source code or binaries. These solutions modify applications or middleware libraries to collect the

necessary information or propagate context across the different components of a distributed system [24,

45, 74, 106, 115]. However, this approach requires prior knowledge and access to the source code of

targeted systems, thus making it less transparent and less applicable to a wider range of scenarios.

Non-intrusive Tracing. Non-intrusive approaches resort to kernel-level tracing tools (e.g., Strace, LSM,

eBPF) to capture applications requests [82, 84, 89, 98, 110]. Although some of them can infer the data

flow across multiple nodes by correlating network events with file operations, their analysis is focused solely

on the requests’ context, thus overlooking possible data corruption scenarios (such as the example from

Fig. 3.1) or content flows such as those depicted for HDFS in Fig. 3.8. These can only be revealed when

observing the content of requests. Unixdump[38] and Re-Animator[5] are the only non-intrusive solutions

that can capture the content of I/O events. However, none of these solutions can capture network and

storage I/O requests simultaneously, while being restricted to request tracing, thus not providing any

analysis and visualization mechanisms.

Unlike previous solutions, CaT is able to capture the context and content of both network and storage

events. Also, it can track the causality of events across a distributed system deployment. Finally, CaT

contemplates a complete content-aware pipeline including the non-intrusive tracing, correlation, analysis,

and visualization of distributed I/O events.

3.7 Summary and Discussion

This chapter introduces CaT, a novel framework for collecting and analyzing storage and network I/O

requests of distributed systems. The key contribution is a content-aware tracing and analysis strategy that

correlates the context and content of events to better understand the data flow of systems.

A detailed evaluation of CaT’s open-source prototype with real applications shows that CaT’s content-

aware approach can improve the analysis of distributed systems by pinpointing their data flows and I/O

access patterns. These improvements are key to finding correctness, dependability and performance

issues in today’s complex systems.

45

CHAPTER 3. CONTENT-AWARE TRACING AND ANALYSIS FOR DISTRIBUTED SYSTEMS

Moreover, experimental results show that depending on the target workload, it is possible to capture

most of the I/O events while incurring negligible performance overhead. When choosing the appropriate

set of tracing tools (§3.5), we show that CaT can be used over real systems while imposing a balanced

tradeoff in terms of accuracy, performance overhead and resources usage. At the proposed framework,

only the tracers are deployed on the critical network and storage I/O path of applications, while the

remainder of CaT’s pipeline can be executed in background and on dedicated servers.

CaT is designed with the main goal of diagnosing how I/O requests’ flow in distributed systems. There-

fore, the data collection, analysis and visualization strategies followed by our solution are tightly coupled

to such objective. In the next chapter we show that data-centric applications, even non-distributed ones,

can also benefit from multi-purpose diagnosis frameworks. However, these frameworks must address

different requirements (e.g., in terms of performance, resource usage and accuracy) and features (e.g.,

comprehensive, flexible and near-real-time diagnosis), which are not supported by CaT.

46

4

Practical and Timely Diagnosis of Applications’
I/O Behavior

The correctness, dependability, performance of data-centric applications (e.g., databases, KVSs, analytical

engines, ML frameworks) is highly influenced by the way these interact with in-kernel POSIX storage

systems, such as file systems and block devices [49, 100]. However, the sheer amount of storage

operations generated by these applications, ranging from hundreds to thousands of operations per second,

makes the analysis of such interaction a complex and time-consuming task when done manually.

Diagnosis tools can automate this task for users and developers, while aiding in error debugging, find-

ing performance and dependability issues, and identifying potential I/O optimizations for applications [32,

102]. Indeed, the main insight of this chapter is that, by combining syscall tracing with a customizable

analysis pipeline, one can achieve non-intrusive and comprehensive I/O diagnosis for applications us-

ing in-kernel POSIX storage systems. However, doing so requires overcoming multiple challenges, as

discussed in §2.4:

Challenge C1. Instrumenting applications’ source code, when available, is still undesirable as it requires

users to manually analyze and instrument distinct and potentially large codebases (e.g., RocksDB

has approximately 440K LoC written in six different programming languages).

Challenges C4, C5 and C6. Given the large amount and burstiness of storage requests issued by

data-intensive applications, one must use tracing solutions that minimize the performance impact

and resource usage, while still capturing all the information that is relevant to accurately diagnose

the targeted application.

Challenges A1 and V1. The analysis and visualization of collected traces must be automated, given

the large number of I/O events (easily reaching tens of millions) that must be parsed, correlated,

and visually represented to provide insightful information.

Challenges C3, A2, V2 and V3. Current solutions offering a complete pipeline for application diagno-

sis, including CaT, are designed for rigid analysis scenarios [64, 98, 102, 126]. Ideally, diagnosis

tools should provide the flexibility to narrow or broaden tracing, analysis and visualization scopes

47

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

based on user goals. Avoiding this limitation would enable exploring a wider range of correct-

ness, dependability and performance issues that applications may exhibit, such as those identified

at §4.4.

Challenges A3. Postmortem (offline) analysis requires users to wait for all I/O events to be collected

before starting the analysis of the targeted application. For data-intensive workloads this may lead

to long waiting periods (e.g., hours). Ideally, users should be able to observe I/O requests as these

are collected (i.e., in near real-time) to speed up their analysis tasks.

This chapter proposes DIO, a generic tool for observing and diagnosing applications’ storage I/O. It

addresses the aforementioned challenges with the following contributions:

Non-intrusive, Comprehensive and Flexible Tracing. DIO offers a new eBPF-based tracer that

intercepts syscalls issued by applications without requiring changes to their source code or instrumentation

of binaries. By operating at kernel space, DIO is able to intercept syscalls submitted by any application

that makes POSIX requests to the storage system. The tracer supports 42 storage-related syscalls and

records a comprehensive set of information for each operation, including its type, arguments, return value,

timestamp, PID, and TID. By offering a flexible design, DIO allows collecting only events of interest, filtering

them (at kernel-level) by syscall type, PID, TID, or file paths. This enables narrowing the tracing scope

according to users’ requirements, reducing the size of the stored trace, and minimizing performance

overhead over the targeted application.

Enriched Analysis. DIO enriches data gathered for each syscall with additional context available at the

kernel (e.g., process name, file type, offset), which can be used to improve the correlation and analysis

of requests (e.g., associating different syscalls to a file path, differentiating operations over regular files or

directories). These features enable a richer and wider analysis of incorrect or inefficient I/O patterns.

Asynchronous Event Handling. Only syscall interception is done synchronously, while traced events

are collected and processed in user space asynchronously. This avoids adding extra latency in the critical

path of I/O requests and enables practical analysis of data-intensive workloads.

Near Real-time Pipeline. DIO offers a practical and customizable pipeline so that users can create their

queries, correlation algorithms, and dashboards to analyze collected data. It follows an inline approach,

meaning that traced events are automatically parsed and forwarded to the analysis and visualization

components as soon as they are collected in user space, without requiring manual user intervention.

DIO is implemented as an open-source prototype using eBPF [76], Elasticsearch [8], and Kibana [9],

and validated with production-level systems. Results show that DIO enables the diagnosis of i) inefficient

use of syscalls that lead to poor storage performance in Redis, ii) unexpected file access patterns caused

by the usage of high-level libraries that lead to redundant I/O calls in Elasticsearch, iii) erroneous file

accesses that cause data loss in Fluent Bit, and iv) resource contention in multithreaded I/O that leads to

high tail latency for user workloads in RocksDB.

48

4.1. MOTIVATION

Moreover, we conduct a thorough experimental evaluation that highlights the different tradeoffs in

terms of performance overhead, resource usage, and tracing accuracy when using different tracing modes

and configurations provided by DIO while validating our solution against two state-of-the-art syscall-based

tracers: Strace [109] and Sysdig [111]. Results show that when compared with an inline diagnosis pipeline

using Sysdig, DIO provides timely analysis for users and improves the amount of captured events by up

to 28× while keeping performance overhead between 14% and 51%.

All artifacts discussed in this chapter, including DIO, workloads, scripts, and the corresponding anal-

ysis and visualization outputs, are publicly available at https://github.com/dsrhaslab/dio.

4.1 Motivation

To showcase the benefits that integrated syscall tracing, analysis, and visualization bring towards validating

inefficient I/O behavior from applications, let us consider a previously known issue identified in the Redis

in-memory data store [97]. Specifically, the server log file is repeatedly opened and closed for every written

line, which adds extra latency for log operations and can potentially slow down Redis performance.1

To identify this behavior, users could run a workload on top of Redis and trace the syscalls submitted

to kernel. In this example, we used the redis-benchmark to generate 5M requests to the database, which

yield >200M syscalls.2 Inspecting these events without proper filtering, correlation, and visualization

mechanisms is a non-trivial and time-consuming task.

(a) Syscalls over time for the whole execution.

(b) Sample of first 350`s of a millisecond.

Figure 4.1. Log file access pattern, depicting syscalls issued within second and microsecond resolutions,
for Redis’s version including inefficient I/O patterns (commit #e9ae037).

1Logging improvements issue from Redis’ GitHub repository: https://github.com/redis/redis/pull/10531
2Redis benchmark: https://redis.io/docs/management/optimization/benchmarks/

49

https://github.com/dsrhaslab/dio
https://github.com/redis/redis/pull/10531
https://redis.io/docs/management/optimization/benchmarks/

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

In this chapter, we argue that an analysis pipeline integrating the previous mechanisms would greatly

simplify users’ work. In particular, for this specific use case, by intercepting only the syscalls submitted

to the file system, while discarding Redis’s read and write operations for network sockets, one would

just need to trace ≈600K storage-related syscalls (i.e., ≈0.3% of the original tracing sample).

Then, through correlation, users could further filter these storage events and explore only syscalls

directed into the log file. Finally, through visualization, it would be possible to observe the pattern shown

in Figs. 4.1a and 4.1b. The former shows a set of syscalls being made repeatedly over the log file. The

latter depicts a sample of the first 350`s within a millisecond, showing the exact order and duration of

requests for one of these sets (i.e., openat→lseek→fstat→write→close). By interacting with

the latter visualization (i.e., visually exploring the syscalls’ arguments), it would be possible to observe that

those syscalls are accessing consecutive file offsets, suggesting a sequential file access pattern.

(a) Syscalls over time for the whole execution.

(b) Sample of first 350`s of a millisecond.

Figure 4.2. Log file access pattern, depicting syscalls issued within second and microsecond resolutions,
for Redis’s version including the corrections (commit #d4c8dff).

As suggested in the pull request for the issue, this inefficient I/O pattern can be corrected by: i) keeping

the log’s file descriptor opened while the file is being used, and ii) using writev to write log lines more

efficiently. As depicted in Figs. 4.2a and 4.2b, by using the same analysis pipeline, users can validate the

suggested correction, where redundant open and close operations are avoided, along with the need for

using lseek before every write operation. Also, writev is now used to write log lines instead of write.
The aforementioned visualizations are real outputs of using DIO for this use case (available at https:

//dio-tool.netlify.app/use-cases/redis). Next, we describe the proposed solution, and in

§4.4 we show that it can be used to discover other types of undesired I/O behaviors, observe erroneous

file access patterns that cause data loss, and assist with the root cause analysis of applications exhibiting

high tail latencies.

50

https://dio-tool.netlify.app/use-cases/redis
https://dio-tool.netlify.app/use-cases/redis

4.2. DIO IN A NUTSHELL

4.2 DIO in a Nutshell

DIO is a generic tool for observing and diagnosing the I/O interactions between applications and in-kernel

POSIX storage systems. Its design is built over the following core principles.

Transparency and Reduced Overhead. DIO relies on the Linux kernel tracing infrastructure (i.e.,

tracepoints, kernel probes) to intercept applications’ syscalls without modifying their source code or un-

derlying libraries. Moreover, DIO uses tracing technologies that allow minimizing the extra processing done

in the critical path of I/O requests to reduce the performance overhead imposed on targeted applications.

Practical and Timely Analysis. Traced data is asynchronously sent to a remote analysis pipeline,

avoiding adding extra latency on the critical I/O path of applications while still enabling users to visualize

collected data in near real-time.

Postmortem Analysis. DIO allows storing different tracing executions from the same or different appli-

cations and posteriorly analyzing and comparing them.

Flexible and Comprehensive Tracing. DIO intercepts different types of storage-related syscalls, cov-

ering data (e.g., write, read), metadata (e.g., openat, stat), extended attributes (e.g., getxattr,
setxattr), and directory management (e.g., mknod, mknodat) requests. Users can choose to capture

only the relevant ones for their analysis goals and further filter them based on targeted PIDs, TIDs, and

file paths. Moreover, two tracing modes (described in §4.3.1) are provided and allow users to configure

the amount of detail collected for each I/O syscall. These tracing modes and filters allow minimizing the

performance impact and storage overhead (i.e., the size of traced data) imposed by DIO.

Enriching Syscall Analysis. DIO enriches the information provided directly by each syscall (i.e., type,

arguments, return value) with additional context from the kernel, such as the name of the process that

originated the request, the type of the file being accessed by it, and its offset.

Data Querying and Correlation. With DIO, users can query traced data, apply filters to analyze specific

information (e.g., syscalls executed by a specific TID), and correlate different types of data (e.g., associate

file descriptors with file paths).

Customized Visualization. DIO comprises a visualization component that provides mechanisms for

simplifying data exploration and building customized visualizations.

4.2.1 System Overview

DIO consists of three main components, namely the Tracer, the Backend, and the Visualizer, as depicted

in Fig. 4.3. The Tracer intercepts syscalls from applications, filters them according to users’ configurations

(e.g., by TID), and packs their information into events that are asynchronously sent to the Backend (4).

The latter persists and indexes events (5) and allows users to query and summarize (e.g., aggregating)

stored information (6). Meanwhile, the Visualizer provides near-real-time visualization of the traced events

by directly querying the Backend (7). Users rely on the Visualizer to ease the process of data exploration

51

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

Ke
rn

el
 s

pa
ce

Us
er

 s
pa

ce

Server1 Server2

Server3

Backend

Visualizer

DIO's components App flow DIO main flow

 visualizeStorage Device

Application

write() read()

Tracer

collect

Ring
buffer

3

intercept

send

Sy
sc

al
ls

P
P P

attach

4
1

2
7

query

5 store

6

Figure 4.3. DIO’s design and flow of events.

and analysis by selecting specific types of data (e.g., syscall types, arguments) to build different and

customized representations.

4.2.2 Architectural Components

Next, we detail each of DIO’s architectural components and their functionalities.

Tracer. The Tracer intercepts syscalls done by applications in a non-intrusive way. To that end, it relies

on the eBPF technology [76] to instrument the Linux kernel by executing small programs (i.e., eBPF

programs) whenever a given point of interest (e.g., tracepoint, kernel probe) is called.

In detail, DIO’s Tracer comprises a set of eBPF programs that, at the initialization phase (1), are

automatically and transparently attached to syscall tracepoints. Whenever these tracepoints are reached

(i.e., a syscall is invoked), the eBPF program gathers the desired information about the request, including

entry (e.g., arguments) and exit (e.g., return value) related data, and places it in a per-CPU ring buffer

(2), which is a contiguous memory area used for exchanging data between kernel (producers) and user

space (consumers) processes. At user space, the Tracer asynchronously fetches information from the

ring buffer (3), parses it into events (specified in JSON objects), and sends these to the Backend. To

minimize both network and performance overhead, the Tracer groups several events into buckets that are

sent and indexed in batches at the Backend.

Table 4.1 depicts the syscalls supported by DIO. Since instrumenting syscalls can introduce extra

processing in the critical path of I/O requests, DIO allows users to filter requests by:

(a) type of syscall - activates only the tracepoints for the provided syscall types.

(b) process name - captures only syscalls issued by a process with the provided name.

(c) process or thread identifiers - captures only syscalls issued by a given list of PIDs or TIDs.

(d) file or directory path(s) - captures only syscalls targeting one of the provided file or directory paths.

52

4.3. ALGORITHMS AND PROTOTYPE

The flexibility offered by these filters allows users to better configure the Tracer according to their goals

and balance the tracing accuracy with the storage and performance overheads. Namely, by specifying

the targeted syscall types (a), the Tracer avoids activating unnecessary tracepoints, thus reducing the

amount of I/O requests with extra processing in their critical path. Moreover, by applying the remaining

filters (namely, (b),(c), and (d)) in kernel space, DIO reduces the amount of information to be sent and

processed in user space.

Backend. The Backend allows persisting, searching, and analyzing data from traced events. It uses

the Elasticsearch [8] distributed engine for storing and processing large volumes of data. Its flexible

document-oriented schema allows indexing events as documents, even if these have potentially different

structures (e.g., distinct fields corresponding to syscall arguments). Moreover, it provides an interface for

searching, querying, and updating documents, which allows users to develop and integrate customized

data correlation algorithms.

Visualizer. The visualizer provides an automated approach towards exploring (e.g., query and filter

events) and visually depicting (e.g., through tables, histograms, time-series graphs) the analysis findings.

This component uses Kibana [9], the data visualization dashboard software for Elasticsearch, which is

often used for log and time-series analytics and application monitoring. Kibana also allows building custom

visualizations, thus being aligned with the design principles of DIO.

Table 4.1. System calls supported by DIO.

Type Syscall

Data
read, pread64, readv, write, pwrite64, writev, fsync, fdatasync,
readahead

Metadata

creat, open, openat, close, lseek, truncate, ftruncate, rename,
renameat, renameat2, unlink, unlinkat, readlink, readlinkat, stat,
lstat, fstat, fstatfs, fstatat

Extended
getxattr, lgetxattr, fgetxattr, setxattr, lsetxattr, fsetxattr,
listxattr, llistxattr, flistxattr, removexattr, lremovexattr,
fremovexattr

Directory mknod, mknodat

4.3 Algorithms and Prototype

Next, we detail the information collected, preprocessed and enriched by DIO (§4.3.1), along with new

algorithms (§4.3.2) and visualizations (§4.3.3) that can aid in the interpretation of such data. Also, we

discuss the implementation (§4.3.4) and usage details (§4.3.5) of our prototype.

53

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

4.3.1 Collected information

For each intercepted syscall, DIO collects information related to the: i) syscall - type, arguments, and return

value; ii) process - PID, TID, and process name; iii) time - entry and exit timestamps. Since the amount of

captured information can influence the performance overhead imposed on the targeted application, DIO

offers different tracing modes: raw and detailed.

Raw. The less detailed mode (referred to as raw) captures the aforementioned information without pre-

processing it. This means that for arguments referring to memory regions (e.g., char *pathname in

stat syscall, or char *name in getxattr syscall), only their hexadecimal value is saved (e.g., "name
": "0x55555556feab"). Moreover, for numerical arguments (e.g., int flags in openat syscall,

or int fd in write syscall) no translation is done and their values are saved in their original form (e.g.,

"flags": 1089). By saving information in its raw format, DIO reduces the extra processing in the crit-

ical path of I/O requests, the amount of data transferred to user space, and the information that must

be analyzed posteriorly. As shown n §4.4.3, there are scenarios where the information provided by this

mode is sufficient for diagnosing I/O issues.

Detailed. For a more in-depth analysis, DIO offers a detailed mode, which provides comprehensive

information about the requests by preprocessing some arguments before saving the events (§4.3.1.1),

enriching the traced information with context from the kernel (§4.3.1.2) and translating file descriptors to

their corresponding file paths (§4.3.1.3).

4.3.1.1 Data Preprocessing

Instead of keeping collected information in its raw format, the detailed mode transforms values into a

human-readable format (e.g., "flags": "O_WRONLY|O_CREAT|O_APPEND"), simplifying the analy-

sis done by users. Further, this mode captures the actual memory content for pointer arguments instead

of saving their hexadecimal values (e.g., "name": "system.posix_acl_access"). For buffers be-

ing handled by data-related syscalls (e.g., void *buf in read syscall), the detailed mode provides the

option to compute a hash sum of their content (e.g., "buf": "This is the first log line"
→ "signature": 114a83d4). This way, DIO compacts the amount of information that reaches the

analysis pipeline, minimizing the storage overhead while still allowing the observation of syscalls handling

the same data content (as shown in §4.4.2). The hash sum can either be computed in user space, which

requires transferring buffers’ content from kernel, or in kernel, which reduces the amount of information

sent to user space but adds extra processing to the critical path of I/O requests.

4.3.1.2 Enriched Information

While the previous information already provides valuable insights about applications’ I/O behavior, cor-

relating this data with other types of information further enriches and eases the analysis made by users

54

4.3. ALGORITHMS AND PROTOTYPE

struct
fdtable

struct
file_struct

fdt

struct
task_struct

files

fd

fd=0

fd=1

fd=2

fd=3

struct
file

f_path

f_pos

struct
path

mnt

dentry

Additional information collected from kernel File tag information

struct
inode

i_ino

i_sb

i_mode

struct
dentry

d_name

d_inode

struct
super_block

s_dev

Figure 4.4. Kernel structures used by DIO. d_name, i_mode, and f_pos are used to obtain the file path,
offset, and type. i_ino and s_dev are used to create a unique file tag.

(as discussed in §4.4). Therefore, the detailed mode leverages eBPF’s access to kernel structures (as

depicted in Fig. 4.4) and complements traced information with:

• The file path being accessed by syscalls. Since many syscalls access files through a file descriptor

(e.g., read, close, fgetxattr), obtaining the corresponding file path provides more specific

information about the file being handled.

• The file type targeted by syscalls. This additional information allows differentiating accesses to

regular files, directories, sockets, block/char devices, pipes, symbolic links, and others.

• The file offset being accessed by data-related syscalls. Information about offsets allows observing

file access patterns (e.g., sequential/random accesses), even for syscalls that do not provide the

file offset as an argument (e.g., read).

4.3.1.3 File Descriptor Translation

Associating syscalls with their corresponding file paths is fundamental to enable detailed tracing informa-

tion. However, this is not a trivial task. The typical approach to address this challenge is to correlate

the file descriptor with the file path argument of the previous open call that initialized it (i.e., the open
syscall that originated the file descriptor). However, this approach is not accurate as there are other

mechanisms to obtain a file descriptor (e.g., the creation of new processes via fork, duplication of file

descriptors through dup, dup2, or fcntl). CaT (Chapter 3) accesses kernel structures to find the file

path corresponding to a specific file descriptor. However, transferring file paths from kernel to user space

for each event accessing a file induces significant tracing overhead and leads to potential loss of traced

information.

DIO introduces a different approach by creating a custom event (EventPath) that contains information

about a specific file (i.e., file path, file type) and by sending it only once to user space. Each EventPath is

labeled with a unique file tag, which is then associated with any syscall accessing that specific file. Alg. 4.1

further details how DIO creates both the file tag and EventPath event. First, whenever an intercepted syscall

55

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

accesses a file through a file descriptor, DIO goes through Linux kernel structures (as depicted in Fig. 4.4)

and obtains information about the file’s inode number and the file system’s device number (L2-L3). DIO

relies on the assumption that every inode has a unique number inside the same file system. Thus, by

combining the inode number with the device number, DIO creates a unique file tag (L4).

After generating the file tag, DIO verifies if it is included in the list of opened inodes (i.e., inodes

accessed during the tracing execution). If the list does not contain the current file tag, DIO calculates the

file path for the current file descriptor (L6) and sends to user space a new EventPath, containing the file

path, type, and tag (L7). The file tag is then added to the list of opened inodes (L8) and associated with

the current event being handled (L9). If the file tag already exists in the list of opened inodes, it only needs

to associate the file tag to the current event being handled (L11-L12). Finally, when an inode is destroyed,

the corresponding file tag is removed from the list of opened inodes.

Algorithm 4.1: DIO’s EventPath and file tag generation algorithm.
Input:

5 3 : file descriptor
2DA)8<4BC0<?: current timestamp
>?4=43�=>34B: list of currently opened inodes
2DA⇢E4=C : current event structure

1 Function checkInode(5 3 , 2DA)8<4BC0<?)
2 8=>34#> ← getInodeNo(5 3)
3 34E824#> ← getDeviceNo(5 3)
4 5 8;4)06 ← createFileTag(8=>34#> , 34E824#>)
5 if 5 8;4)06 not in >?4=43�=>34B then
6 5 8;4%0C⌘ ← getFilePath(5 3)
7 submitNewEventPath(5 8;4%0C⌘, 5 8;4)06)
8 >?4=43�=>34B.append(5 8;4)06, 2DA)8<4BC0<?)
9 2DA⇢E4=C .add(5 8;4)06, 2DA)8<4BC0<?)

10 else
11 C8<4BC0<? ← getTimestamp(5 8;4)06)
12 2DA⇢E4=C .add(5 8;4)06, C8<4BC0<?)

Since inodes are recycled over time, DIO distinguishes a reused inode by assigning to each file tag

the timestamp of the first captured access to that inode, while in user space each event has an as-

sociated tag composed of the device number, inode number, and timestamp (e.g., "file_tag":
"7340032|12|6707719730779287").

This approach minimizes the amount of redundant data transferred between kernel and user space

and, consequently, the storage and performance overheads. Moreover, even if an EventPath is lost, which

prevents the association of the file path to the event, a file access pattern analysis is still possible by using

the file tag. In the next section, we discuss how each event is correlated to the corresponding file path

through the generated file tags and EventPaths.

56

4.3. ALGORITHMS AND PROTOTYPE

4.3.2 File Path Correlation Algorithm

We have implemented a custom algorithm to enable the correlation of syscalls with specific accessed

file paths. Using Elasticsearch’s data querying and updating features, the file tags (i.e., unique identifiers

generated by the Tracer component) associated with syscalls are translated into the actual file paths being

accessed at the Backend (e.g., /tmp/app/log.txt).

Algorithm 4.2: DIO’s file path correlation algorithm.
Input:

B~B⇢E4=CB: list of events with a file tag
4EC%0C⌘B: list of file paths

1 Function correlateFP(B~B⇢E4=CB, 4EC%0C⌘B)
2 for B~B ← B~B⇢E4=CB do
3 for ?0C⌘ ← 4EC%0C⌘B do
4 if B~B.FileTag = ?0C⌘.FileTag then
5 B~B.FilePath ← ?0C⌘.FilePath
6 B~B.FileType ← ?0C⌘.FileType

Alg. 4.2 shows the file path correlation performed by the Backend. The algorithm receives two lists

as arguments: i) the syscalls events (sysEvents), and ii) all EventPath events (evtPaths) generated during

the Tracer execution. By relying on the unique file tags, the algorithm matches each syscall event with the

corresponding EventPath (L2-L4), updating the former with the file path and type information (L5-L6).

4.3.3 Nanosecond Visualization

The minimum time resolution supported by Kibana for visualization is restricted to the millisecond time

unit. This prevents users from observing the order and time spread for requests occurring in sub-

millisecond time windows, which occur frequently when using modern storage and network hardware

(e.g., NVMe, persistent memory, InfiniBand). Namely, data-intensive applications can generate several

thousands of I/O operations per second. Consequently, many of these operations can occur within the

same millisecond. As shown in §4.1 and 4.4.1, observing the order and time spreading of requests at a

smaller time interval (i.e., microsecond or nanosecond) is important to diagnose applications’ I/O by al-

lowing, for instance, to visualize duplicate syscalls or to understand the sequence and duration of syscalls

made in such a short time window. Therefore, we designed a new representation that depicts I/O events

order and time spacing at the nanosecond time unit resolution (Figs. 4.1b, 4.2b and 4.5b). It is fully

integrated with Kibana’s dashboards and automatically queries the Backend to collect the required data.

4.3.4 Implementation

The Tracer is implemented in ≈8K LoC. The kernel space code responsible for collecting and filtering I/O

events is implemented in 25 eBPF programs written in restricted C (≈800 LoC for the raw tracing mode and

57

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

≈2K LoC for the detailed mode) attached to 1 kernel probe and 86 tracepoints in total (i.e., including entry

and exit points). The user space code responsible for the remaining tracer’s logic is implemented in ≈6K
LoC written in Go (v1.17) and uses the gobpf lib (v0.2.0) for interacting with the eBPF programs, and the go-

elasticsearch (v7.13.1) module for communication with the Backend, taking advantage of its bulk indexing

API for sending multiple events simultaneously. The Backend and Visualizer use Elasticsearch (v8.5.2)

and Kibana (v8.5.2), respectively. The file path correlation algorithm can be automatically executed by

the Tracer or on-demand by users. The nanosecond representation is implemented with the Vega-lite

visualization grammar and provided along with DIO’s predefined dashboards.

4.3.5 Configuration and Usage

The installation and configuration of DIO are performed in two phases: i) the setup and initialization of the

analysis pipeline and ii) the configuration and execution of the Tracer.

Analysis Pipeline. Although all DIO’s components can be deployed in the same server, to avoid nega-

tively impacting the performance of the targeted application (e.g., additional resource consumption), the

analysis pipeline can be installed on separate servers (Fig. 4.3). Further, as the Tracer component labels

each tracing execution with a unique session name, one can deploy DIO as a service, setting up the anal-

ysis pipeline on dedicated servers and allowing multiple executions of DIO’s Tracer on different machines

and by distinct users. The deployment and configuration of the analysis pipeline comprise its software

installation (i.e., Elasticsearch and Kibana) and importing its predefined dashboards. As soon as traced

data arrives at the pipeline, users can access Kibana’s web page and visualize DIO’s dashboards, apply

analysis filters, and edit or create new visualizations and dashboards.

Tracer. Once the analysis pipeline is deployed, users can use DIO’s Tracer to collect information. The

Tracer executes along with the targeted application, stopping once its main and child processes finish

or upon explicit users’ instruction.3 By default, DIO’s Tracer enables the tracepoints for the full set of

supported syscalls. However, users can specify a list of syscalls to observe, and the Tracer will only ac-

tivate the tracepoints for those operations. Also, users may specify a list of files/directories to observe,

instructing the Tracer to only record events that target them. Moreover, users can choose between raw

or detailed tracing modes and further configure the latter to deactivate the collection of arguments that

require transferring large amounts of data to user space. Namely, data buffers’ content and file paths

obtained from syscall arguments may only be relevant to some specific cases and, therefore, can be

collected/ignored according to the analysis goals. As we show in the next section, data buffers are irrel-

evant for use cases §4.1, §4.4.1 and §4.4.3, while the file paths obtained from syscall such as lstat
or unlink are only relevant for use cases §4.4.1 and §4.4.2. All these configurations, along with the

analysis pipeline’s parameters (e.g., Elasticsearch URL), can be set through a configuration file.

3Multiple instances of DIO’s tracer can be deployed to diagnose distributed applications across the servers where their
components are running. Each instance of DIO’s tracer will generate an independent tracing index at the same Backend
(containing information about the targeted host), allowing for later analysis and correlation of each tracing execution.

58

4.4. DIO IN ACTION

4.4 DIO in Action

Our evaluation showcases how DIO eases the process of observing and validating known issues or exploring

unknown applications and finding potential problems. To this end, besides the Redis use case discussed

at §4.1, we analyzed three additional production-level applications: Elasticsearch, RocksDB, and Fluent

Bit. Results show that DIO:

• provides valuable information about applications’ I/O requests that can be used to uncover or

confirm inefficient (§4.1) or unexpected (§4.4.1) I/O patterns;

• is a practical tool for validating the root causes of correctness (§4.4.2) and performance (§4.4.3)

issues, without instrumenting large codebases.

With the exception of Fig. 4.10, all the remaining figures in this section were generated with DIO

(with minimal modifications for readability). The full set of DIO’s visual representations is available at

https://dio-tool.netlify.app.

Experimental Setup. Our testbed comprises three servers running Ubuntu 20.04 LTS with kernel 5.4.0.

The server running the application and DIO’s tracer is equipped with a 4-core Intel Core i3-7100, 16 GiB

of RAM, a 250 GiB NVMe SSD (used for storing traced data), and a 512 GiB SATA SSD (used for hosting

the datasets). DIO’s Backend and Visualization components run on two separate servers, both equipped

with a 6-core Intel i5-9500, 16 GiB of RAM, and a 250 GiB NVMe SSD.

Workloads. Both benchmarks and custom workloads were selected to reproduce specific but realistic

interactions between the targeted applications and underlying storage systems. As shown next, these

workloads validate that DIO can be used to explore the I/O patterns of real applications and identify the

root cause of real known issues. Further details of the workloads and benchmark configurations are

provided along with each use case.

4.4.1 Top-Down Exploration and Diagnosis of Elasticsearch

Next, we show how DIO can be used to explore and obtain additional insight into the I/O behavior of

applications and then, by following a top-down approach, how one can use our solution to diagnose

inefficient file access patterns.

We chose Elasticsearch (v8.3.0), a distributed search and analytics engine, as the targeted applica-

tion [8].4 Due to the use case’s exploratory nature, DIO was configured to capture all supported syscalls.

We used the Rallybenchmark with the default workload (geonames) to generate load for Elasticsearch.5

This workload indexes ≈11M documents and executes different queries (e.g., filter, sort).

Under this workload, and with the help of the information collected and organized by DIO, we observed

that Elasticsearch generates >1M storage-related syscalls, 99.7% of them targeting regular files and the

4Note that in this section Elasticsearch is used as the targeted application and should not be confused with the one used
to implement DIO’s Backend.

5Rally benchmark: https://esrally.readthedocs.io/en/stable/install.html

59

https://dio-tool.netlify.app
https://esrally.readthedocs.io/en/stable/install.html

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

remaining ones targeting directories. Elasticsearch uses mainly data-related operations (88%), most of

them being write (71%), pread64 (7%) and read (5%). Further, it spawns a total of 42 processes and

118 threads while accessing almost 4000 files.

(a) Sample of Elasticsearch’s file access pattern.

(b) Sequence of syscalls issued by Elasticsearch for file .es_temp_file (nanosecond visualization).

Figure 4.5. Elasticsearch’s file access pattern.

As depicted in Fig. 4.5a, some files exhibit a constant access pattern, even in the absence of client

requests. Namely, every 30s, Elasticsearch submits 2 syscalls to the node.lock file (line), and every

2 mins, 9 syscalls to .es_temp_file (line). For the latter, DIO’s nanosecond visualization (Fig. 4.5b)

uncovered an unexpected duplication of openat () and close () syscalls.

Listing 4.1. System calls made by Elasticsearch to the .es_temp_file file and observable with DIO.

 openat(".es_temp_file", "O_WRONLY|O_CREAT", ...) = 53
À write(53, ...) = 22

openat(".es_temp_file", "O_WRONLY", ...) = 56
fsync(56) = 0
close(56) = 0
close(53) = 0
lstat(".es_temp_file", ...) = 0
unlink(".es_temp_file") = 0

Ã

Õ

Listing 4.1 shows the syscalls and their corresponding arguments and return values observable with

DIO. Listing 4.2 shows Elasticsearch’s Java source code responsible for accessing the .es_temp_file.

60

4.4. DIO IN ACTION

The first openat is generated by the Files.newOutputStream method (1), which opens an

output stream used for writing data to the file (2). An IOUtils.fsync method is then invoked to flush

dirty pages to disk (3). However, rather than using the already opened file descriptor, created from the

first openat call, it internally reopens and closes the file again. Finally, upon the file’s removal request

(4), three syscalls are issued: a close corresponding to the first openat, a lstat, and an unlink.

Listing 4.2. Elasticsearch source code for accessing the .es_temp_file file.

class FsHealthMonitor implements Runnable {
static final String TEMP_FILE_NAME = ".es_temp_file";
�
private void monitorFSHealth() {

�
final Path tempDataPath = path.resolve(TEMP_FILE_NAME);
Files.deleteIfExists(tempDataPath);

 try (OutputStream os = Files.newOutputStream(tempDataPath , �
StandardOpenOption.CREATE_NEW)) {

À os.write(bytesToWrite);
Ã IOUtils.fsync(tempDataPath , false);

}
Õ Files.delete(tempDataPath);
�

The information provided by DIO is relevant for identifying the file where this pattern happens (.es_-
temp_file) and, therefore, reducing the search space through the application’s source code from >2.5M
LoC to a single Java class6 with 195 LoC.

This behavior shows that applications’ methods can be translated into multiple syscalls by the high-

level libraries these are using. For I/O-intensive files, this duplication may lead to performance degradation

and I/O contention at the storage system [19].

This use case shows two important features of DIO: i) how it aids in exploring I/O interactions between

applications and storage systems, and ii) how it can be used to find unexpected I/O patterns made by

applications and help users narrow the portion of source code that must be inspected to correct these.

4.4.2 Identifying Fluent Bit’s Erroneous Actions That Lead to Data Loss

DIO can assist developers and users in diagnosing the correctness of their applications. We demonstrate

this by showing erroneous I/O access patterns that result in data loss.

For this use case, we consider Fluent Bit (v1.4.0), a high-performance logging and metrics processor

and forwarder [44]. Existing issues report that data is lost when using the tail input plugin, which is used

6Elasticsearch’s FsHealthService Java class: https://github.com/elastic/elasticsearch/blob/
91413fbd685ba022648abf2e8a0e291665a15a1b/server/src/main/java/org/elasticsearch/
monitor/fs/FsHealthService.java#L130

61

https://github.com/elastic/elasticsearch/blob/91413fbd685ba022648abf2e8a0e291665a15a1b/server/src/main/java/org/elasticsearch/monitor/fs/FsHealthService.java#L130
https://github.com/elastic/elasticsearch/blob/91413fbd685ba022648abf2e8a0e291665a15a1b/server/src/main/java/org/elasticsearch/monitor/fs/FsHealthService.java#L130
https://github.com/elastic/elasticsearch/blob/91413fbd685ba022648abf2e8a0e291665a15a1b/server/src/main/java/org/elasticsearch/monitor/fs/FsHealthService.java#L130

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

to fetch new content being added to log files.7,8 Thus, we implemented a client program that simulates

the generation of log files to be processed by Fluent Bit and mimics the I/O behavior reported in Issue

#1875.7 DIO was used to simultaneously trace and analyze the client program and Fluent Bit by filtering

the syscalls belonging to these applications’ processes.

Figure 4.6. Accessed file offsets for Fluent Bit (v1.4.0).

Fig. 4.6 shows a visualization generated by DIO representing the accessed offsets for the app.log
file for both client (app) and Fluent Bit (fluent-bit) applications. This visual representation shows that: i)

two files are being accessed (different file tags); ii) the first file is accessed by both app and fluent-bit from

offset 0 to offset 26; and iii) app accesses the second file from offset 0 to offset 16, but fluent-bit only

accesses the offset 26.

Complementing this information with the one provided by the tabular visualization of Fig. 4.7 (also

generated by DIO), one can further understand these file accesses. The app program starts by creating

the app.log file, writing 26 bytes starting from offset 0, and closing the file (1). Then, Fluent Bit (fluent-

bit) detects content modification at the file, opens it, and reads 26 bytes from offset 0, which means

that fluent-bit processes the full content previously written by app (2). The hash signatures at the table

validate that fluent-bit reads exactly the same content as written by app. Later, app removes the file with

the unlink syscall, and fluent-bit closes the corresponding file descriptor (3). At the OS level, this means

that the inode number associated with this file (12) is now unused and will later be attributed to a new file.

However, a possible scenario is this inode number being mapped to a newly created file with the same

name. This happens when app creates a new file with the same name as the previous one (app.log)
and writes 16 bytes to it (4). The incorrect behavior reported at the issue, and observable with DIO,

happens when fluent-bit opens the new log file for reading its content, but instead of reading from offset

0, as expected, it starts reading at offset 26 (5). By starting at the wrong offset, the read syscall returns

7Wrong offsets issue from Fluent Bit’s repository: https://github.com/fluent/fluent-bit/issues/1875
8Log missing issue from Fluent Bit’s repository: https://github.com/fluent/fluent-bit/issues/4895

62

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

4.4. DIO IN ACTION

Figure 4.7. Fluent Bit (v1.4.0) erroneous access pattern.

zero bytes, and the 16 bytes written by app are lost. Note that the hash signatures are different for the

content written by app and read by fluent-bit.

To understand the reason for this behavior, we examined Fluent Bit’s code responsible for reading

new content entries in log files. Before reading a file, Fluent Bit updates the file position to the number

of bytes already processed. This value is kept on a database for each tracked file, identified by its name

plus inode number. Erroneously, database entries are not deleted when files are removed from the file

system. Therefore, and going back to our running example, since the same file name (app.log) and
inode number (12) are attributed to the newly created file, fluent-bit erroneously assumes that the first 26

bytes of the latter log file were already processed.

To validate the correction of this access pattern, we used DIO to analyze a more recent version of

Fluent Bit (v2.0.5), where corrections were applied to avoid this data loss issue. Figs. 4.8 and 4.9 show

similar visualizations for the new version. While the erroneous and correct versions present similar initial

behavior (same file accesses for 1 - 4), the difference relies on the file offset being accessed by Fluent

Bit (flb-pipeline) when reading from a new file (5). This time, Fluent Bit starts reading from the beginning

of the file (offset 0), being able to read the new 16 bytes written by app. In the correct version, the hash

signatures for the 16 bytes written by app and read by fluent-bit match.

This example shows that DIO helps users diagnose incorrect I/O behavior from applications and find

the root cause for dependability issues such as data loss. Further, while this example only showcases a

small amount of lost data, it can be significantly higher when dealing with larger log files. Moreover, this use

case also exemplifies how DIO helps validate the corrections applied to the applications’ implementation.

63

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

Figure 4.8. Accessed file offsets for Fluent Bit (v2.0.5).

Figure 4.9. Fluent Bit (v2.0.5) correct access pattern

4.4.3 Finding the Root Cause of RocksDB’s Performance Anomalies

We now demonstrate how DIO can also ease the process of diagnosing performance issues by identifying

the root cause for high tail latency at client requests issued to RocksDB, an embedded KVS [43].

This phenomenon was first observed in SILK [12] and, therefore, we followed the same testing method-

ology to reproduce it. We used the db_bench benchmark configured with 8 client threads performing a

64

4.4. DIO IN ACTION

mixture of read-write requests in a closed loop (YCSB A [29]).9 RocksDB was configured with 8 back-

ground threads, namely 1 for flushes and 7 for compactions. Fig. 4.10 reports a sample of a 5-hour-long

execution and depicts the 99C⌘ percentile latency experienced by clients. Throughout this sample, clients

observe several latency spikes that range between 1.5 ms and 3.5 ms.

Figure 4.10. 99C⌘ percentile latency for RocksDB client operations.

Finding the root cause for this performance penalty through RocksDB codebase instrumentation would

require inspecting more than 440K LoC and adding debugging code to several core components. Alterna-

tively, with DIO, one can easily trace, analyze, and visualize RocksDB execution, as depicted in Fig. 4.11.

Since the workload is data-oriented, we configured DIO’s tracer to capture exclusively open, read, write,
and close syscalls. Client threads are represented as db_bench, while rocksdb:high0 respects to

the flushing thread, and the remainder (rocksdb:lowX) to compaction threads.

Figure 4.11. Syscalls issued by RocksDB over time, aggregated by thread name. db_bench includes the
8 client threads, rocksdb:low[0-6] refers to each compaction thread, and rocksdb:high0 refers
to the flush thread.

By observing the syscalls submitted over time by different RocksDB threads, one can identify perfor-

mance contention. Namely, as shown by the highlighted red boxes, when multiple compaction threads

submit I/O requests, the number of syscalls of db_bench threads decreases, causing an immediate tail

latency spike perceived by clients, as depicted in Figs. 4.11 and 4.10 (in intervals 1 and 3 , at least 5

compaction threads submit requests). When fewer compaction threads perform I/O, the performance

of db_bench improves both in terms of tail latency and throughput (in intervals 2 and 4 , only 1 to 2

compaction threads are performing I/O).

9https://github.com/facebook/rocksdb/wiki/Benchmarking-tools

65

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

If one complements the previous observation with knowledge of how Log-Structured Merge tree (LSM-

tree) KVSs work, the problem becomes clear: RocksDB uses foreground threads to process client requests

(db_bench threads), which are enqueued and served in FIFO order. In parallel, background threads serve

internal operations, namely flushes (rocksdb:high0) and compactions (rocksdb:lowX). Flushes
ensure that in-memory key-value pairs are sequentially written to the first level of the persistent LSM-tree

(!0), and these can only proceed when there is enough space at !0. Compactions are held in a FIFO

queue, waiting to be executed by a dedicated thread pool. Except for low-level compactions (!0→!1),
these can be made in parallel.

A common problem of compactions, however, is the interference between I/O workflows, generating

latency spikes for client requests. Specifically, latency spikes occur when client threads cannot proceed

because !0→!1 compactions and flushes are slow or on hold, which happens, for instance, when several

threads compete for shared disk bandwidth (creating contention).

This is precisely the phenomenon identified in SILK, which can negatively impact the response time

and even the availability of KVSs and services that use them [35, 70], and that can be observed with DIO

without any code instrumentation.

4.4.4 Performance Impact and I/O Events Handling

We now analyze the performance impact induced by diagnosing I/O calls with DIO.

Table 4.2. Minimum DIO’s tracing mode for successfully diagnosing each use case.

raw detailedPfds detailedPall detailedPallCkhash

RocksDB 33 3 3 3
Redis 7 33 3 3

Elasticsearch 7 7 33 3
Fluent Bit 7 7 7 33

DIO’s Setups. For these experiments, we configured DIO to capture only the required information for

diagnosing the aforementioned I/O issues. Namely, the RocksDB use case (§4.4.3) requires information

about the type and number of syscalls, their timestamp, and the name of the processes that issued them.

Thus, DIO can be configured with the less detailed tracing mode (raw).

For the Redis use case (§4.1), we also need to collect information about file paths and file offsets,

thus requiring DIO’s detailed tracing mode. Since the syscalls relevant for this use case all handle file

descriptors, we can avoid collecting the syscalls arguments that require transferring large amounts of data

from kernel to user space, as explained in §4.3.5 (i.e., file paths contained at the syscalls’ arguments and

data buffers’ content). We refer to this setup as detailedPfds.

Elasticsearch use case (§4.4.1), on the other hand, requires the analysis of syscalls whose file path in-

formation is obtained from their arguments. Thus, for this use case, we configure DIO with the detailedPall

setup, which also collects the file paths from syscall arguments.

66

4.4. DIO IN ACTION

Lastly, the Fluent Bit use case (§4.4.2) was configured with the detailedPallCkhash, which also captures

the data buffers’ content and calculates a hash sum in kernel space, which is helpful for validating when

both applications are processing the same data content.

Table 4.2 shows DIO’s minimal configuration for successfully diagnosing each use case (33), while

pointing other more comprehensive configurations that could be used to observe these (3). §4.5 provides

further information about DIO’s setups.

DIO

Strace

Sysdig

Vanilla

 0 20 40 60 80

Elasticsearch

DIO

Strace

Sysdig

Vanilla

 0 30 60 90 120

time (minutes)

Redis

DIO

Strace

Sysdig

Vanilla

 0 100 200 300 400

average execution time standard deviation

RocksDB

Figure 4.12. Average execution time for Elasticsearch, Redis and RocksDB use cases with DIO, Sysdig
and Strace.

Fig. 4.12 shows the execution times of Elasticsearch, Redis, and RocksDB under the workloads de-

scribed at §4.4.1, §4.1, and §4.4.3, respectively. Fluent Bit’s use case was excluded as it does not

include a benchmark. For each application, we compared its vanilla deployment (i.e., without tracing its

execution) with DIO and two state-of-the-art syscall tracers: Strace [109] and Sysdig [111].

Performance Analysis. The performance overhead imposed over vanilla setups is influenced by the

I/O load generated by each application. For Elasticsearch, the least I/O intensive application, all tracers

introduce negligible overhead, increasing the vanilla execution time (73.31 min) by up to 82s.

For Redis, DIO, Sysdig and Strace increase vanilla execution time (23.5 min) by 1.04x (24.0 min),

1.62x (37.3 min), and 4.86x (111.9 min), respectively. By filtering events to Redis’ working directory,

Sysdig and DIO can discard non-storage related requests (i.e., read and write syscalls issued to network

sockets), which account for ≈99% of the events generated by Redis (as shown in §4.1). However, by

applying these filters in kernel space, DIO reduces the computation in the critical path of I/O requests and

the amount of data sent to user space, imposing less overhead than Sysdig. Strace cannot filter events

by directory paths (only by specifying all file paths) and, consequently, intercepts all generated syscalls,

including those targeting network sockets, which explains its significantly higher performance overhead.

For RocksDB, the most I/O intensive application, Sysdig, DIO, and Strace increase vanilla execution

time (227.5 min) by 1.07x (235.6 min), 1.38x (290.1 min), and 1.74x (389.8 min), respectively. Although

Sysdig presents the smallest performance overhead, DIO is the only tracer capable of providing near-real-

time analysis and visualization of collected data and can still reduce the overhead imposed by Strace.

I/O Events Handling. As discussed in §4.2, DIO uses a fixed-sized ring buffer to collect information at

user space, which was configured with 256 MiB per CPU core for these experiments. When this buffer is

67

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

full (i.e., if kernel processes are producing I/O events to the ring buffer at a faster pace than the user space

processes can consume them), new I/O events being intercepted at the kernel-level are discarded. For

the aforementioned experiments, DIO is able to capture all storage syscalls generated by Elasticsearch

(1M) and Redis (600K). For RocksDB, given its more intensive I/O behavior, 6% of the issued syscalls

(≈34M of 538M) were discarded at the ring buffer and, therefore, not stored at DIO’s Backend.

Regarding the storage space needed by DIO’s Backend to store the collected information, the Redis,

Elasticsearch and RocksDB use cases require approximately 86MiB, 282MiB and 90GiB, respectively.

4.4.5 Summary

The previous use cases demonstrate that DIO is useful for diagnosing distinct I/O patterns. Namely, with

Redis, RocksDB, and Fluent Bit, we show that DIO can be used by developers to observe and confirm

known issues and to validate their corrections. With Elasticsearch, we show that our tool is useful when

users wish to explore unknown applications. Indeed, DIO is used to observe an inefficient I/O pattern that

was not known a priori. Our integrated tracing and analysis pipeline enables users to observe these I/O

patterns without resorting to code instrumentation or manually combine multiple tools.

Experimental results show that DIO can collect, parse, and forward to the analysis pipeline all the

required tracing information while imposing reduced performance overhead. When compared to Strace,

DIO reduces execution time for all applications. When compared with Sysdig, performance overhead varies

with the amount of information captured at kernel, sent to user space, and reported to users. Despite the

discarded I/O events in RocksDB, we show that DIO can pinpoint resource contention and help diagnose

its root cause. Moreover, unlike in Strace and Sysdig, DIO’s traced information is automatically made

available for analysis as soon as it is collected and transmitted to the Backend component.

4.5 Experimental Study

We now study how DIO behaves under intensive I/O workloads for answering the following questions:

• What is the performance and resource usage of DIO when tracing I/O intensive applications?

• How much information can DIO capture without discarding events?

• What is the performance and accuracy impact of DIO’s configurations (e.g., ring buffer size, batch

size) and optimizations (i.e., tracing modes and filters)?

• How does DIO compare to other state-of-the-art syscall tracers?

To that end, we first compare DIO with other state-of-the-art solutions (§4.5.1), and then further study

DIO’s inline pipeline (§4.5.2), adaptability to different I/O rates (§4.5.3), and the impact of its filtering

mechanisms (§4.5.4).

68

4.5. EXPERIMENTAL STUDY

Table 4.3. Description of each setup used in the experiments for Strace, Sysdig, and DIO tracers.

Setup Description Tracer

Raw Syscalls information is saved in its raw format without any kind of preprocessing.
Strace
DIO

DetailedPargs
Syscalls information is preprocessed, and file paths are obtained from syscall arguments only
(i.e., no translation of file descriptors to file paths).

Strace

DetailedPfds
Syscalls information is preprocessed, and file paths are obtained from file descriptors only
(i.e., file paths from syscalls’ arguments are discarded).

DIO

DetailedPall
Syscalls information is preprocessed, and file paths are obtained from both file descriptors
and syscalls’ arguments.

Strace
Sysdig
DIO

DetailedPallCplain Similar to detailedPall, but including data buffers’ content in plaintext.
Strace
Sysdig

DetailedPallCuhash Similar to detailedPall, but including a hash sum of data buffers’ content computed in user space. DIO

DetailedPallCkhash Similar to detailedPall, but including a hash sum of data buffers’ content computed in kernel space. DIO

State-of-the-art Syscall Tracers. For the conducted experiments, we compared DIO with:

• Strace: a popular diagnostic, debugging, and instructional user space utility that leverages the

ptrace kernel feature to non-intrusively intercept syscalls [109].

• Sysdig: a tool for system troubleshoot, analysis, and exploration that also leverages the eBPF

technology to intercept syscalls [111].

Similar to DIO, these tracers intercept syscalls invoked by user space applications and collect infor-

mation regarding their type, arguments, and return value. They also offer different filtering capabilities

and allow configuring which data to collect (e.g., enabling/disabling the collection of data buffers).

Setups. In other to evaluate the impact of collecting more or less detailed information, we configured

each tracer (whenever possible) with the setups described in Table 4.3.

Storage Backends. While DIO offers an integrated analysis pipeline to collect, analyze and visualize

traced data, Strace and Sysdig focus only on the tracing phase, saving collected data to disk. To fairly

compare the three tracers and study the impact of different storage backends, in addition to the default

deployment of DIO (i.e., sending collected information directly to the remote analysis pipeline), we also

evaluated DIO’s performance when saving traced data directly to disk.

Moreover, to study the feasibility of building an integrated diagnosis pipeline with existing tracing

solutions, we use the Logstash [10] data processing tool to automatically parse and forward Sysdig events

to a similar inline analysis pipeline as in DIO (i.e., composed by Elasticsearch and Kibana). Specifically, for

these experiments, Sysdig is configured to write collected data to the Standard Output, which is redirected

(via a Unix pipe) to Logstash. The latter reads, parses, and forwards collected events, in batches, to

Elasticsearch.

69

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

Workload and Collected Metrics. To produce a stress-test scenario, we used the Filebench bench-

mark, a popular framework for file system and storage benchmarking [114].10 Experiments consisted of

running Filebench with the FileServer workload, configured to access 10,000 files, each sizing 128 KiB,

through 4 threads performing storage I/O requests for 20 mins. The experiments were conducted in the

same testbed as described in §4.4. Results include the average and standard deviation of the number of

operations per second (ops/s) for three independent runs. Unless stated otherwise, the standard deviation

for all experiments is equal or inferior to 3% of the corresponding throughput.

The Dstat [90] tool was used to obtain system statistics, including CPU, memory, and network us-

age. Finally, the storage overhead imposed by each tested setup (i.e., size of the generated trace file or

Elasticsearch’s index size) was also computed, as well as the number of intercepted syscalls, including

complete (events saved with all the information), incomplete (events saved with partial information), and

lost events (events discarded in kernel space).

4.5.1 Comparison With State-of-the-art Tracers

First, we compare DIO’s performance, resource usage, and tracing accuracy against Strace and Sysdig in

a stress-test environment (depicted in Fig. 4.13). We start by doing an individual analysis for each tracer,

and then we discuss how these compare to each other.

0

40

80

120

160

200

240

ra
w

de
ta
il
ed
P a

rg
s

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

N
u

m
b

e
r

o
f

e
v

e
n

ts
 (

M
il

li
o

n
s

) Strace

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (File)

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (ES)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (File)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

0

30

60

90

120

150

180

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)DIO (ES)

eventscomplete
eventsincomplete

eventslost
throughputvanilla

throughputtracer

Figure 4.13. Filebench’s performance overhead and collected events for Strace, Sysdig, and DIO.

4.5.1.1 Per-tracer Analysis

Vanilla. The Filebench benchmark running without any tracer (vanilla setup) generates approximately

164 Kops/s (depicted by the black dashed line). Unless stated otherwise, the performance overhead

values discussed in this section correspond to the decrease in throughput percentage of a given setup

when compared with the vanilla setup.

10Filebench benchmark: https://github.com/filebench/filebench

70

https://github.com/filebench/filebench

4.5. EXPERIMENTAL STUDY

Strace. Strace imposes high performance overhead over Filebench’s workload (depicted by the red line

), reducing throughput by 73% with the least detailed setup (raw). The imposed overhead increases

further as more detailed information is captured. Namely, with the more detailed setup (detailedPallCplain),

Strace achieves only 30 Kops/s, increasing the overhead to 82%.

While Strace can save all intercepted syscalls without losing traced data (i.e., no incomplete or lost

events), the number of collected events decreases with more detailed setups, ranging from 73M (raw) to

48M (detailedPallCplain). This is a consequence of Strace’s performance overhead, which decreases the

number of ops/s done by Filebench and, consequently, the total number of issued syscalls.

Sysdig. Sysdig incurs reduced performance overhead over Filebench, decreasing throughput by 12% with

the detailedPall setup. Similarly to Strace, capturing more information imposes higher overhead. With the

detailedPallCplain setup, Sysdig achieves 127 Kops/s, increasing the overhead to 22%.

With the reduced performance overhead, Filebench generates more ops/s, and consequently, more

syscalls are performed in total. When writing data to disk, Sysdig saves between 208M (detailedPall) to

235M (detailedPallCplain) of complete events, with only 41 incomplete events (i.e., missing information

about file paths). However, in these experiments, Sysdig is unable to report the process name for all

captured events.

When sending collected data to Elasticsearch, Sysdig still imposes reduced overhead (≈11%) but only
saves 2M events, some of them with incomplete data (between 131 and 314 incomplete events). This is a

consequence of Sysdig producing data faster than Logstash can process it, filling the Unix pipe connecting

Sysdig and Logstash and forcing Sysdig to discard events. Interestingly, when saving data to Elasticsearch,

Sysdig can obtain the process name for all events.

DIO. The performance overhead imposed by DIO varies depending on the storage backend used (i.e., file

or Elasticsearch) and the amount of computation performed in kernel space (i.e., in the critical path of

I/O requests).

When writing data to disk, the raw and detailedPfds setups process all intercepted syscalls, saving

≈134M complete events, but reduce Filebench’s throughput by 50% (with a standard deviation of 6% for

detailedPfds). The DetailedPall and detailedPallCuhash setups start losing traced data (between 20M-28M

incomplete and 51M-85M lost events) but impose less overhead (40%), achieving 98 Kops/s.

By capturing the file paths from syscall arguments (detailedPall) and the content of data buffers

(detailedPallCuhash), DIO needs to transfer larger events from kernel to user space. Moreover, by com-

puting a hash sum of the buffers’ content in user space, DIO further delays the events’ pulling from the

ring buffer. If no space is available on the ring buffer to send an event to user space, the event is discarded

in the kernel and considered lost. Interestingly, as the number of lost events increases, the performance

overhead decreases due to the reduction in the amount of data copied from the kernel to user space in

the critical I/O path of requests.

The detailedPallCkhash setup reduces the amount of data to transfer to user space by computing the

hash sum of buffers’ content in kernel space. While it allows minimizing the loss of events (i.e., no

71

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

incomplete or lost events are observed), it ends up adding heavy computation to I/O requests’ critical

path, imposing higher overhead (66%).

A similar phenomenon is visible when using Elasticsearch as DIO’s storage backend: DIO saves fewer

events (48M to 52M) but imposes less overhead (14% to 51%). These results show two other phenomena.

First, DIO’s rate for processing and saving events to Elasticsearch is limited to ≈43K events/s, thus filling

up the ring buffer more quickly and losing more events. Second, when writing data to disk, the performance

overhead is especially dictated by the extra computation of copying data to user space. However, when

writing data to Elasticsearch, the overhead imposed by the extra processing in kernel to gather more

detailed information has a higher impact (i.e., more detailed setups impose higher overhead). This is

more noticeable for the detailedPallCkhash setup that due to computing the hash sum in kernel, reduces

throughput by 51% (with a standard deviation of 4%).

4.5.1.2 Comparative Analysis

Next, we compare the three tracers regarding their imposed performance overhead, tracing accuracy, and

resource usage.

Performance Overhead. Strace imposes the highest overhead over Filebench’s workload, while Sysdig

imposes the lowest. DIO offers better results than Strace for all setups and storage backends, resulting

from using a low overhead technology, eBPF, instead of a more costly approach like ptrace. When

configured with the Elasticsearch backend, DIO provides results closer to Sysdig. In general, all tracers

impose higher overhead when collecting more detailed information.

Collected Events. By imposing the lowest performance overhead, Sysdig is the tracer that saves more

events when writing these to disk. In the same way, by imposing the highest overhead, Strace saves fewer

events than the others. When sending data to Elasticsearch, both Sysdig and DIO are forced to discard

events. However, by including a custom implementation to communicate directly with Elasticsearch, DIO

can save significantly more events than Sysdig. As in the performance overhead results, collecting more

detailed information generally translates into more incomplete and lost events for DIO and Sysdig.

CPU Usage. Fig.4.14 shows the CPU usage for each tracer and setup. Due to its synchronous approach

for intercepting syscalls and higher performance overhead, Strace exhibits significant CPU idle time, which

increases when more detailed data is collected. Vanilla, Sysdig, and DIO setups have negligible idle time

but exhibit different values for the time spent in user space (usr) and kernel space (sys). The additional

usr time used by DIO is explained by the processing done by our solution in user space, as explained

in §4.2.2). However, DIO’s usr time reduces, while sys time increases, for setups capturing more detailed

information, as these require extra processing at the critical path of I/O requests.

Memory Usage. Regarding memory consumption (Fig. 4.15), it is noticeable an increased usage of

cache resources (cach) for setups writing traced data to disk, which is a consequence of using more

space from the OS’s page cache. This value increases further when considering more detailed setups.

72

4.5. EXPERIMENTAL STUDY

DIO presents higher values for used memory, which is explained by the eBPF maps and the ring buffer

used by our tracer (e.g., the default size of the ring buffer is 1GiB in total) and by writing events in batches

to Elasticsearch for increased performance (i.e., the default configuration is 7MiB per thread, 28MiB in

total). The latter justifies why our solution uses more memory when using the Elasticsearch backend

instead of the file one. Finally, the increase in used memory for Sysdig, with the Elasticsearch backend,

is due to Logstash’s internal buffers for processing traced data.

0

20

40

60

80

100

va
ni
ll
a

C
P

U
 u

s
a

g
e

 (
%

)

Vanilla

ra
w

de
ta
il
ed
P a

rg
s

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Strace

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (File)

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (ES)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (File)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (ES)

usr sys idl wai stl

Figure 4.14. CPU usage by Strace, Sysdig, and DIO.

0

4

8

12

16

va
ni
ll
a

M
e

m
o

ry
 u

s
a

g
e

 (
G

iB
)

Vanilla

ra
w

de
ta
il
ed
P a

rg
s

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Strace

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (File)

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (ES)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (File)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (ES)

used buff cach

Figure 4.15. Memory usage by Strace, Sysdig, and DIO.

Storage Usage. Figs. 4.16 and 4.17 show the storage space used by each tracer when writing data to

disk and when sending events to Elasticsearch, respectively. Strace generates a trace file with a smaller

size (around 9GiB for raw, detailedPargs, and detailedPall setups), which can be explained by the smaller

number of events it collects. DIO collects more events and writes data to disk in a JSON format, thus

generating larger files (from 40GiB with detailedPallCuhash to 70GiB with detailedPfds).

Sysdig, on the other hand, writes data to disk in a binary format, and therefore, although being the

tracer that collects more events, it can create compact files (≈31GiB with detailedPall setup). Nonetheless,

73

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

0
25
50
75

100
125
150
175
200

ra
w

de
ta
il
ed
P a

rg
s

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

T
ra

c
e
 s

iz
e
 (

G
iB

)

Strace

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

Sysdig (File)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (File)

Figure 4.16. Size of the traces generated by Strace, Sysdig and DIO when writing these to disk.

both Strace and Sysdig generate larger trace files when capturing the data buffer’s content (detailedPallCplain

setup), generating files of 79GiB and 179GiB, respectively. By contrast, DIO minimizes the trace size

(≤50GiB) by saving a hash sum of the buffers’ content (detailedPallCuhash and detailedPallCkhash setups).

When sending data to Elasticsearch, the resulting index size for Sysdig is around 1.4GiB, while for DIO

it varies between 8.9GiB and 12.1GiB. The difference between the two is mainly dictated by the number

of collected events and the amount of detailed information captured.

0

2

4

6

8

10

12

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

In
d

e
x

 s
iz

e
 (

G
iB

)

Sysdig (ES)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (ES)

Figure 4.17. Size of the indices generated by Sysdig and DIO when using Elasticsearch as storage backend.

Network Usage. As depicted in Fig. 4.18, when considering Sysdig and DIO using Elasticsearch as the

storage backend, DIO consumes more network bandwidth (i.e., 2MiB/s for Sysdig and between 17MiB

and 20MiB/s for DIO). Since DIO sends more MiBs per second to Elasticsearch, it can process traced

data from the ring buffer faster and save more information at the Backend, as shown in Fig. 4.13.

74

4.5. EXPERIMENTAL STUDY

0

5

10

15

20

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C p

la
in

N
e

tw
o

rk
 u

s
a

g
e
 (

M
iB

/s
e

c
) Sysdig (ES)

ra
w

de
ta
il
ed
P f

ds

de
ta
il
ed
P a

ll

de
ta
il
ed
P a

ll
C u

ha
sh

de
ta
il
ed
P a

ll
C k

ha
sh

DIO (ES)

recv send

Figure 4.18. Network usage by Sysdig and DIO with the Elasticsearch backend
.

From the previous results and analysis, one can extract the following main takeaways:

Takeaway 1. Capturing more detailed information from syscalls induces higher performance and

resource usage overhead. Also, when syscalls are intercepted asynchronously (i.e., in DIO and Sysdig),

it may lead to a larger number of incomplete and lost events. For synchronous approaches (i.e., in

Strace), the performance overhead is more noticeable.

Takeaway 2. The storage backend where traced data is stored influences the number of collected

events and performance overhead. A slower backend (i.e., using Elasticsearch instead of a high-

performance local disk) reduces the overhead over the application but leads to a higher number of

incomplete and lost events for Sysdig and DIO.

Takeaway 3. Tracers using the eBPF technology (i.e., Sysdig and DIO) exhibit distinct tradeoffs

related to the balance between the computation done in user space and in kernel space. More

computation in user space delays the collection of events from the ring buffer, which results in more

discarded events and less performance overhead. More computation in kernel induces a higher

performance penalty for the traced application.

Takeaway 4. DIO offers the best tradeoff in terms of performance overhead and collected events

when considering a full inline pipeline for tracing, analyzing, and visualizing I/O syscalls (i.e., it cap-

tures between 23x to 28x more events when compared with Sysdig, while maintaining performance

overhead under 51%). On the other hand, Sysdig presents the best tradeoff regarding performance

overhead and collected events when considering only the tracing step for a local disk backend.

75

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

4.5.2 Inline Analysis Pipeline

Next, we assess the best configurations to provide an efficient inline analysis pipeline (i.e., in which traced

data is sent directly to the Elasticseach backend). We start by studying the impact of varying the ring buffer

size in DIO, and evaluating both Sysdig and DIO when sending batches of different sizes to Elasticsearch.

Then, we discuss the advantages and drawbacks of following an inline vs offline approach (i.e., saving data

to disk and sending it posteriorly to Elasticsearch). For these experiments, both tracers are configured

with the detailedPall setup for a fair comparison.

4.5.2.1 Ring Buffer’s Size Impact in DIO

To further explore Takeaway 3, it is important to assess the impact that different ring buffer sizes have on

DIO’s performance and amount of collected events.

0

40

80

120

160

200

240

0

30

60

90

120

150

180

N
u

m
b

e
r

o
f

e
v
e
n

ts
 (

M
il
li
o

n
s
)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

RingBuffer size (MiB)

eventscomplete
eventsincomplete

eventslost
throughputvanilla

throughputDIO

16 256 512 1024 2048 4096

(a) Throughput and collected events.

0

20

40

60

80

100

C
P

U
 u

s
a

g
e

 (
%

)

RingBuffer size (MiB)

usr sys idl wai stl

16 256 512 1024 2048 4096

(b) CPU usage.

0

4

8

12

16

M
e

m
o

ry
 u

s
a

g
e

 (
G

iB
)

RingBuffer size (MiB)

used buff cach

16 256 512 1024 2048 4096

(c) Memory usage.

Figure 4.19. Performance overhead, collected events, and resource usage for different ring buffer sizes
in DIO. The blue color pinpoints the default configuration.

As expected and shown in Fig. 4.19a, the larger the ring buffer, the more events DIO collects. With a

smaller configuration (16MiB), DIO saves 38M events. If a larger ring buffer is used (4096MiB), it saves up

to 79M events. However, increasing the ring buffer size impacts the performance overhead imposed over

Filebench. Namely, overhead ranges from 21% (16MiB configuration) to 27% (4096MiB configuration).

76

4.5. EXPERIMENTAL STUDY

Regarding resource usage, varying the ring buffer size has minimal impact on CPU consumption, as

shown in Fig. 4.19b. As for memory consumption (depicted in Fig. 4.19c), the larger the ring buffer,

the more used memory DIO needs, ranging from 1.4GiB (16MiB) to 5.4GiB (4096MiB). The 1024MiB

configuration offers a good tradeoff between performance overhead (23%), collected events (52M), and

memory usage (3.7GiB in total), and therefore was selected as the default ring buffer configuration for

DIO in all the experiments discussed at this section.

Takeaway 5. With a larger ring buffer, DIO collects more events from kernel in user space. However,

it increases performance overhead and memory usage.

4.5.2.2 Elasticsearch’s Batch Size Impact

To complement the conclusions from Takeaways 2 and 4, we next assess the impact of using different

batches sizes for transmitting traced data to Elasticsearch. Fig. 4.20a shows the throughput and number

of collected events for Sysdig when Logstash sends batches of 125, 250, 500, 1K, 2K, 4K, and 15K

events to Elasticsearch.

0

40

80

120

160

200

240

0

30

60

90

120

150

180

N
u

m
b

e
r

o
f

e
v
e
n

ts
 (

M
il
li
o

n
s
)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Batch size (events)
eventscomplete

eventsincomplete

throughputvanilla
throughputsysdig

125 250 500 1K 2K 4K 15K

0

2

4

6

125 250500 1K 2K 4K 15K

(a) Throughput and collected events.

0

20

40

60

80

100

C
P

U
 u

s
a

g
e

 (
%

)

Batch size (events)

usr sys idl wai stl

125 250 500 1K 2K 4K 15K

(b) CPU usage.

0

4

8

12

16

M
e

m
o

ry
 u

s
a

g
e

 (
G

iB
)

Batch size (events)

used free buff

125 250 500 1K 2K 4K 15K

(c) Memory usage.

Figure 4.20. Performance overhead, collected events, and resource usage for different batch sizes in
Sysdig. The blue color pinpoints the default configuration.

77

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

The default configuration used in our experiments (125 events) imposes the least overhead (12%) but

saves less information (≈2M events). Increasing the batch size results in higher performance overhead,

while the number of collected events increases only for sizes inferior to 1K. For the latter, Sysdig collects

more events (≈6.3M) and imposes a performance overhead of 31%. For larger batches, the overhead

tends to stabilize around 40%, but Sysdig starts collecting less information (e.g., with a batch size of 15K,

Sysdig collects 4.9M events). As depicted in Fig. 4.20b, CPU usr time increases with larger batches. The

used memory (shown in Fig. 4.20c) varies between 1.6 GiB and 1.9 GiB.

In DIO, due to a different approach in terms of design and implementation (i.e., it does not resort to

Logstash, as the tracer sends information directly to Elasticsearch to be more efficient), batch sizes must

be configured in MiB instead of the number of events. Fig. 4.21a shows the throughput and number of

collected events for DIO when configured with batches of 1, 4, 7, 10, and 15 MiB.

0

40

80

120

160

200

240

0

30

60

90

120

150

180

N
u

m
b

e
r

o
f

e
v
e
n

ts
 (

M
il
li
o

n
s
)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Batch size (MiB)

eventscomplete
eventsincomplete

eventslost
throughputvanilla

throughputDIO

1 4 7 10 15

(a) Throughput and collected events.

0

20

40

60

80

100

C
P

U
 u

s
a

g
e

 (
%

)

Batch size (MiB)

usr sys idl wai stl

1 4 7 10 15

(b) CPU usage.

0

4

8

12

16

M
e

m
o

ry
 u

s
a

g
e

 (
G

iB
)

Batch size (MiB)

used free buff

1 4 7 10 15

(c) Memory usage.

Figure 4.21. Performance overhead, collected events, and resource usage for different batches sizes in
DIO. The blue color pinpoints the default configuration.

Like in Sysdig, with larger sizes, DIO collects more events and imposes higher performance overhead.

However, the variance across different size configurations is small, always capturing more than 37M

events and imposing no more than 24% of overhead. In detail, a batch size of 1MiB imposes the smallest

overhead (17%) but collects less information (37M events). On the other hand, a size of 10MiB allows

collecting more events (54M) but imposes the highest overhead (24%).

78

4.5. EXPERIMENTAL STUDY

Contrarily to Sysdig, increasing the batch size in DIO has a negligible effect on CPU usage (Fig. 4.21b),

but increases used memory, going from 2.0GiB (batch size of 1 MiB) to 2.8GiB (batch size of 15MiB).

Therefore, our experiments consider a default batch size of 7MiB for DIO.

Takeaway 6. In Sysdig, increasing the batch size has a bigger effect in the balance between perfor-

mance overhead and events captured than in DIO.

Takeaway 7. When considering different batch size configurations, DIO is able to capture from 6x

to 27x more events than Sysdig. Also, the performance overhead in DIO is always kept below 23%,

while in Sysdig, it increases up to 41% for larger batches.

4.5.2.3 Inline vs. Offline analysis

According to the results from §4.5.1 and Takeaway 2, both Sysdig and DIO save more tracing informa-

tion when writing data to a local disk. However, such an option requires users to, later on, parse and

forward this information from disk to Elasticsearch in an offline fashion. Next, we evaluate the benefits

and drawbacks of following offline and inline approaches.

For inline experiments, Sysdig is configured with a batch size of 1K since it allows collecting more

events, and DIO with the default batch size of 7MiB, which offers a good tradeoff between performance

overhead, collected events, and resource usage, as observed in §4.5.2.2.

For offline experiments, a custom DIO’s trace processor is used to read traced data from disk, parse,

and forward it to Elasticsearch. For Sysdig, since data is written in a binary format, we use Sysdig’s

functionality to read the tracer’s binary data and redirect its output to Logstash (via a Unix pipe) for parsing

and forwarding data to Elasticsearch. In both tracers, we use a batch size of 15K events (the largest size

supported for our experimental setup) to optimize data transmission speed to the Backend.

Sysdig

DIO

In
li
n

e

tracing and parsing

Sysdig

DIO

 0 100 200 300 400 500 600

O
ff

li
n

e

time (minutes)

tracing parsing

Figure 4.22. Execution times for inline and offline analysis approaches with Sysdig and DIO.

Fig. 4.22 shows the time spent by each tracer when collecting information (tracing), and processing

and forwarding it to Elasticsearch (parsing). Regarding the inline approach, both tracers present similar

79

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

execution times (≈24 mins for Sysdig and ≈26 mins for DIO), but Sysdig can only send 6M events to

Elasticsearch, while DIO sends up to 52M. When following an offline approach, DIO sends up to 108M

events to Elasticsearch, taking 21 mins to collect information (tracing phase) and 205 mins to process

and forward it (parsing phase). Sysdig can collect even more information (around 230M events) during

≈24 mins but takes about ≈627 mins (i.e., 10 hours and 27 min) to process and forward all these events

to Elasticsearch. By further inspecting these results, we noticed that Sysdig takes only ≈32 mins reading

the 230M events saved on disk, thus exposing Logstash as the main reason for the long parsing time.

Takeaway 8. Inline approaches significantly reduce the time for users to start analyzing collected

data, at the cost of discarding syscalls issued by the targeted application.

Takeaway 9. When following an offline approach, Sysdig captures more events but takes an imprac-

tical amount of time to parse and forward traced data to the backend. Since DIO is implemented and

optimized to interact directly with Elasticsearch, it exhibits better performance.

4.5.3 DIO’s Adaptability to Different I/O Rates

In practice, data-centric applications access storage resources with different I/O rates. Fig. 4.23 shows

DIO’s performance overhead and collected events when Filebench is configured to generate I/O operations

at specific rates (or inferior if the system cannot handle these), starting at 25 Kops/s.

0

40

80

120

160

200

240

va
ni
ll
a
ra
w

de
ta
il
ed
P fd

s

de
ta
il
ed
P al

l

de
ta
il
ed
P al

l
Cu
ha
sh

de
ta
il
ed
P al

l
Ck
ha
sh

va
ni
ll
a
ra
w

de
ta
il
ed
P fd

s

de
ta
il
ed
P al

l

de
ta
il
ed
P al

l
Cu
ha
sh

de
ta
il
ed
P al

l
Ck
ha
sh

va
ni
ll
a
ra
w

de
ta
il
ed
P fd

s

de
ta
il
ed
P al

l

de
ta
il
ed
P al

l
Cu
ha
sh

de
ta
il
ed
P al

l
Ck
ha
sh

va
ni
ll
a
ra
w

de
ta
il
ed
P fd

s

de
ta
il
ed
P al

l

de
ta
il
ed
P al

l
C uh

as
h

de
ta
il
ed
P al

l
C kh

as
h

0

30

60

90

120

150

180

N
u

m
b

e
r

o
f

e
v
e
n

ts
 (

M
il
li
o

n
s
)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

Event generation rate (ops/s)
eventscomplete eventsincomplete eventslost throughput

no limit100K50K25K

 0

 25

 50

 75

 0

 25

 50

 75

45K40K35K30K

Figure 4.23. Performance overhead and collected events of DIO’s setups (with Elasticsearch backend)
when tracing Filebench with different I/O rates.

When Filebench issues operations at a rate ≤25 Kops/s, all setups collect the full information from

issued syscalls (36M events). With a rate of 30 Kops/s, the setups capturing more detailed information

(detailedPall, detailedPallCuhash, and detailedPallCkhash) save some incomplete events (4M to 6M). Lost

events happen for rates ≥35 Kops/s (3M to 5M), but DIO only starts impacting Filebench’s performance

80

4.5. EXPERIMENTAL STUDY

for rates over 40 Kops/s and mostly with detailedPallCkhash. The difference between vanilla and DIO’s

setups is more noticeable for rates ≥100 Kops/s, where performance overhead ranges from 15% to 51%,

and the number of lost events varies from 21M to 182M syscalls.

Takeaway 10. The performance overhead and number of events collected by DIO changes according

to the applications’ I/O rate. Under 25 Kops/s, all setups collect the full set of issued operations,

while most setups only have a noticeable performance impact over Filebench when surpassing 100

Kops/s.

4.5.4 DIO’s Filters Impact

As discussed in §4.2.2, capturing only events of interest helps users reduce the overhead imposed on

the target application and the volume of data to analyze. To evaluate the impact of filtering events at the

tracing phase, we now compare the default configuration of DIO (detailedPall mode with the Elasticsearch

storage backend, which does not apply any filters) with four new setups:

• passive_filter - captures only the rename syscall type, which is never invoked by Filebench.

• orwc_filter - captures a subset of syscalls (i.e., open, read, write, and close).
• read_filter - captures only read syscalls.

• tid_filter - captures all syscalls made by a specific thread of Filebench.

The passive_filter evaluates the impact of having an active tracepoint that is never triggered by the tar-

geted application, while orwc_filter and read_filter assess the impact of activating more or less tracepoints.

Finally, the tid_filter evaluates the impact of filtering events of interest in kernel space.

Collected Events. Fig. 4.24a shows the number of collected events and performance overhead for

each setup. When capturing all events with detailedPall (i.e., without any filters), DIO intercepts 210M

syscalls, saving 42M complete and 10M incomplete events while losing 158M events. The orwc_filter

setup reduces the events of interest to 145M, which allows saving more complete events (≈51M) and

reducing the incomplete and lost events to 0 and 94M, respectively. By capturing only read syscalls, the

read_filter setup further reduces intercepted events to 27M, being able to save them all along with their

complete information (i.e., no incomplete or lost events). Similarly, by filtering events from a specific TID

in kernel space, the tid_filter setup intercepts and saves 35M events of interest.

Performance Impact. As shown in Fig. 4.24a, DIO does not impose extra overhead if an active probe

is never triggered (passive_filter), achieving a performance throughput similar to vanilla (165 Kops/s).

When activating all supported tracepoints (detailedPall), DIO introduces an overhead of 22%. By filtering

events by a specific subset of syscalls (orwc_filter), DIO reduces the number of active tracepoints and

therefore decreases the overhead to 16%.

However, the read_filter setup, which only activates one tracepoint, imposes similar overhead as in

detailedPall. These results are explained by the number of eventPath events (used to map file descriptors

81

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

0

40

80

120

160

200

240

pa
ss
iv
e_
fi
lt
er

de
ta
il
ed
P al

l

or
wc
_f
il
te
r

re
ad
_f
il
te
r

ti
d_
fi
lt
er

0

30

60

90

120

150

180

N
u

m
b

e
r

o
f

e
v
e
n

ts
 (

M
il
li
o

n
s
)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

eventscomplete
eventsincomplete

eventslost
throughputvanilla

throughputDIO

(a) Throughput and syscall stats.

0

20

40

60

80

100

va
ni
ll
a

pa
ss
iv
e_
fi
lt
er

de
ta
il
ed
P al

l

or
wc
_f
il
te
r

re
ad
_f
il
te
r

ti
d_
fi
lt
er

C
P

U
 u

s
a

g
e

 (
%

)

usr sys idl wai stl

(b) CPU usage.

0

4

8

12

16

va
ni
ll
a

pa
ss
iv
e_
fi
lt
er

de
ta
il
ed
P al

l

or
wc
_f
il
te
r

re
ad
_f
il
te
r

ti
d_
fi
lt
er

M
e

m
o

ry
 u

s
a

g
e

 (
G

iB
)

used buff cach

(c) Memory usage.

Figure 4.24. Performance overhead and collected events of DIO (with detailedPall setup and Elasticsearch
storage backend) when applying different filters.

to file paths, as described in §4.3.1.3) saved by each setup. Namely, the detailedPall and orwc_filter

setups can only save between 122K to 358K eventPaths. On the other hand, the read_filter setup saves

all generated eventPaths (≈7M), which requires copying more data from kernel to user space, imposing a

higher performance overhead. The same is valid for tid_filter, which increases overhead to 28% because

it also saves a large number of eventPaths (≈5M).

Resource Usage. Figs. 4.24b and 4.24c show CPU and memory usage results. The passive_filter setup

presents similar CPU consumption as in vanilla since it does not intercept any syscall. The other setups

increase usr time by ≈16%. As for memory consumption, all DIO’s setups present similar results, which

is explained by the static allocation of memory done by our system (e.g., for the ring buffer). Regard-

ing storage usage, by reducing the events of interest, the read_filter and tid_filter setups minimize the

detailedPall’s index size (12GiB) by 42% (7GiB) and 50% (6GiB), respectively.

Takeaway 11. DIO’s filters enable users to target only events of interest, which allows reducing

storage overhead, improving the number of collected events, and, depending on the filter type and

I/O workload, reducing performance overhead.

82

4.6. RELATED WORK

4.5.5 Summary

To sum up, the results and takeaways discussed in this section show that the approach followed by DIO

is key to building an integrated tracing and analysis pipeline that can offer a good tradeoff regarding

performance overhead, tracing accuracy, and timely analysis for users.

First, by relying on the eBPF technology, DIO can intercept applications’ syscalls without modifying

their source code while minimizing tracing performance overhead.

Second, the flexibility offered by DIO’s different tracing modes allows balancing the tracing accuracy

with the performance and storage overheads by configuring the detail of the information being captured.

Likewise, DIO’s filtering capabilities enable discarding fewer I/O events of interest while reducing the stor-

age capacity needed at the Backend. Specifically, the storage overhead imposed by DIO varies according

to the tracing mode, filters used, and the number of events generated by the application (e.g., 86 MiB for

the Redis use case with ≈600K events collected with the detailedPall mode, 90 GiB for the RocksDB use

case with more than 500M events collected with the raw mode).

Moreover, by following an inline approach, DIO reduces the need to store traced data locally and

enables users to analyze and visualize collected data in near real-time, which is not possible when following

an offline design. Further, our custom design integrating the Tracer directly with the Backend component

exhibits significantly better accuracy (i.e., in terms of the amount of collected data at the Backend) than

by combining different state-of-the-art tools (i.e., Sysdig and Logstash).

In practice, and as shown in §4.4, data-centric applications such as RocksDB, Elasticsearch, and

Redis do not fully stress the underlying storage resources and, by leveraging DIO’s customized, flexible,

and integrated design, users can capture the full set of syscalls or, at least, have a negligible number of

events discarded that do not compromise the diagnosis of such applications.

4.6 Related Work

Table 4.4 shows a comparison between DIO and related solutions in terms of: captured tracing informa-

tion, filtering capabilities, tracing and analysis integration (O-offline, I-inline), analysis customization, and

predefined visualization support. While some tools are able to trace (T) the information required for the

chapter’s use-cases, only DIO provides users with the analysis (A) capabilities to diagnose them.

I/O Tracing. Storage I/O diagnosis is often done by capturing applications’ requests in user space

through source code instrumentation [62, 67, 117, 132]; through middleware libraries [81, 108] that are

restricted to specific sets of applications (e.g., LD_PRELOAD only works with dynamic libraries); or at lower

kernel layers [64, 81, 102], such as the VFS, where optimizations like I/O merging make it impossible to

observe the exact requests submitted by applications.

To intercept I/O operations non-intrusively and closer to the requests made by applications, other

solutions rely on the syscall interface. As shown in Table 4.4, these explore distinct tracing technologies,

including ptrace ([98, 109]), eBPF ([42, 111, 116]), LTTng ([5, 32, 68]), and auditd ([126]), which allow

83

CHAPTER 4. PRACTICAL AND TIMELY DIAGNOSIS OF APPLICATIONS’ I/O BEHAVIOR

Table 4.4. Comparison between DIO and related solutions regarding: i) tracing and (O-offline, I-inline)
analysis functionalities, and ii) support for tracing (T) and analyzing (A) the use cases from §4.1 and §4.4.

Str
ac
e[1

09
]

Sy
sd
ig[

11
1]

Re
-An
im
ato
r[5

]

Re
pT
rac
e[9

8]

Tra
ce
e[1

16
]

CA
T[4

2]
Da
ou
d a

nd
Da
ge
na
is
[3
2]

Ko
hy
arn

eja
dfa

rd
et
al.
[6
8]

Lo
ng
Lin
e[1

26
]

DI
O

Tr
ac
in
g

syscall info 3 3 3 3 3 3 3 3 3 3
f_offset - - - - - - - - - 3
f_type - 3 - - - - - - - 3

proc_name 3* 3 - - 3 3 - - 3 3
filters 3 3 - - 3 3 - - - 3

An
al
ys
is

pi
pe

lin
e integrated - - - O - O O O I I

customizable - - - - - - 3 3 - 3
predefined visualizations - - - - - 3 3 3 3 3

U
se

ca
se
s §4.1 - - - - - - - - - TA

§4.4.1 - T - - - - - - - TA
§4.4.2 - - - - - - - - - TA
§4.4.3 T* T - - T T - - T TA

* Only supported for versions 5.15 or later.

gathering information related with the entry and exit points of syscalls, including their arguments, return

value, timestamps, PIDs, etc. Similar to DIO, some tools enrich traced data with additional information

such as the process name ([42, 111, 116, 126]), which is useful for observing the I/O patterns at §4.4.2,

and §4.4.3. However, DIO is the only tool that collects file offsets, which are crucial for diagnosing the

use case presented in §4.4.2.

Only CaT (Chapter 3), Tracee [116], and DIO aggregate the information contained at the entry and exit

points of each syscall into a single event, thus simplifying its posterior analysis. This is done at kernel space

to reduce the data transferred to user space. Further, these are the only tools, along with strace [109]

and Sysdig [111], that support filtering at the tracing phase.

Integrated Analysis Pipeline. Several solutions only cover the tracing step, leaving the integration with

analysis pipelines to be done by users [5, 109, 111, 116]. Other tools provide modules for automating

the analysis of traced data but follow an offline approach, where this data needs to be stored first and,

only later, it is parsed and provided as input to the analysis pipeline [32, 42, 68, 98]. Only DIO and

LongLine [126] automatically parse and forward traced events to the analysis pipeline by following an

inline (near-real-time) approach.

Syscall Analysis and Visualization. Some of the existing tools support analysis modules specialized

for their concrete use cases (e.g., causality [42, 98], security analysis [126]), which only consider specific

84

4.7. SUMMARY AND DISCUSSION

information collected from traces (e.g., syscall types). Therefore, these do not provide the flexibility to

implement custom analysis algorithms nor enable users to access and explore other information contained

in the collected I/O traces. On the other hand, solutions similar to DIO that support customizable analysis

fail to capture relevant information to diagnose the use cases discussed in this chapter [32, 68].

DIO provides users access to the complete set of captured information (e.g., syscall type, arguments,

offsets), allowing them to build new algorithms over the data fields that are more relevant to their anal-

ysis goals. Moreover, DIO offers predefined representations that automatically summarize and allow the

visualization of the I/O patterns discussed in this chapter. Further, our tool enables users to create

new visualizations commonly supported by other diagnosis solutions (e.g., tables, pie charts, histograms,

heatmaps, time series) [32, 68, 126].

To sum up, DIO is the first solution providing an integrated inline diagnosis pipeline that is designed

to be flexible and customizable, while covering a larger set of information from syscalls than other state-

of-the-art solutions.

4.7 Summary and Discussion

This chapter presents DIO, a generic tool for observing and diagnosing I/O interactions between appli-

cations and in-kernel POSIX storage systems. Through a pipeline that automates the process of tracing,

filtering, correlating, and visualizing millions of syscalls and by enriching the information provided by these

with additional context, DIO helps users observe I/O issues while reducing the search space for finding

their root cause when, for instance, source code inspection is required.

Our experiments with widely used systems show that DIO provides key information for exploring I/O

requests, observing inefficient or erroneous I/O access patterns that lead to performance degradation or

data loss, and identifying resource contention in multithreaded I/O that leads to high tail latency. Further, a

detailed evaluation comparing DIO with state-of-the-art tracers shows that our integrated pipeline enables

users to diagnose applications in a more timely fashion while providing the best balance in terms of

performance overhead and tracing accuracy.

In the next chapter, we show how one can leverage and extend DIO’s solution (e.g., to trace network

I/O requests, build custom correlation algorithms and visualizations) for a different use case, namely, the

characterization of ransomware’s I/O behavior. This new use case further validates the usefulness of DIO

and the advantages of providing a general-purpose solution that is modular, flexible and customizable.

85

5

Comprehensive Analysis of Cryptographic
Ransomware’s I/O Behavior

Cryptographic ransomware is one of the most well-known and damaging types of malware, which acts

by encrypting data at infected servers and then demanding a ransom in exchange for the cryptographic

key necessary to decrypt compromised data to its original format [20, 88]. This malicious software is

now spread across distinct OSs other than Windows, such as Android and Linux. As the latter OS is

typically used by large institutions (i.e., governments, companies) holding critical and private information,

ransomware attacks on their distributed infrastructures can have devastating effects, as observed for the

Colonial Pipeline, Quanta Computer, and Konica Minolta attacks in 2021 [94, 95, 120].

Current ransomware detection and prevention tools are mostly based on classification and ML algo-

rithms that can differentiate between malign and benign applications through key features, such as unique

I/O patterns exhibited by ransomware attacks (e.g., targeted files, API call patterns) [27, 57, 105]. These

features are distilled from information collected statically from binary inspection or dynamically from ob-

serving the I/O interaction of ransomware samples (i.e., binaries) with the OS. The latter is necessary for

samples using concealment techniques (i.e., obfuscation, polymorphism, encryption) that make binary

inspection inefficient [88, 99].

However, given the sheer amount of cryptographic ransomware families, which are constantly evolving

to bypass detection mechanisms, it becomes challenging to understand what I/O information needs to

be collected dynamically at runtime and used as a feature for classification purposes. For this, security

analysts and engineers require deep knowledge of how ransomware families work and evolve over time.

Frameworks, such as Cuckoo [47] and Limon [71], provide sandbox environments to run ransomware

samples and output to users summaries of their suspicious activities. Since these summaries are limited

in terms of analysis scope, these frameworks also output detailed execution logs (traces), which are crucial

for an in-depth exploration of ransomware’s I/O patterns. However, we argue that this is a sub-optimal

approach as it leaves to users the inspection of large traces (i.e., containing thousands to millions of I/O

events), which could be automated with proper analysis and visualization tools.

Therefore, while focusing on the Linux OS, the main insight of this chapter is that to further com-

prehend the I/O behavior of ransomware, one should leverage all the information collected during its

86

execution and automate its analysis and visualization. Namely, by exploring the syscalls used by a ran-

somware sample, their arguments, and their contextual information (e.g., process name, PID, TID), one

would be able to obtain detailed information about the sample. For example, it would be possible to i) ob-

serve how many processes/threads are created and learn about their specialization (e.g., encrypt files,

write ransom notes); ii) understand how the infected file system is transversed and which files are being

targeted; iii) learn about specific I/O patterns done over infected files (e.g., encryption key generation and

persistence, file’s extension renaming, targeted file offsets).

While this information is useful for analysts to better understand ransomware attacks, compare distinct

families and observe their I/O patterns’ evolution, to implement such an idea, one must address the

following challenges, as discussed in §2.4:

Challenge C1. Most of the available ransomware samples are packed binaries whose source code is

undisclosed. Thus, the collection of relevant information (tracing) should be dynamic (i.e., done

along with the sample’s execution) and non-intrusive (i.e., without requiring modifications to its

source code).

Challenge C3. To enable a comprehensive exploration and analysis of ransomware’s I/O behavior,

collected traces must include diverse and detailed information regarding the sample’s interaction

with the OS (e.g., process creation, syscall types, arguments, and context). Such information can

also be complemented with other system metrics (e.g., CPU usage).

Challenge A1 and V1. The analysis pipeline should be integrated with the data collection phase while

efficiently handling large volumes of traced data (i.e., thousands to millions of I/O events), allowing

its storage, processing, and visualization.

Challenge A2, A3, V2 and V3. Manually exploring traced data and finding themost appropriate queries

to observe specific I/O patterns is a complex and time-consuming task, which could be automated

with tailored correlation algorithms and visualizations. Further, to efficiently compare the I/O be-

havior of different ransomware families, one must store and index the data traced for each sample,

correlate such information, and create adequate visualizations that help pinpoint their main simi-

larities and differences.

The previous challenges are addressed with CRIBA, a tool for diagnosing the I/O behavior of Linux

cryptographic ransomware. Briefly, CRIBA builds upon DIO to support dynamic collection of information

about I/O syscalls issued by ransomware samples along with other systemmetrics. Also, it leverages DIO’s

integrated analysis and visualization pipeline, while extending it to build custom correlation algorithms and

combining these with new tailored visual representations that enable comprehensive insights about the

I/O patterns of ransomware attacks. In more detail, this work provides the following contributions:

Diagnosis Pipeline Tailored for Ransomware. An open-source tool integrating the collection, anal-

ysis, and visualization of execution traces from ransomware. CRIBA allows the collection and analysis of

87

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

comprehensive information about I/O syscalls (e.g., type, arguments), their contextual information (e.g.,

PID, offset), and relation with other system metrics (e.g., CPU).

Custom Correlation Algorithms. CRIBA extends DIO by providing automated analysis capabilities,

through 6 new algorithms, that ease the study and comparison of ransomware samples by pinpointing

their file system transversal, file access, and file extension manipulation patterns.

Custom Visualizations. CRIBA also provides a new set of visualizations, organized into 8 distinct

dashboards, for summarizing and exploring collected information as well as the outputs of the correlation

algorithms in a human-readable and explainable fashion.

Ransomware Study. We provide a comprehensive analysis and comparison of 5 Linux ransomware

families that shows CRIBA’s capabilities.

The conducted experimental study shows that CRIBA automates the analysis and observation of

generic behavior from ransomware samples (e.g., the number of processes, type of syscalls, file sys-

tem transversal). Further, it enables the analysis and comparison of intrinsic and complex I/O behavior

(e.g., file access patterns, extension manipulation) related to the creation of ransom notes, file encryption,

and evasion techniques used by each family.

All artifacts discussed in this chapter, including CRIBA, datasets, scripts, and the corresponding anal-

ysis and visualization outputs, are publicly available at https://github.com/dsrhaslab/criba.

5.1 Ransomware Overview

We now overview the workflow of cryptographic ransomware while highlighting some of its unique I/O

features.

Main Phases of Ransomware Attacks. Cryptographic ransomware typically acts in four phases [85].

First, the attacker exploits system vulnerabilities (e.g., kernel bugs) or uses social engineering tech-

niques (e.g., phishing emails) to install a malicious sample at the victim’s machine(s) (Infection phase).

Once installed and running, the sample establishes a connection with its Command and Control (C&C)

server to retrieve necessary information for data encryption (e.g., encryption keys) and/or exfiltrate infor-

mation about the infected system (e.g., hostname, hardware info) to the attacker (Communication with

C&C servers phase). Then, the ransomware transverses the files at the infected server(s) and encrypts

their data, blocking access to these (Destruction phase). In the end, the ransomware leaves a ransom

note informing the victim about the attack and disclosing payment instructions (Extortion phase).

Data Encryption. Cryptographic ransomware typically follows a hybrid approach combining symmetric

and asymmetric encryption schemes [85]. It starts by locally creating a symmetric key, usually a different

88

https://github.com/dsrhaslab/criba

5.1. RANSOMWARE OVERVIEW

key per infected file. It then reads the file’s content and encrypts it with the generated key. Symmetric key

encryption schemes impose lower CPU load and have faster encryption times than asymmetric ones [16].

To prevent the victim from discovering symmetric keys and recovering the original files’ content, the

ransomware encrypts these with the attacker’s public key obtained, for instance, during the Communi-

cation with C&C servers phase. The encrypted file’s data and corresponding encrypted symmetric key

are both written to the targeted file, which is usually renamed to include a new extension (e.g., .ecrypt in

Erebus). Thus, to recover the original files, the victim first needs to obtain the attacker’s private key and

then use it to decrypt the symmetric keys needed for the files’ data decryption.

Detection Features. The ransomware actions to encrypt the victim’s files result in intensive I/O patterns

with several characteristics that deviate from the normal behavior of benign applications:

• Directory search - typically, all directories at the infected machine are transversed in search for files

to encrypt [105].

• Files access - encryption usually requires rewriting the whole file’s data in a short time window [57].

• Number of storage operations - encrypting several files results in a significant amount of storage

I/O operations, such as opening, reading, writing, and closing each file.

• Unknown file extensions - by changing the extension of encrypted files, ransomware samples exe-

cute an abnormal number of rename operations. Moreover, this results in the appearance of new

and unknown file extensions [105].

• CPU usage - by encrypting files, the sample imposes a high CPU load on the victim’s machine [16].

• Network communication - the communication with the C&C usually translates into network opera-

tions targeting unknown network domains [27].

These are some of the features that detection tools use to identify the malicious activity of ransomware.

Evasion Techniques. Some ransomware families use evasion techniques to retard or avoid being

detected. For instance, many families include the public encryption key within the binary to avoid commu-

nication with the C&C [16]. Other families reduce CPU load and encryption time, and hide I/O patterns,

by encrypting only a subset of files on the infected machine. File selection can be based on i) its extension

(e.g., work-related documents such as .pdf, .docx, .txt; VM-related files like .vmdk, .vmem, .vswp); ii) its

size (e.g., larger files will most probably contain important data); or iii) arbitrary. Some families also limit

the number of bytes to encrypt in each file, which is usually sufficient to avoid recovering their full content.

With CRIBA, we aim to assist security analysts in exploring and analyzing the I/O behavior of crypto-

graphic ransomware samples to understand better how they operate, identify and refine key features for

their detection, and learn about their techniques used to evade detection tools.

89

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

5.2 CRIBA in a Nutshell

Fig. 5.1 depicts CRIBA’s architecture, which is built on top of DIO as it already provides modules for i)

collecting information about applications’ syscalls without requiring access or modification to their source

code; and ii) storing, analyzing and visualizing the collected information.

Server Virtual Machine

outputsSysTracer

interacts with
(via syscalls)

Ransomware
 sends to

DataParser

accesses

stores

Backend

Visualizer

reads

Correlation
Algoritms
Correlation
Algoritms
Correlation
Algoritms

trace

accesses

executes

Tracing phase Analysis phase

updates

 monitors

MetricMon
Resources

CPU RAM

DISK NET

intercepts

metrics

reads

1

1

1

outputs2

2

3

4

5

7

6

DIO's Components New Components

Figure 5.1. CRIBA’s design and flow of events for the tracing and analysis phases.

5.2.1 System Workflow

CRIBA’s components are executed in two separate phases: i) the tracing phase, where information from

the ransomware execution is collected; and ii) the analysis phase, where collected data is analyzed and

visualized. In the tracing phase, the ransomware sample is executed in a controlled environment along

with SysTracer that intercepts its I/O syscalls, and MetricsMon that monitors system statistics (1). When

the ransomware finishes its execution, these components’ output files are extracted from the controlled

environment (2) to initiate the analysis process. In the analysis phase, the DataParser is used to read the

tracing output files (3) and forward these to the Backend (4). The latter persists and indexes collected

data (5) and provides access to it through a querying API. Meanwhile, users can execute the provided

correlation algorithms (6) and access the Visualizer dashboards (7) to visually explore the output of these

and other information contained at the indexed data.

5.2.2 Architectural Components

Although DIO’s analysis pipeline is useful for observing the I/O behavior of applications, it still requires

users to spend significant time exploring and manually building/customizing queries and visualizations to

analyze collected traces from ransomware samples.

CRIBA extends DIO to collect more information at the tracing phase, including network operations

and system’s resources metrics, and to automate the analysis process by providing a set of correlation

algorithms and predefined visualizations tailored for the exploration of cryptographic ransomware. Next,

we highlight the modifications made to DIO’s original design and describe the new components added

(blue boxes at Fig. 5.1).

90

5.2. CRIBA IN A NUTSHELL

SysTracer. DIO’s tracer is focused on the interception of storage-related sycalls. To consider also

network-related requests, we modified this module to intercept 13more syscalls (e.g., connect, accept,
send, receive). The full set of supported syscalls is shown in Table 5.1.

MetricMon. To obtain information about the system’s resource usage, we introduced a new module for

collecting statistics, including CPU, memory, and disk usage.

DataParser. Ransomware samples must run in a controlled environment (e.g., isolated VM) to avoid

infecting the experimental servers. Thus, SysTracer and MetricMon save collected information to disk

(trace files) instead of sending it directly to the analysis pipeline. The DataParser module is responsible

for parsing these trace files and forwarding their information to the analysis pipeline.

Backend and Correlation Algorithms. The Backend component, which may be deployed on separate

server(s), is identical to the one offered in DIO and provides the functionalities of storage and exploration of

collected information. However, to ease the analysis of cryptographic ransomware, we developed several

new correlation algorithms that query the Backend, analyze and correlate queried data, and send the

analysis results back to the Backend. As further explained in §5.3.1 and demonstrated in §5.4, these

algorithms provide relevant information to understand how ransomware behaves and to find interesting

and distinctive I/O patterns. Further, our design is extensible, enabling users to develop other correlation

algorithms that may suit their analysis goals.

Visualizer. The Visualizer component, which is also based on DIO, was extended to include visual

representations tailored for observing ransomware’s analysis findings (e.g., for the output of correlation

algorithms) thus, simplifying users’ exploration and making it more explainable. Particularly, we built

several dashboards that allow observing:

• Generic Overview - general statistics about the traced execution (e.g., execution time, number of

processes and threads, number and type of syscalls).

• Directory Transversal - the type of transversal done by ransomware samples over the dataset.

• File Name and Extensions - the file name and extensions accessed by ransomware samples.

• Syscall Sequences - the sequence of syscalls done by samples over dataset files.

• File Ngrams - bigrams, trigrams, and quadgrams of file accesses done by the ransomware sample.

• File Offsets - file offsets accessed by samples.

• Resource Usage - metrics about the utilization of resources (e.g., CPU, RAM) at the infected host.

• Families Comparison - heatmaps comparing multiple ransomware families regarding their issued

syscalls, accessed file extensions and names.

Each dashboard is mentioned explicitly in §5.4 while discussing the analysis findings contained in it.

Also, our design is extensible as users can create new visualizations based on their analysis needs.

91

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

Table 5.1. List of syscalls supported by CRIBA (and corresponding tags used in §5.3.1).

Tag Syscall Tag Syscall
AC accept, accept4 RD read, pread64, readv
BD bind RH readahead
CL close RL readlink, readlinkat
CN connect RN rename, renameat, renameat2
CR creat RX removexattr, lremovexattr, fremovexattr
FS fsync, fdatasync SD sendto, sendmsg
GS getsockopt SK socket, socketpair
GX getxattr, lgetxattr, fgetxattr SS setsockopt
LS lseek ST stat, lstat, fstat, fstatfs, fstatat
LT listen SX setxattr, lsetxattr, fsetxattr
LX listxattr, llistxattr, flistxattr TR truncate, ftruncate
MK mknod, mknodat UN unlink, unlinkat
OP open, openat WR write, pwrite64, writev
RC recvfrom, recvmsg

5.3 Algorithms and Prototype

CRIBA’s open-source prototype includes six correlation algorithms that aim to ease the analysis process

and provide more detailed insights on how ransomware behaves. We next explain each correlation algo-

rithm in detail (§5.3.1) and describe the implementation detais of CRIBA’s prototype (§5.3.2).

5.3.1 Correlation Algorithms

The correlation algorithms provided by CRIBA include three main phases: i) the querying phase, where

one or more queries are performed to the Backend to obtain the required data; ii) the correlation phase,

where the acquired data is processed and correlated to obtain addition information; and iii) the updating

phase, where the correlation results are sent back to the Backend to be more easily accessed and visual-

ized by users at the Visualizer component.

UNExt. The UNExt algorithm extracts the file name and file extension from the file paths targeted by

traced syscall events. Specifically, for every event accessing1 a file path (e.g., read, write, stat), the
algorithm splits the full path (e.g., /files/example.txt) to obtain the file name (e.g., example.txt)
and the file extension (e.g., .txt). This algorithm is implemented as a search and update query that is

fully executed at the Backend. With its output, users can explore, at the Visualizer, the file names and

extensions accessed by ransomware samples.

DsetU. The DsetU algorithm compares the list of file paths accessed by the ransomware sample with

the full list of file paths contained in a given dataset collection, provided as input by the user (e.g., the

experimental dataset described in §5.4). The output sent to the Backend includes which dataset’s files

1In the chapter, file access means at least one syscall is done over the file.

92

5.3. ALGORITHMS AND PROTOTYPE

and extensions were accessed by the ransomware. This output can then be explored with the Visualizer

to uncover samples targeting specific files and extensions.

Transversals. The Transversals algorithm determines the order in which ransomware threads transverse

the file system, namely Breadth First Search (BFS), Depth First Search (DFS), or unknown. Alg. 5.1 shows

the algorithm for identifying DFS. By analyzing opened files, it builds a file tree (L2) and obtains an order

– 3 5 B$A34A – in which the files would have been visited with DFS (L3). Then it correlates the actual file

opening order done by the thread with 3 5 B$A34A (L4-L9). Next, it builds a SegmentTree structure [53]

(L10) to efficiently verify if external files were visited while transversing a given subtree (L11-L16), mean-

ing that the thread is not doing DFS. Note that the algorithm tolerates different access orders to files on

the same directory (e.g., alphabetical, creation time, etc.). The search type done by each thread and the

information containing the opened files and folders are sent to the Backend to be explored at the Visualizer.

Algorithm 5.1: CRIBA’s algorithm for identifying a Depth First Search.
Input: Files opened over time (5 ?0C⌘B)
Output: True if DFS was observed

1 Function isDFS(5 ?0C⌘B) is
2 CA44 ← buildFileTree(5 ?0C⌘B)
3 3 5 B$A34A ← transverseDFS(CA44)
4 ;8BC ← []
5 8 ← 0
6 for 5 8;4 ∈ 5 ?0C⌘B do
7 83G ← 3 5 B$A34A [5 8;4]
8 ;8BC [83G] = 8
9 8+ = 1

10 BC ← buildSegmentTree(;8BC)
11 for 5 8;4 ∈ 5 ?0C⌘B do
12 0 ← BC .getMaxElemInsideSubtree()
13 1 ← BC .getMinElemOusideSubtree()
14 BC .remove(5 8;4)
15 if 0 > 1 then
16 return 5 0;B4
17 return CAD4

FnGram. The FnGram algorithm computes the n-grams collocations for the files accessed by a ran-

somware sample over time. Specifically, it queries the Backend to obtain a list of the file paths accessed

by each thread. Then, it computes and sends back to the Backend the bigrams, trigrams, and quadgrams

for that input list. With this information, it is possible to depict dependencies between file accesses (e.g.,

the trigram (A.txt, B.txt, C.txt) shows that B.txt was accessed after A.txt and before C.txt).

93

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

FSysSeq. The FSysSeq algorithm computes the sequence of consecutive unique syscalls done by ran-

somware threads to all files. First, for each file, the algorithm queries the Backend to obtain the list of

syscalls (sorted by time). As depicted in Alg. 5.2, each syscall in the list is translated to a tag (L5) of two

letters (according to Table 5.1) to reduce the length of the final sequence, while subsequent syscalls of

the same type are reduced to a single one (L6-L8). For example, the list [open, read, read, lseek,
write, write, close, rename] is reduced to “OP→RD→LS→WR→CL→RN”. With these sequences,

one is able to learn how ransomware threads access files and observe similar patterns between files (e.g.,

identical sequences for ransom notes as shown in §5.4.2).

Algorithm 5.2: FSysSeq correlation algorithm provided by CRIBA.
Input: Syscalls for a given file over time (B~B20;;B)
Output: Syscall sequence (B4@D4=24)

1 Function ComputeSysSeq(B~B20;;B) is
2 B4@D4=24 ← []
3 ?A4E_C06 ← NULL
4 for B ← B~B20;;B do
5 C06 ← get_tag(B)
6 if ?A4E_C06 = NULL or ?A4E_C06 < C06 then
7 B4@D4=24.append(C06)
8 ?A4E_C06 ← C06
9 return B4@D4=24

TfidfFam. The tfidfFam algorithm eases the comparison between distinct ransomware families. Specif-

ically, for each family, the algorithm requests from the Backend all the values observed for a given cat-

egory (e.g., syscall type). These values are passed as input to the Term Frequency-Inverse Document

Frequency (TF-IDF) algorithm. The latter is a feature selection technique, often used by ransomware de-

tection tools [25, 26, 130], that outputs a numerical statistic showing the relevance of each value (e.g.,

relevance of read syscalls for the Erebus sample). Then, the cosine similarity is applied to the output of

TF-IDF to have a single metric of comparison between families according to their most relevant values.

By sending back to the Backend the TF-IDF output, users can observe the most relevant values per family

and for a given category. By sending the cosine similarity results, users are able to understand how sim-

ilar/distinct the ransomware families are. We apply this algorithm to three categories: syscall type, file

paths, and file extensions.

5.3.2 Implementation

SysTracer extends DIO’s tracer with 7 new eBPF programs, written in restricted C, that are attached to

13 entry and 13 exit tracepoints for intercepting network-related syscalls. The Backend, Visualizer and

MetricMon components are provided by instances of Elasticsearch [8], Kibana [9], and Metricbeat [11],

94

5.4. CRIBA IN ACTION

respectively. The DataParser and the correlation algorithms are implemented in ≈2K lines of Python code

and interact directly with the Elasticsearch instance (i.e., index, update, and query). The dashboards

with predefined visualizations are provided along with CRIBA and include representations (e.g., Fig. 5.5)

developed using the Vega-Lite grammar.

5.4 CRIBA in Action

Our experimental evaluation shows how CRIBA automates and eases the work for users when: i) explor-

ing and understanding both general and specific behaviors exhibited by ransomware samples; and ii)

comparing different families to find common and distinct patterns across them.

Ransomware Families. The experiments consider 5 Linux ransomware families, which were chosen

based on their popularity and distinct traits.

• Erebus emerged in 2016 and is known for infecting thousands of computers and servers. A noto-

rious example is the attack on the Linux infrastructure of a South Korean web hosting company in

2017 [40].

• REvil is a ransomware family discovered in 2019 that reached its peak activity in 2021. It targeted

both widely known public figures and companies like Quanta Computer, a supplier of Apple [95].

• RansomEXX is a recent ransomware targeting Linux infrastructures. The Texas Department of

Transportation, Konica Minolta, and Scottish Mental Health Charity were attacked by this malware

between 2020 and 2022 [94].

• Darkside emerged in 2020 and was used to launch a global campaign infecting targets in 15

countries andmultiple industry sectors [33]. It is known for, in 2021, targeting the Colonial Pipeline,

a company responsible for half of the fuel supply of the US East Coast [120].

• AvosLocker released a Linux variant in 2021. This family has been targeting critical infrastructures

in countries such as the US, Canada, and UK [93].

As some ransomware samples require defining the number of encryption threads and the targeted

file system directory path, we configured all samples to use 1 encryption thread and to target the dataset

discussed next. For Erebus, which does not allow specifying these two arguments, and for Darkside, which

does not allow changing the number of threads, we used their default configurations. Table 5.2 shows

the SHA256 hashes and execution commands used for each sample.

File Dataset. As in previous work [17, 80], the Impressions framework [2] was used to generate a

synthetic dataset exhibiting a statistically accurate file system image with realistic metadata and content.

The dataset, with 9.4 GiB, includes 35,418 files, with sizes ranging from 0 B to 800 MiB. Files are spread

across 3,510 directories with an average tree depth of 12 levels.

95

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

Table 5.2. SHA256 hashes and execution commands for the 5 ransomware samples analyzed with CRIBA.

Family SHA256 Command

AvosLocker
d7112a1e1c68c366c05bbede9dbe782b
b434231f84e5a72a724cc8345d8d9d13

./avos.elf 1 /app/files

RansomEXX
08113ca015468d6c29af4e4e4754c003
dacc194ce4a254e15f38060854f18867

./ransomexx.elf --threads 1 --path /app/files

REvil
3d375d0ead2b63168de86ca2649360d9
dcff75b3e0ffa2cf1e50816ec92b3b7d

./revil.elf --path /app/files --threads 1

Erebus
0b7996bca486575be15e68dba7cbd802
b1e5f90436ba23f802da66292c8a055f

./erebus.elf

Darkside
c93e6237abf041bc2530ccb510dd016e
f1cc6847d43bf023351dce2a96fdc33b

./darkside.elf --path /app/files

Darkside encrypts only specific file extensions (.vmem, .vswp, .log and .vmdk) that are not generated

with the Impressions framework. Thus, we developed a script to change the file names of some dataset

files, considering both small and large-sized files, to include these. The final dataset used in the experi-

ments has 8,267 unique file extensions. Fig. 5.2 shows the distribution of the files’ sizes and extensions

for the dataset.

 0

 1

 2

 3

 4

 5

 6

[
0
-
1
6
[

[
1
6
-
3
2
[

[
3
2
-
6
4
[

[
6
4
-
1
2
8
[

[
1
2
8
-
2
5
6
[

[
2
5
6
-
5
1
2
[

[
5
1
2
-
1
K
[

[
1
K
-
2
K
[

[
2
K
-
4
K
[

[
4
K
-
8
K
[

[
8
K
-
1
6
K
[

[
1
6
K
-
3
2
K
[

[
3
2
K
-
6
4
K
[

[
6
4
K
-
1
2
8
K
[

[
1
2
8
K
-
2
5
6
K
[

[
2
5
6
K
-
5
1
2
K
[

[
5
1
2
K
-
1
M
[

[
1
M
-
5
1
2
M
[

[
5
1
2
M
-
1
G
[

N
u

m
b

e
r

o
f

fi
le

s
 (

K
)

Size

.vmem

.vswp

.log

.vmdk
others

(a) Files’ sizes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

l
o
g

v
s
w
p

v
m
d
k

v
m
e
m

(
e
m
p
t
y
)

g
i
f

d
l
l h

h
t
m

t
x
t

c
p
p

j
p
g

e
x
e

p
d
b

l
i
b

m
p
3

p
d
f

p
s
t

w
m
a

v
h
d

p
c
h

s
j
s

y
w
r

i
j
p

t
j
l

N
u

m
b

e
r

o
f

fi
le

s
 (

K
)

Extension

(b) Files’ extensions.

Figure 5.2. Distribution of files’ size and extensions for the dataset used in CRIBA’s experiments.

Testbed Configuration. Our testbed includes two environments. The ransomware samples and

CRIBA’s SysTracer and MetricsMon are executed in a controlled environment. Namely, they run inside

a VM configured with 2 GiB of RAM, 2 CPU cores, and a disk partition of 64 GiB. The VM is deployed

on a server equipped with an 8-core Intel i9-9880H, 16 GiB of memory, and a 500 GiB SSD NVMe. The

host OS runs macOS Big Sur 11.7.6 while the guest OS runs Ubuntu 22.04 LTS with kernel 5.15.0. The

VM image is reverted to a previous (and clean) snapshot every time a ransomware sample is executed.

CRIBA’s Backend and Visualizer components, as well as the correlation algorithms, run at the analysis

environment, which consists of a separate server equipped with a 6-core Intel i5-9500, 16 GiB of memory

and a 250 GiB NVMe SSD, and running Ubuntu 20.04 LTS with kernel 5.4.0.

96

5.4. CRIBA IN ACTION

The execution time for the full analysis workflow, including the tracing, preprocessing, and loading of

traced data (using CRIBA’s DataParser), and execution of all correlation algorithms, took, on average, ≈19
mins per family.

5.4.1 General Statistics

Tables 5.3 and 5.4 show general statistics provided by CRIBA for the 5 ransomware families considered

in our experiments.

Table 5.3. Execution time, process creation, accessed files and issued syscalls statistics for the ran-
somware families.

Process Accesses Syscalls
Family

Execution
time (min) PIDs TIDs Paths Extensions Transversal Types Events Data / Metadata Storage / Network

AvosLocker 1.481 1 2 11 646 3 044 DFS 8 134 985 34.13% / 65.87% 100% / 0%
RansomEXX 3.126 1 5 85 583 19 341 DFS 9 703 575 31.99% / 68.01% 100% / 0%
REvil 8.719 12 13 39 384 8 275 DFS 9 774 007 41.83% / 58.17% 100% / 0%
Erebus 10.361 3 12 107 307 8 482 - 17 1 257 238 26.86% / 73.14% 99.96% / 0.04%
Darkside 0.386 1 6 11 244 12 DFS 19 21 070 25.06% / 74.94% 99.79% / 0.21%

Table 5.4. Top 3 syscall types issued per ransomware family.

Family
Syscall

AvosLocker RansomEXX REvil Erebus Darkside

#1
lseek

(23.942%)
lseek

(20.280%)
read

(28.385%)
read

(19.013%)
stat

(53.711%)

#2
read

(20.589%)
write

(16.340%)
lseek

(20.084%)
stat

(15.871%)
read

(10.332%)

#3
fstat

(16.755%)
read

(15.648%)
close

(14.226%)
openat
(14.671%)

writev
(10.190%)

Observation 1. Families exhibit significantly different execution times, with Darkside running in less than

1 min and Erebus taking more than 10 mins.

Observation 2. Most families use a single process, except for Erebus (3 processes) and REvil (12

processes). The number of threads ranges from 2 in AvosLocker to 13 in REvil.

Observation 3. AvosLocker and Darkside access fewer unique file system paths and file extensions

than the other samples. Erebus has the highest number of file accesses, while RansomEXX accesses

the highest number of distinct file extensions. When considering only accesses to the dataset’s files,

AvosLocker and Darkside only access ≈30% of these, while RansomEXX accesses almost 93%. REvil and

Erebus are the only samples accessing all files in the dataset.

Observation 4. Except for Erebus, all families perform a DFS to transverse the dataset’s directory tree.

This search is done by 2 threads in AvosLocker, REvil and Darkside, and 5 threads in RansomEXX. Also,

all samples access system directories besides the dataset’s ones (e.g., /usr, /proc, /dev).

97

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

Observation 5. Darkside uses a wider range of different syscall types (e.g., stat, read, writev) but
performs fewer operations in total than the other families. AvosLocker issues fewer types of syscalls, while

Erebus performs more than 1M I/O operations.

Observation 6. Most of issued syscalls are metadata-related. Namely, lseek, stat, and fstat are

widely used by all families. In Darkside, half of the total issued I/O requests correspond to stat syscalls.

Observation 7. Erebus and Darkside are the only samples issuing network-related syscalls (e.g., connect
or recvfrom). This indicates that these samples may be the only ones communicating with C&C servers.

Observation 8. For all families, the distribution of I/O load (i.e., amount of requests) per thread varies.

For instance, when considering the 13 threads created by REvil, only two do syscalls throughout the whole

execution. Moreover, as depicted in Fig. 5.3, most I/O requests are done by a single thread (TID 1814

issues 98.027% of the syscalls, while TID 1777 executes only 1.822%). The remaining threads perform

fewer I/O requests and only at the beginning of the execution (e.g., TID 1809 does 0.132% of the syscalls).

Figure 5.3. Aggregated number of operations, per syscall, for three distinct threads launched by REvil.

Takeaways. General statistics show that ransomware families exhibit different patterns in terms of

execution time, process and thread creation, and accessed files and extensions. Metadata-related

storage operations are the most predominant type of issued syscall, while network-related calls are

only issued by a few families. Most families transverse the file system in a DFS fashion.

CRIBA’s role. The aforementioned statistics were automatically computed by CRIBA, with the UN-

Ext, DsetU and Transversals algorithms, and explored through its Generic Overview and Directory

Transversal dashboards.

5.4.2 Ransom Notes

Table 5.5 shows the sequences of syscalls done for ransom notes by each ransomware family.

Observation 9. While the file name used for ransom notes changes across families, each sample reuses

the same name for all written notes, most of which use the .txt extension. In AvosLocker, no extension

is used, while Erebus creates an additional note with an .html extension.

98

5.4. CRIBA IN ACTION

Table 5.5. Syscall sequences for ransom notes per family.

Family Syscall sequence
AvosLocker README_FOR_RESTORE: OP→ST→WR→CL
RansomEXX !NEWS_FOR_STJ!.txt: ST→OP→ST→WR→CL

REvil qoxaq-readme.txt: OP→ST→WR→CL
_DECRYPT_FILE.html: OP→WR→CL→RN→OP→WR→CL

Erebus
_DECRYPT_FILE.txt: OP→WR→CL

Darkside
darkside_readme.txt: (1): ST (2): ST→OP→WR→CL

(3): ST→OP→WR→CL→ST

Observation 10. Darkside creates 274 ransom notes, while RansomEXX, REvil and Erebus create more

than 3,500. Erebus creates more ransom notes with the .html extension (8,430) than with the .txt
one (4,000).

Observation 11. While Darkside delegates the creation of ransom notes to two separate threads, the

others use only one.

Observation 12. Most families exhibit a unique sequence of syscalls for ransom notes. Contrarily,

Darkside does 3 different sequences, which is caused by having multiple threads creating these. Namely,

each thread starts by performing a stat syscall to verify if the targeted directory already contains a note,

writing a new one only if this is not the case.

Observation 13. All families perform open, write and close syscalls over each ransom note file.

Stat is also significantly used (except for Erebus), but its amount and placement, in the sequence of

syscalls issued per ransom note, varies (i.e., AvosLocker and REvil only perform stat before opening the

file, while RansomEXX performs it before and after opening the file).

Observation 14. The syscall sequence done for Erebus’s .html ransom notes includes a rename (RN)
operation. By further analyzing the arguments of the syscalls issued to these files, one observes that Ere-

bus first creates and writes a file named _DECRYPT_FILE.html. Later, it renames it to index.html,
and creates another _DECRYPT_FILE.html file, in the same folder, with the same content.

Takeaways. The 5 ransomware families share similarities regarding the creation of ransom notes,

such as reusing the same name for files placed across different directories and using almost the

same set of syscalls. The observations also show distinct patterns, such as the number of ransom

notes created by each family, the use of two distinct ransom notes by Erebus, and the different syscall

sequences performed by Darkside.

CRIBA’s role. The previous findings were obtained through CRIBA’s UNext, FSysSeq, FnGrams, and

Transversals algorithms, and by exploring their output with the File Name and Extensions, Syscall

Sequences, File Ngrams and Directory Transversal dashboards.

99

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

5.4.3 Dataset’s Files Access and Encryption

Table 5.6 shows syscall sequences done over a small (F31277.jsd.vswp) and large (F10573.bqt.vmdk)

dataset file.

Table 5.6. Syscall sequences issued per family over a small and large dataset file.

Syscall sequence
Family

F31277.jsd.vswp (≈217 KiB) F10573.bqt.vmdk (≈32 MiB)

AvosLocker
OP→ST→LS→RD→

LS→RD→LS→WR→CL→RN OP→ST→LS→RD→(LS→RD→LS→WR)x4→CL→RN
RansomEXX OP→ST→LS→RD→WR→LS→RD→LS→WR→CL→RN

REvil
OP→LS→ST→RD→LS→

WR→LS→RD→WR→CL→RN OP→LS→ST→RD→LS→WR→(LS→RD→LS→WR)x32→
LS→RD→WR→CL→RN

Erebus ST
original file: ST→RN

renamed file: ST→OP→RD→LS→RD→WR→LS→WR→
(LS→RD)x3→LS→WR→(RD→WR)x64→CL

Darkside ST ST→OP→(RD→WR)x32→CL→OP→LS→WR→CL→RN
Observation 15. The number of unique sequences of syscalls, considering all dataset files, varies from

7 (REvil) to 28 (RansomEXX). These differ depending on specific file characteristics (e.g., file size). For

instance, RansomEXX uses the same sequence for the small and the large file examples, while the other

families use different sequences. For AvosLocker and REvil, the difference is mostly on the amount of

lseek, read, and write operations done to each file.

Observation 16. By inspecting the TID associated with each sequence, one can conclude that AvosLocker,

REvil, and Erebus use 1 thread for accessing files, while Darkside uses 2 and RansomEXX uses 4. Further,

except for Erebus and Darkside, the creation of ransom notes and the access to dataset files are delegated

to distinct threads.

Observation 17. Some of the observed sequences only include the stat syscall. This suggests that

some files are not being processed (e.g., encrypted). In fact, through CRIBA, we can conclude that Erebus

accesses all dataset’s files but only processes 33.82% of these. Also, from the 30% of dataset’s files

accessed by Darkside, only 3.48% are being processed.

Observation 18. Erebus is the only sample accessing and encrypting files from all directories of the file

system, which explains the high number of accessed files (Observation 3).

Observation 19. When inspecting the offset of lseek and write requests for other sequences, one

can observe interesting patterns associated with the writing of encryption keys to infected files. Namely,

RansomEXX starts by jumping to the end of the infected file (ST→LS→RD), writing the key (WR), and then

jumping back to the beginning of the file to initiate the encryption process (LS). AvosLocker, REvil, and
Darkside only write the key after encrypting the file’s content. The latter reopens the file, jumps to its

end, and then writes the key (OP→LS→WR→CL). Erebus does not exhibit the previous file offset access

patterns, as it writes the encryption key at the beginning of files before encrypting their content [40].

100

5.4. CRIBA IN ACTION

Figure 5.4. Syscalls issued over time by RansomEXX’s encryption threads to file F10573.bqt.vmdk.

Observation 20. REvil and Erebus always read content from the /dev/urandom file before, or in be-

tween, consecutive accesses to each dataset file. The n-grams (/dev/urandom, …/F3737.vva.vmem,
/dev/urandom, …/F10573.bqt.vmdk) from REvil and (…/F10573.bqt.vmdk, /dev/urandom,
…/F10573.bqt.vmdk) from Erebus show these two patterns. Darkside also reads from the /dev/urandom
file multiple times. These accesses are probably due to the generation of randomness for creating sym-

metric encryption keys.

Observation 21. Most of the ransomware families operate directly over the original dataset file and,

after encrypting it, rename the file to add their own extension (note the RN operation at the end of

most sequences). However, Erebus starts by first renaming the original file to a random name (e.g.,

F10573.bqt.vmdk → CA2065AE397D85C1.ecrypt) and only then encrypts its content.

Observation 22. While most families add a constant file extension to encrypted files (e.g., .avoslinux
for AvosLocker, .ecrypt for Erebus), RansomEXX generates a different extension for each file, com-

posed of a constant prefix (.stj888-) concatenated with a random suffix. Interestingly, some files have

two distinct extensions (e.g., the large file has the extensions: .stj888-36acf3f1 and .stj888-
40aa97db). By observing in more detail the syscalls issued for the large file by thread, as depicted in

Fig. 5.4, it is possible to see two threads simultaneously opening, reading, writing, and renaming the same

file. This concurrent pattern can lead to data corruption and irrecoverable files.

Takeaways. The sequences of syscalls change according to the targeted files and the ransomware

family. Different patterns are also observed regarding the timing and placement of encryption keys

at infected files and for the extensions chosen by each family when renaming encrypted files. Inter-

estingly, REvil, Erebus, and Darkside use /dev/urandom to generate randomness. In RansomEXX,

two threads are concurrently encrypting the same file, a pattern that may lead to corrupted files.

CRIBA’s role. Results were obtained with the UNext, DsetU, FSysSeq, FnGram and Transversals al-

gorithms, and observed with the Syscall Sequences, File Ngrams, File Offsets and Directory Transver-

sal dashboards.

101

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

5.4.4 Dataset’s Files Selection and Evasion Techniques

Fig. 5.5 shows the offsets accessed when reading and writing to the large file (i.e., F10573.bqt.vmdk).

Figure 5.5. File offsets accessed per family when reading and writing file F10573.bqt.vmdk.

Observation 23. REvil and Erebus read and overwrite the full file’s content (i.e., offsets are fully ac-

cessed across the whole file ≈32.33 MiB). Darkside encrypts most of the file’s content but leaves the last

(incomplete) block in plaintext. Also, REvil and Darkside use blocks of 1 MiB to read and write the file,

while Erebus uses blocks of 512 KiB.

Observation 24. For every 10.78 MiB of content belonging to a given file, AvosLocker only encrypts 0.98

MiB. For the F10573.bqt.vmdk file, RansomEXX only encrypts the first 1 MiB block. However, CRIBA

shows that the latter behavior changes across files and, for other files, this sample sparsely encrypts

multiple 1 MiB blocks across the entire file.

Observation 25. Observations 3 and 17 show that, except for REvil, all other families avoid encrypting

the full dataset. When correlating the files accessed by Darkside with the dataset’s file sizes and extensions,

we observe that it only processes 4 types of extensions (i.e., .vmem, .vswp, .log and .vmdk) and that

only considers files with a size larger than 1 MiB, amounting to 381 files.

Observation 26. As depicted in Fig. 5.6, Darkside and RansomEXX have the highest bursts of CPU

usage (94% and 86%, respectively), but for a short time, given the multiple threads doing data encryption.

REvil exhibits a CPU usage of ≈55%, for a larger time period, given its single thread encrypting the full

dataset’s content.

102

5.4. CRIBA IN ACTION

Figure 5.6. CPU usage per ransomware family.

Takeaways. Only REvil accesses all dataset files and overwrites their full content. The other families

target specific file extensions (e.g., Darkside) and/or do not process the full content of files (e.g.,

AvosLocker). These patterns enable faster execution and lower CPU usage and are used to deceive

detection tools (see §5.1).

CRIBA’s role. DsetU and UNExt algorithms, along with the File Offsets, Directory Transversals, and

Resource Usage dashboards were used for the previous observations.

5.4.5 Families Similarity and Summary

Fig. 5.7 highlights the similarity across families for the type of syscalls done and the file extensions and

names accessed. These observations were obtained through CRIBA’s TfidfFam algorithm and the Families

Comparison dashboard.

Figure 5.7. Heatmaps comparing the families regarding the type of issued syscalls, and accessed file
extensions and names.

For the type of syscalls, Darkside is the most unique sample, sharing less than 22% of similarity with

AvosLocker and REvil, and less than 55% with Erebus and RansomEXX. This is due to Darkside using more

types of syscalls, including network calls (Observations 5 and 7).

When looking at accessed file extensions, Erebus is the sample with the highest deviation, being only

42.8% similar to REvil. This is explained by its distinctive behavior of encrypting files only after adding the

.ecrypt extension (Observation 21), and by the number of accesses to /dev/urandom, which does not

have an extension (Observation 20).

103

CHAPTER 5. COMPREHENSIVE ANALYSIS OF CRYPTOGRAPHIC RANSOMWARE’S I/O BEHAVIOR

As for file names, the families are very dissimilar, with only Erebus, REvil, and Darkside sharing

similarities (94.5% between the first two and up to 45.9% with the latter). The similarity between these 3

families results from their accesses to /dev/urandom (Observation 20).

The results discussed in this section show that CRIBA provides comprehensive analysis and com-

parison of cryptographic ransomware samples. Also, it shows that ransomware analyses must consider

different features to provide a clear understanding of the samples’ intrinsic and complex behaviors.

5.5 Related Work

This section discusses and compares existing work on ransomware analysis with CRIBA.

Behavior Analysis Sandboxes. Some solutions provide a controlled environment for running malware

samples and extracting their behavioral information [14, 47, 71]. These tools monitor the memory state,

network traffic, and API calls done by samples and generate a report highlighting their main (and sus-

picious) activities. Raw logs are also outputted so that users can further analyze specific features not

included in the report.

Leaving the parsing, analysis, and visualization of information contained in raw logs for users is a

complex and time-consuming endeavor. Thus, CRIBA can complement these tools with the mechanisms

for automating the aforementioned tasks. For instance, security analysts can use tools like Cuckoo Sand-

box [47] to perform a first analysis of multiple malware and benign applications. Based on their reports,

they can select the samples that need a more in-depth analysis and use our tool to ease such a process.

Ransomware Detection Tools. Solutions focused on ransomware detection also rely on dynamic anal-

ysis for understanding the key features that identify ransomware samples exhibiting malicious activity [7,

25, 27, 57, 65, 104, 105, 113]. These tools typically resort to the aforementioned analysis sandboxes to

collect information from the samples’ execution and then use feature selection techniques to extract the

most relevant features for malware detection [6, 66].

As discussed in VizMal [34], since the purpose of detection tools is to classify applications as malign

or benign, they do not provide further information for exploring and understanding the internal behavior

of ransomware samples. VizMal introduces a new visualization to highlight potential malicious behavior

at specific portions of the execution traces of Android ransomware samples. Nonetheless, as VizMal is

limited to a single visualization, it cannot provide comprehensive information about ransomware’s I/O

behavior.

CRIBA is not a tool for ransomware detection, instead, its main goal is to provide an integrated tracing

and analysis pipeline optimized for collecting, exploring, and visualizing a vast amount of I/O information

about ransomware samples. With this information and the aid of custom correlation algorithms and visu-

alizations, CRIBA automates the observation of interesting I/O patterns for ransom note creation (§5.4.2),

data encryption (§5.4.3) and evasion techniques (§5.4.4) used by ransomware samples. Also, it enables

104

5.6. SUMMARY AND DISCUSSION

the comparison of different samples from either the same or different families while pinpointing their main

similarities and differences (§5.4.5).

5.6 Summary and Discussion

We present CRIBA, a tool for simplifying and automating the exploration, analysis, and comparison of I/O

patterns for Linux cryptographic ransomware. CRIBA supports non-intrusive and comprehensive collection

of I/O information from ransomware samples and combines it with an integrated analysis and visualization

pipeline. The latter is enhanced with 6 custom correlation algorithms and different predefined dashboards.

As shown in our experimental study, these features are key to: i) automate the analysis of ransomware

families; ii) understand complex and intrinsic behavior from each sample; iii) and pinpoint common and

distinct traits across families.

Notably, CRIBA also highlights the usefulness of DIO. By building upon the latter, while including new

tailored algorithms and visualizations, it shows that DIO’s modular and flexible design is key to efficiently

diagnosing a wide range of use cases.

105

6

Conclusion

I/O diagnosis tools play a key role in the development and maintenance of data-centric applications and

storage systems. With these, one can design better solutions, i.e., that are more dependable, secure and

efficient. In this thesis, we defend that existing tools can be further improved to: i) simplify the amount

of manual work done by users; ii) provide comprehensive details about I/O requests; iii) be adaptable to

the different analysis requirements that users may have. To achieve such a goal, we propose three novel

solutions that advance the current state of the art on this research topic.

When diagnosing distributed systems, one must consider their multiple and heterogeneous compo-

nents that may be deployed across different servers. These components communicate with each other

through the network and issue requests to local or remote storage systems to persist data. Knowing these

I/O interactions is key to better understanding complex distributed systems. This need is addressed by

the work described in Chapter 3, where we introduce CaT, a novel framework for collecting and analyzing

storage and network I/O requests of distributed systems. Contrary to existing solutions, CaT follows a

content-aware approach that allows observing how data flows across components, which we show to be

useful for uncovering data corruption and adulteration issues. Further, our solution addresses multiple

challenges linked to the diagnosis process. To non-intrusively intercept applications’ I/O requests, CaT

relies on two low-level tracing technologies (Strace and eBPF) that provide different tradeoffs between trac-

ing accuracy, imposed performance overhead and resource usage. Moreover, it employs summarization

techniques to persist digests of requests’ content instead of their full data to reduce the amount of storage

space required for persisting collected data. Finally, it leverages Falcon [82] for inferring the causality

of distributed I/O events while proposing a novel algorithm based on similarity estimation techniques to

automatically correlate the content of these events and depict their similarities.

Although CaT advances the state of the art for distributed systems’ diagnosis, it is still purpose-specific.

When exploring multiple I/O behavior aspects (e.g., correctness, dependability and performance) of data-

centric applications, one requires general-purpose and flexible diagnosis tools that support a broader range

of analyses and are suitable for detecting multiple issues (e.g., I/O contention, data loss). We address this

challenge in Chapter 4 with DIO, a generic tool for observing and diagnosing the I/O interactions between

applications and in-kernel POSIX storage systems. DIO further explores eBPF’s potential for non-intrusively

106

6.1. FUTURE WORK

intercepting applications’ I/O requests, and provides a set of tracing functionalities that enable users to

narrow or broaden the amount and detail of collected data. Such flexibility allows users to configure our

tool according to their diagnosis requirements and better balance the data collection’s accuracy, perfor-

mance overhead and resource usage tradeoffs. Moreover, DIO’s diagnosis pipeline includes customizable

components for data analysis and visualization, allowing users to explore, query and execute different

types of analysis over the same set of collected data. The analysis’s outputs are presented through visual

representations in near real-time. We showcase the applicability and capabilities of DIO, for debugging,

validating and exploring both known and unknown I/O patterns through the diagnosis of four distinct

production-level applications.

To further demonstrate how one can leverage and extend DIO to perform specialized I/O diagnosis,

in Chapter 5 we introduce CRIBA, a practical framework for studying common and distinct I/O patterns

of cryptographic ransomware families. The original pipeline from DIO provides the means to collect and

index comprehensive data from ransomware samples’ execution. Then, through novel correlation algo-

rithms and visual dashboards, CRIBA automates the analysis and visualization of specific behaviors of

cryptographic ransomware, such as the creation of ransom notes, the encryption of files, and the evasion

techniques used by these to avoid detection mechanisms. Through a study of the I/O behavior of five cryp-

tographic ransomware families, we show that CRIBA provides insightful details about each sample. Such

knowledge can be leveraged by security analysts to better understand ransomware attacks and enhance

detection tools to accompany their constant evolution.

With the contributions presented in this thesis, we demonstrate that it is possible to further ease

the diagnosis of applications’ I/O for users. We believe that comprehensive, flexible and customizable

diagnosis pipelines, such as the ones proposed in this work, are key for building applications and systems

that are more robust and efficient.

6.1 Future Work

The work done under this thesis opens up several research directions that can be addressed in future

work.

Explore new diagnosis scopes. The use cases presented in Chapters 4 and 5 demonstrate DIO’s

capabilities for uncovering unknown patterns and I/O issues. It would be interesting to extend DIO’s

scope and explore other applications. For instance, it would be interesting to merge CaT’s distributed

analysis capabilities (e.g., causal order and content similarity inference) into the near-real-time analysis

pipeline from DIO and study the latter’s applicability for diagnosing distributed applications and systems.

Leverage traced data for improving ML models. Given the comprehensive data collected by DIO

and CRIBA, it would be interesting to provide an automated framework that enables developers to take

advantage of this information for designing, training and testing new ML-based detection models.

Taking the ransomware detection goal as example, it would be useful to leverage the knowledge

107

CHAPTER 6. CONCLUSION

provided by CRIBA to build, test, and enhance new detection models and even compare the accuracy of

different models. Further, the same idea could be applied to other fields such as failure detection and

performance modeling.

DaaS: Diagnosis-as-a-Service. By building upon the flexible and customizable design of DIO, one

could further extend its modularity by creating common APIs that would ease the integration of various

technologies and strategies for data collection, analysis, and visualization.

The first step would be to support distinct data collection modules that, as in CaT’s design, use spe-

cific technologies and capture varied data but are all integrated within the same pipeline. These modules

could use different tracing technologies (e.g., Strace, eBPF, LTTng, kernel modules), intercept requests

at different levels (e.g., application, middleware, OS), and capture varied information (e.g., network re-

quests, storage requests, resource consumption statistics). To efficiently store, index and query the het-

erogeneous data (e.g., system metrics, timestamped syscalls and corresponding arguments) collected by

the aforementioned modules, the analysis pipeline would require support for multiple storage backends.

These multiple backends would also ease the integration of different analysis algorithms (e.g., ML-based,

graph-based, solvers), and visualization frameworks (e.g., Kibana, Grafana, ShiViz) in the same pipeline.

A general-purpose service, allowing users to choose the best option(s) for their data collection, analysis,

and visualization tasks, would eliminate the need for combining several tools and running the diagnosis

process multiple times. However, to avoid overwhelming users with extensive configurations, it would be

important to automate the latter process with, for instance, ML-based approaches that would aid in the

choice of the best configurations according to the desired purpose(s) of diagnosis.

108

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,

Rajat Monga, Sherry Moore, Derek Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: A System for Large-Scale

Machine Learning”. In: 12th USENIX Symposium on Operating Systems Design and Implementa-

tion. USENIX, 2016, pp. 265–283. url: https://www.usenix.org/conference/osdi1
6/technical-sessions/presentation/abadi.

[2] Nitin Agrawal, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. “Generating Realistic

Impressions for File-System Benchmarking”. In: ACM Transactions on Storage 5.4 (2009), pp. 1–

30. doi: 10.1145/1629080.1629086.

[3] Waseem Ahmed and Yong Wei Wu. “A Survey on Reliability in Distributed Systems”. In: Journal

of Computer and System Sciences 79.8 (2013), pp. 1243–1255. doi: 10.1016/j.jcss.201
3.02.006.

[4] Rohit Aich. “Efficient Audit Data Collection for Linux”. PhD thesis. Stony Brook University, 2021.

[5] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. “Re-Animator: Versatile High-Fidelity Storage-

System Tracing and Replaying”. In: 13th ACM International Systems and Storage Conference.

ACM, 2020, pp. 61–74. doi: 10.1145/3383669.3398276.

[6] P Mohan Anand, PV Sai Charan, and Sandeep K Shukla. “A Comprehensive API Call Analysis

for Detecting Windows-Based Ransomware”. In: IEEE International Conference on Cyber Security

and Resilience. IEEE, 2022, pp. 337–344. doi: 10.1109/CSR54599.2022.9850320.

[7] Niccolò Andronio, Stefano Zanero, and Federico Maggi. “HelDroid: Dissecting and Detecting Mo-

bile Ransomware”. In: International Symposium on Research in Attacks, Intrusions and Defenses.

Vol. 9404. Springer, 2015, pp. 382–404. doi: 10.1007/978-3-319-26362-5_18.

[8] Elasticsearch B.V. Elasticsearch: The Heart of the Free and Open Elastic Stack. Accessed on

October, 2023. url: https://www.elastic.co/elasticsearch/.

109

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/1629080.1629086
https://doi.org/10.1016/j.jcss.2013.02.006
https://doi.org/10.1016/j.jcss.2013.02.006
https://doi.org/10.1145/3383669.3398276
https://doi.org/10.1109/CSR54599.2022.9850320
https://doi.org/10.1007/978-3-319-26362-5_18
https://www.elastic.co/elasticsearch/

BIBLIOGRAPHY

[9] Elasticsearch B.V. Kibana: Your Window Into the Elastic Stack. Accessed on October, 2023. url:

https://www.elastic.co/kibana/.

[10] Elasticsearch B.V. Logstash: Centralize, Transform & Stash Your Data. Accessed on October,

2023. url: https://www.elastic.co/logstash/.

[11] Elasticsearch B.V. Metricbeat: Lightweight Shipper for Metrics. Accessed on October, 2023. url:

https://www.elastic.co/beats/metricbeat.

[12] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhiramoorthi, and

Diego Didona. “SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. In:

USENIX Annual Technical Conference. USENIX, 2019, pp. 753–766. url: https : / / www .
usenix.org/conference/atc19/presentation/balmau.

[13] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. “Using Magpie for Request

Extraction and Workload Modelling”. In: USENIX Symposium on Operating Systems Design and

Implementation. Vol. 4. 2004, pp. 18–18. url: https://www.usenix.org/legacy/
event/osdi04/tech/full_papers/barham/barham_html/.

[14] Brian Baskin. Noriben Malware Analysis Sandbox. Accessed on October, 2023. url: https :
//github.com/Rurik/Noriben.

[15] Mick Bauer. “Paranoid Penguin: An Introduction to Novell AppArmor”. In: Linux Journal 2006.148

(2006), p. 13. url: https://dl.acm.org/doi/fullHtml/10.5555/1149826.114983
9.

[16] Eduardo Berrueta, Daniel Morato, Eduardo Magaña, and Mikel Izal. “A Survey on Detection Tech-

niques for Cryptographic Ransomware”. In: IEEE Access 7 (2019), pp. 144925–144944. doi:

10.1109/ACCESS.2019.2945839.

[17] Eduardo Berrueta, Daniel Morato, Eduardo Magaña, and Mikel Izal. “Open Repository for the

Evaluation of Ransomware Detection Tools”. In: IEEE Access 8 (2020), pp. 65658–65669. doi:

10.1109/ACCESS.2020.2984187.

[18] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross, Sarp Oral,

and Suren Byna. “I/O Bottleneck Detection and Tuning: Connecting the Dots using Interactive Log

Analysis”. In: 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop. IEEE, 2021,

pp. 15–22. doi: 10.1109/PDSW54622.2021.00008.

[19] Ashish Bijlani and Umakishore Ramachandran. “Extension Framework for File Systems in User

space”. In: USENIX Annual Technical Conference. USENIX, 2019, pp. 121–134. url: https:
//www.usenix.org/conference/atc19/presentation/bijlani.

[20] Ross Brewer. “Ransomware Attacks: Detection, Prevention and Cure”. In: Network Security 2016.9

(2016), pp. 5–9. doi: 10.1016/S1353-4858(16)30086-1.

110

https://www.elastic.co/kibana/
https://www.elastic.co/logstash/
https://www.elastic.co/beats/metricbeat
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/barham/barham_html/
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/barham/barham_html/
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://dl.acm.org/doi/fullHtml/10.5555/1149826.1149839
https://dl.acm.org/doi/fullHtml/10.5555/1149826.1149839
https://doi.org/10.1109/ACCESS.2019.2945839
https://doi.org/10.1109/ACCESS.2020.2984187
https://doi.org/10.1109/PDSW54622.2021.00008
https://www.usenix.org/conference/atc19/presentation/bijlani
https://www.usenix.org/conference/atc19/presentation/bijlani
https://doi.org/10.1016/S1353-4858(16)30086-1

BIBLIOGRAPHY

[21] Andrei Z. Broder. “On the Resemblance and Containment of Documents”. In: Compression and

Complexity of Sequences 1997. IEEE, 1997, pp. 21–29. doi: 10.1109/SEQUEN.1997.6669
00.

[22] E Burgener and J Rydning. “High Data Growth and Modern Applications Drive New Storage Re-

quirements in Digitally Transformed Enterprises”. In: IDC Report: A White Paper, sponsored by Dell

Technologies and NVIDIA (2022). url: https://www.delltechnologies.com/asset/
en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-
digital-enterprise.pdf.

[23] “Chapter 4 - Source code Analysis and Instrumentation”. In: Embedded Computing for High Per-

formance. Ed. by João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. Morgan

Kaufmann, 2017, pp. 99–135. isbn: 978-0-12-804189-5. doi: 10.1016/B978-0-12-80418
9-5.00004-1.

[24] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. “Pinpoint: Problem

Determination in Large, Dynamic Internet Services”. In: 2002 International Conference on De-

pendable Systems and Networks. IEEE, 2002, pp. 595–604. doi: 10.1109/DSN.2002.1029
005.

[25] Qian Chen and Robert A Bridges. “Automated Behavioral Analysis of Malware: A Case Study

of WannaCry Ransomware”. In: 16th IEEE International Conference on Machine Learning and

Applications. IEEE, 2017, pp. 454–460. doi: 10.1109/ICMLA.2017.0-119.

[26] Qian Chen, Sheikh Rabiul Islam, Henry Haswell, and Robert A Bridges. “Automated Ransomware

Behavior Analysis: Pattern Extraction and Early Detection”. In: 2nd International Conference on

Science of Cyber Security. Springer, 2019, pp. 199–214. doi: 10.1007/978-3-030-34637-
9_15.

[27] Christopher Jun-Wen Chew, Vimal Kumar, Panos Patros, and Robi Malik. “ESCAPADE: Encryption-

Type-Ransomware: System Call Based Pattern Detection”. In: 14th International Conference on

Network and System Security. Springer, 2020, pp. 388–407. doi: 10.1007/978-3-030-657
45-1_23.

[28] Shigeru Chiba. “Javassist: Java Bytecode Engineering Made Simple”. In: Java Developer’s Journal

9.1 (2004).

[29] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. “Bench-

marking Cloud Serving Systems with YCSB”. In: 1st ACM Symposium on Cloud Computing. ACM,

2010, pp. 143–154. doi: 10.1145/1807128.1807152.

[30] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: Cryptology ePrint Archive (2016).

url: https://eprint.iacr.org/2016/086.

111

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
https://doi.org/10.1016/B978-0-12-804189-5.00004-1
https://doi.org/10.1016/B978-0-12-804189-5.00004-1
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1109/ICMLA.2017.0-119
https://doi.org/10.1007/978-3-030-34637-9_15
https://doi.org/10.1007/978-3-030-34637-9_15
https://doi.org/10.1007/978-3-030-65745-1_23
https://doi.org/10.1007/978-3-030-65745-1_23
https://doi.org/10.1145/1807128.1807152
https://eprint.iacr.org/2016/086

BIBLIOGRAPHY

[31] Marco Dantas, Diogo Leitão, Cláudia Correia, Ricardo Macedo, Weijia Xu, and João Paulo. “MONARCH:

Hierarchical Storage Management for Deep Learning Frameworks”. In: 2021 IEEE International

Conference on Cluster Computing. IEEE, 2021, pp. 657–663. doi: 10.1109/Cluster48925
.2021.00097.

[32] Houssem Daoud and Michel R Dagenais. “Performance Analysis of Distributed Storage Clusters

Based on Kernel and Userspace Traces”. In: Software Practice and Experience 51.1 (2021),

pp. 5–24. doi: 10.1002/spe.2889.

[33] DarkSide Ransomware as a Service (RaaS). Accessed on October, 2023. url: https://www.
state.gov/darkside-ransomware-as-a-service-raas/.

[34] Andrea De Lorenzo, Fabio Martinelli, Eric Medvet, Francesco Mercaldo, and Antonella Santone.

“Visualizing the Outcome of Dynamic Analysis of Android Malware with VizMal”. In: Journal of

Information Security and Applications 50 (2020), p. 102423. doi: 10.1016/j.jisa.2019.1
02423.

[35] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Communications of the ACM 56.2

(2013), pp. 74–80. doi: 10.1145/2408776.2408794.

[36] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar, Nipun Arora, Cristian Lumezanu,

Jianwu Xu, Bo Zong, Hui Zhang, Guofei Jiang, and Latifur Khan. “LogLens: A Real-Time Log Anal-

ysis System”. In: 38th International Conference on Distributed Computing Systems. IEEE, 2018,

pp. 1052–1062. doi: 10.1109/ICDCS.2018.00105.

[37] Mathieu Desnoyers and Michel R Dagenais. “The LTTng Tracer: A Low Impact Performance

and Behavior Monitor for GNU/Linux”. In: Ottawa Linux Symposium. Vol. 2006. Citeseer, 2006,

pp. 209–224. url: https : / / citeseerx . ist . psu . edu / document ? repid = rep1
&type=pdf&doi=355ac65470c38333b26d55b7c8493d93c419cd2e#page=209.

[38] Jeff Dileo and Andy Olsen. eBPF Adventures: Fiddling with the Linux Kernel and Unix Domain

Sockets. Accessed on October, 2023. url: https://www.nccgroup.com/us/about-
us/newsroom-and-events/blog/2019/march/ebpf-adventures-fiddling-
with-the-linux-kernel-and-unix-domain-sockets/#case-study-sniffing-
frida-traffic.

[39] eBPF Safety. Accessed on October, 2023. url: https://ebpf.io/what-is-ebpf/#ebpf-
safety.

[40] Erebus Resurfaces as Linux Ransomware. Accessed on October, 2023. url: https://www.
trendmicro.com/en%5C%5Fse/research/17/f/erebus-resurfaces-as-linux-
ransomware.html.

112

https://doi.org/10.1109/Cluster48925.2021.00097
https://doi.org/10.1109/Cluster48925.2021.00097
https://doi.org/10.1002/spe.2889
https://www.state.gov/darkside-ransomware-as-a-service-raas/
https://www.state.gov/darkside-ransomware-as-a-service-raas/
https://doi.org/10.1016/j.jisa.2019.102423
https://doi.org/10.1016/j.jisa.2019.102423
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/ICDCS.2018.00105
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=355ac65470c38333b26d55b7c8493d93c419cd2e#page=209
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=355ac65470c38333b26d55b7c8493d93c419cd2e#page=209
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2019/march/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/#case-study-sniffing-frida-traffic
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2019/march/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/#case-study-sniffing-frida-traffic
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2019/march/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/#case-study-sniffing-frida-traffic
https://www.nccgroup.com/us/about-us/newsroom-and-events/blog/2019/march/ebpf-adventures-fiddling-with-the-linux-kernel-and-unix-domain-sockets/#case-study-sniffing-frida-traffic
https://ebpf.io/what-is-ebpf/#ebpf-safety
https://ebpf.io/what-is-ebpf/#ebpf-safety
https://www.trendmicro.com/en%5C%5Fse/research/17/f/erebus-resurfaces-as-linux-ransomware.html
https://www.trendmicro.com/en%5C%5Fse/research/17/f/erebus-resurfaces-as-linux-ransomware.html
https://www.trendmicro.com/en%5C%5Fse/research/17/f/erebus-resurfaces-as-linux-ransomware.html

BIBLIOGRAPHY

[41] Tânia Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela, João Paulo, José Pereira, and

Danny Harnik. “TrustFS: An SGX-Enabled Stackable File System Framework”. In: 38th Interna-

tional Symposium on Reliable Distributed Systems Workshops. IEEE, 2019, pp. 25–30. doi: 10
.1109/SRDSW49218.2019.00012.

[42] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. “CAT: Content-Aware Tracing and

Analysis for Distributed Systems”. In: 22nd International Middleware Conference. ACM, 2021,

pp. 223–235. doi: 10.1145/3464298.3493396.

[43] Facebook. RocksDB: A Persistent Key-value Store for Fast Storage Environments. Accessed on

October, 2023. url: https://rocksdb.org.

[44] Fluent Bit: An End to End Observability Pipeline. Accessed on October, 2023. url: https://
fluentbit.io.

[45] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. “X-Trace: A Per-

vasive Network Tracing Framework”. In: 4th Symposium on Networked Systems Design & Imple-

mentation. USENIX, 2007, pp. 271–284. url: http://www.usenix.org/events/nsdi07
/tech/fonseca.html.

[46] Apache Software Foundation. Apache Hadoop. Accessed on October, 2023. url: https://
hadoop.apache.org.

[47] Cuckoo Foundation. Cuckoo: Automated Malware Analysis. Accessed on October, 2023. url:

https://cuckoosandbox.org.

[48] Guillaume Fournier, Sylvain Afchain, and Sylvain Baubeau. “Runtime Security Monitoring with

eBPF”. In: 17th SSTIC Symposium sur la Sécurité des Technologies de l’Information et de la Com-

munication. 2021. url: https://www.sstic.org/media/SSTIC2021/SSTIC-actes/
runtime_security_with_ebpf/SSTIC2021-Article-runtime_security_with_
ebpf-fournier_afchain_baubeau.pdf.

[49] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. “Redundancy Does Not Imply Fault Tolerance: Analysis of Distributed Storage Reactions

to File-System Faults”. In: ACM Transactions on Storage 13.3 (2017), pp. 1–33. doi: 10.1145
/3125497.

[50] Robin Gassais, Naser Ezzati-Jivan, Jose M Fernandez, Daniel Aloise, and Michel R Dagenais.

“Multi-level Host-based Intrusion Detection System for Internet of Things”. In: Journal of Cloud

Computing 9 (2020), pp. 1–16. doi: 10.1186/s13677-020-00206-6.

[51] Mohamad Gebai and Michel R. Dagenais. “Survey and Analysis of Kernel and Userspace Tracers

on Linux: Design, Implementation, and Overhead”. In: ACM Computing Surveys 51.2 (2018),

pp. 1–33. doi: 10.1145/3158644.

113

https://doi.org/10.1109/SRDSW49218.2019.00012
https://doi.org/10.1109/SRDSW49218.2019.00012
https://doi.org/10.1145/3464298.3493396
https://rocksdb.org
https://fluentbit.io
https://fluentbit.io
http://www.usenix.org/events/nsdi07/tech/fonseca.html
http://www.usenix.org/events/nsdi07/tech/fonseca.html
https://hadoop.apache.org
https://hadoop.apache.org
https://cuckoosandbox.org
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/runtime_security_with_ebpf/SSTIC2021-Article-runtime_security_with_ebpf-fournier_afchain_baubeau.pdf
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/runtime_security_with_ebpf/SSTIC2021-Article-runtime_security_with_ebpf-fournier_afchain_baubeau.pdf
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/runtime_security_with_ebpf/SSTIC2021-Article-runtime_security_with_ebpf-fournier_afchain_baubeau.pdf
https://doi.org/10.1145/3125497
https://doi.org/10.1145/3125497
https://doi.org/10.1186/s13677-020-00206-6
https://doi.org/10.1145/3158644

BIBLIOGRAPHY

[52] Wael H. Gomaa and Aly A. Fahmy. “A Survey of Text Similarity Approaches”. In: International

Journal of Computer Applications 68.13 (2013), pp. 13–18. doi: 10.5120/11638-7118.

[53] S. Halim and F. Halim. Competitive Programming 3: The New Lower Bound of Programming

Contests. 3rd. Lulu.com, 2013. doi: 10.15388/ioi.2020.14.

[54] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and Abdullah Mueen.

“Logmine: Fast pattern recognition for log analytics”. In: 25th ACM International on Conference

on Information and Knowledge Management. ACM, 2016, pp. 1573–1582. doi: 10.1145/298
3323.2983358.

[55] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. “Towards Automated Log Parsing

for Large-Scale Log Data Analysis”. In: IEEE Transactions on Dependable and Secure Computing

15.6 (2017), pp. 931–944. doi: 10.1109/TDSC.2017.2762673.

[56] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R Lyu. “A Survey on

Automated Log Analysis for Reliability Engineering”. In: ACM Computing Surveys 54.6 (2021),

pp. 1–37. doi: 10.1145/3460345.

[57] Dorjan Hitaj, Giulio Pagnotta, Fabio De Gaspari, Lorenzo De Carli, and Luigi V Mancini. “Minerva:

A File-Based Ransomware Detector”. In: arXiv preprint (2023). doi: 10.48550/arXiv.2301
.11050.

[58] Chris Hunt. chrahunt/strace-parser. Accessed on October, 2023. url: https://github.com/
chrahunt/strace-parser.

[59] Steve Huss-Lederman, Bill Gropp, Anthony Skjellum, Andrew Lumsdaine, Bill Saphir, Jeff Squyres,

et al. “MPI-2: Extensions to the message passing interface”. In: University of Tennessee (1997).

url: https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-
report-2.0-sf/mpi2-report.htm.

[60] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors: Towards Removing the Curse

of Dimensionality”. In: 30th Symposium on Theory of Computing. ACM, 1998, pp. 604–613. doi:

10.1145/276698.276876.

[61] DPDK Intel. Data Plane Development Kit. Accessed on October, 2023. url: https://www.
dpdk.org.

[62] Jaeger: Open Source, End-to-End Distributed Tracing. Accessed on October, 2023. url: https:
//www.jaegertracing.io.

[63] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain. “A Survey and

Comparison of Relational and Non-relational Database”. In: International Journal of Engineering

Research & Technology 1.6 (2012), pp. 1–5. issn: 2278-0181.

114

https://doi.org/10.5120/11638-7118
https://doi.org/10.15388/ioi.2020.14
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1109/TDSC.2017.2762673
https://doi.org/10.1145/3460345
https://doi.org/10.48550/arXiv.2301.11050
https://doi.org/10.48550/arXiv.2301.11050
https://github.com/chrahunt/strace-parser
https://github.com/chrahunt/strace-parser
https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-report.htm
https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-report.htm
https://doi.org/10.1145/276698.276876
https://www.dpdk.org
https://www.dpdk.org
https://www.jaegertracing.io
https://www.jaegertracing.io

BIBLIOGRAPHY

[64] Devki Nandan Jha, Graham Lenton, James Asker, David Blundell, and David Wallom. “Holistic

Runtime Performance and Security-aware Monitoring in Public Cloud Environment”. In: 22nd IEEE

International Symposium on Cluster, Cloud and Internet Computing. IEEE. 2022, pp. 1052–1059.

doi: 10.1109/CCGrid54584.2022.00128.

[65] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William K Robertson, and Engin Kirda. “UNVEIL: A

Large-Scale, Automated Approach to Detecting Ransomware”. In: 25th USENIX Security Sympo-

sium. USENIX, 2016. url: https://www.usenix.org/conference/usenixsecurity1
6/technical-sessions/presentation/kharaz.

[66] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda. “Cutting the

Gordian Knot: A Look Under the Hood of Ransomware Attacks”. In: 12th International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2015, pp. 3–24.

doi: 10.1007/978-3-319-20550-2_1.

[67] Seong Jo Kim, Seung Woo Son, Wei-keng Liao, Mahmut Kandemir, Rajeev Thakur, and Alok

Choudhary. “IOPin: Runtime Profiling of Parallel I/O in HPC Systems”. In: 2012 SC Companion:

High Performance Computing, Networking Storage and Analysis. IEEE. 2012, pp. 18–23. doi:

10.1109/SC.Companion.2012.14.

[68] Iman Kohyarnejadfard, Daniel Aloise, Michel R Dagenais, and Mahsa Shakeri. “A Framework for

Detecting System Performance Anomalies Using Tracing Data Analysis”. In: Entropy 23.8 (2021),

p. 1011. doi: 10.3390/e23081011.

[69] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based Learning Applied

to Document Recognition”. In: IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[70] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. “Tales of the Tail: Hardware,

OS, and Application-Level Sources of Tail Latency”. In: ACM Symposium on Cloud Computing.

ACM, 2014, pp. 1–14. doi: 10.1145/2670979.2670988.

[71] Limon - Sandbox for Analyzing Linux Malwares. Accessed on October, 2023. url: https://
github.com/monnappa22/Limon.

[72] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven

Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation”. In: ACM SIGPLAN Notices 40.6 (2005), pp. 190–200. doi:

10.1145/1064978.1065034.

[73] Matti Lyra. mattilyra/lsh. Accessed on October, 2023. url: https://github.com/mattilyra/
lsh.

[74] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot Tracing: Dynamic Causal Monitoring

for Distributed Systems”. In: 25th Symposium on Operating Systems Principles. ACM, 2015,

pp. 378–393. doi: 10.1145/2815400.2815415.

115

https://doi.org/10.1109/CCGrid54584.2022.00128
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://doi.org/10.1007/978-3-319-20550-2_1
https://doi.org/10.1109/SC.Companion.2012.14
https://doi.org/10.3390/e23081011
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/2670979.2670988
https://github.com/monnappa22/Limon
https://github.com/monnappa22/Limon
https://doi.org/10.1145/1064978.1065034
https://github.com/mattilyra/lsh
https://github.com/mattilyra/lsh
https://doi.org/10.1145/2815400.2815415

BIBLIOGRAPHY

[75] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot Tracing: Dynamic Causal Monitoring

for Distributed Systems”. In: ACM Transactions on Computer Systems 35.4 (2018), pp. 1–28.

doi: 10.1145/3208104.

[76] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture for User-level

Packet Capture”. In: Winter 1993 USENIX Conference. Vol. 46. USENIX, 1993, pp. 259–269.

url: https://vodun.org/papers/net-papers/van_jacobson_the_bpf_packet_
filter.pdf.

[77] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture for User-level

Packet Capture”. In: Winter 1993 USENIX Conference. Vol. 46. USENIX, 1993, pp. 259–269. url:

https://www.usenix.org/legacy/publications/library/proceedings/sd93
/mccanne.pdf.

[78] Alexandre Montplaisir, Naser Ezzati-Jivan, Florian Wininger, and Michel Dagenais. “Efficient Model

to Query and Visualize the System States Extracted from Trace Data”. In: 4th International Con-

ference on Runtime Verification. Springer, 2013, pp. 219–234. doi: 10.1007/978-3-642-4
0787-1_13.

[79] Alexandre Montplaisir-Gonçalves, Naser Ezzati-Jivan, Florian Wininger, and Michel R Dagenais.

“State History Tree: An Incremental Disk-Based Data Structure for Very Large Interval Data”. In:

2013 International Conference on Social Computing. IEEE, 2013, pp. 716–724. doi: 10.1109
/SocialCom.2013.107.

[80] Daniel Morato, Eduardo Berrueta, Eduardo Magaña, and Mikel Izal. “Ransomware Early Detection

by the Analysis of File Sharing Traffic”. In: Journal of Network and Computer Applications 124

(2018), pp. 14–32. doi: 10.1016/j.jnca.2018.09.013.

[81] Mohammed Islam Naas, François Trahay, Alexis Colin, Pierre Olivier, Stéphane Rubini, Frank

Singhoff, and Jalil Boukhobza. “EZIOTracer: Unifying Kernel and User Space I/O Tracing for Data-

intensive Applications”. In: Workshop on Challenges and Opportunities of Efficient and Performant

Storage Systems. ACM. 2021, pp. 1–11. doi: 10.1145/3439839.3458731.

[82] Francisco Neves, Nuno Machado, and José Pereira. “Falcon: A Practical Log-based Analysis Tool

for Distributed Systems”. In: 48th International Conference on Dependable Systems and Net-

works. IEEE, 2018, pp. 534–541. doi: 10.1109/DSN.2018.00061.

[83] Francisco Neves, Nuno Machado, and José Pereira. fntneves/falcon. Accessed on October, 2023.

2019. url: https://github.com/fntneves/falcon.

[84] Francisco Neves, Nuno Machado, Ricardo Vilaça, and José Pereira. “Horus: Non-Intrusive Causal

Analysis of Distributed Systems Logs”. In: 51st International Conference on Dependable Systems

and Networks. IEEE, 2021, pp. 212–223. doi: 10.1109/DSN48987.2021.00035.

116

https://doi.org/10.1145/3208104
https://vodun.org/papers/net-papers/van_jacobson_the_bpf_packet_filter.pdf
https://vodun.org/papers/net-papers/van_jacobson_the_bpf_packet_filter.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sd93/mccanne.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sd93/mccanne.pdf
https://doi.org/10.1007/978-3-642-40787-1_13
https://doi.org/10.1007/978-3-642-40787-1_13
https://doi.org/10.1109/SocialCom.2013.107
https://doi.org/10.1109/SocialCom.2013.107
https://doi.org/10.1016/j.jnca.2018.09.013
https://doi.org/10.1145/3439839.3458731
https://doi.org/10.1109/DSN.2018.00061
https://github.com/fntneves/falcon
https://doi.org/10.1109/DSN48987.2021.00035

BIBLIOGRAPHY

[85] Philip O’Kane, Sakir Sezer, and Domhnall Carlin. “Evolution of Ransomware”. In: IET Networks

7.5 (2018), pp. 321–327. doi: 10.1049/iet-net.2017.0207.

[86] Adam Oliner, Archana Ganapathi, and Wei Xu. “Advances and Challenges in Log Analysis”. In:

Communications of the ACM 55.2 (2012), pp. 55–61. doi: 10.1145/2076450.2076466.

[87] OpenTelemetry: High-quality, Ubiquitous, and Portable Telemetry to Enable Effective Observability.

Accessed on October, 2023. url: https://opentelemetry.io.

[88] Harun Oz, Ahmet Aris, Albert Levi, and A Selcuk Uluagac. “A Survey on Ransomware: Evolution,

Taxonomy, and Defense Solutions”. In: ACM Computing Surveys 54.11s (2022), pp. 1–37. doi:

10.1145/3514229.

[89] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers, Margo Seltzer,

and Jean Bacon. “Practical Whole-System Provenance Capture”. In: 2017 Symposium on Cloud

Computing. ACM, 2017, pp. 405–418. doi: 10.1145/3127479.3129249.

[90] Andrew Pollock. Dstat: Versatile Tool for Generating System Resource Statistics. Accessed on

October, 2023. url: https://linux.die.net/man/1/dstat.

[91] Rogério Pontes, Dorian Burihabwa, Francisco Maia, João Paulo, Valerio Schiavoni, Pascal Felber,

Hugues Mercier, and Rui Oliveira. “SafeFS: A Modular Architecture for Secure User-Space File Sys-

tems: One FUSE to Rule Them All”. In: 10th ACM International Systems and Storage Conference.

ACM, 2017, 9:1–9:12. doi: 10.1145/3078468.3078480.

[92] ptrace – Linux Manual Page. Accessed on October, 2023. url: https://man7.org/linux/
man-pages/man2/ptrace.2.html.

[93] Ransomware Spotlight: AvosLocker. Accessed on October, 2023. url: https://www.trendmicro.
com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-
avoslocker.

[94] Ransomware Spotlight: RansomEXX. Accessed on October, 2023. url: https://www.trendmicro.
com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-
ransomexx.

[95] Ransomware Spotlight: REvil. Accessed on October, 2023. url: https://www.trendmicro.
com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-
revil.

[96] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi

H. Arpaci-Dusseau. “Can Applications Recover from Fsync Failures?” In: ACM Transactions on

Storage (2021), pp. 1–30. doi: 10.1145/3450338.

[97] Redis Ltd. Redis. Accessed on October, 2023. url: https://redis.io.

117

https://doi.org/10.1049/iet-net.2017.0207
https://doi.org/10.1145/2076450.2076466
https://opentelemetry.io
https://doi.org/10.1145/3514229
https://doi.org/10.1145/3127479.3129249
https://linux.die.net/man/1/dstat
https://doi.org/10.1145/3078468.3078480
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-avoslocker
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-avoslocker
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-avoslocker
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-ransomexx
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-ransomexx
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-ransomexx
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-revil
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-revil
https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-revil
https://doi.org/10.1145/3450338
https://redis.io

BIBLIOGRAPHY

[98] Zhilei Ren, Changlin Liu, Xusheng Xiao, He Jiang, and Tao Xie. “Root Cause Localization for

Unreproducible Builds via Causality Analysis Over System Call Tracing”. In: 34th International

Conference on Automated Software Engineering. ASE. IEEE, 2019, pp. 527–538. doi: 10.1109
/ASE.2019.00056.

[99] Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zainudeen Mohd Shaid. “Ransomware

Threat Success Factors, Taxonomy, and Countermeasures: A Survey and Research Directions”.

In: Computers & Security 74 (2018), pp. 144–166. doi: 10.1016/j.cose.2018.01.001.

[100] Drew Roselli, Jacob R Lorch, and Thomas E Anderson. “A Comparison of File System Workloads”.

In: 2000 USENIX Annual Technical Conference. USENIX, 2000, pp. 41–54. url: https://www.
usenix.org/legacy/event/usenix2000/general/full_papers/roselli/
roselli_html/.

[101] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International Journal of

Computer Vision 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[102] Abdulqawi Saif, Lucas Nussbaum, and Ye-Qiong Song. “IOscope: A Flexible I/O Tracer for Work-

loads’ I/O Pattern Characterization”. In: International Conference on High Performance Comput-

ing. Springer. 2018, pp. 103–116. doi: 10.1007/978-3-030-02465-9_7.

[103] Sanhita Sarkar. “A Scalable Artificial Intelligence Data Pipeline for Accelerating Time to Insight”.

Storage Developer Conference. 2019. url: https://www.snia.org/sites/default/
files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_
Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_
Time_to_Insight.pdf.

[104] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. “CryptoLock (and Drop It):

Stopping Ransomware Attacks on User Data”. In: 36th International Conference on Distributed

Computing Systems. IEEE, 2016, pp. 303–312. doi: 10.1109/ICDCS.2016.46.

[105] Saiyed Kashif Shaukat and Vinay J Ribeiro. “RansomWall: A Layered Defense System against

Cryptographic Ransomware Attacks using Machine Learning”. In: 10th International Conference

on Communication Systems & Networks. IEEE, 2018, pp. 356–363. doi: 10.1109/COMSNETS.
2018.8328219.

[106] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald

Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-Scale Distributed Systems Trac-

ing Infrastructure. Tech. rep. Google, Inc., 2010. url: https://research.google.com/
archive/papers/dapper-2010-1.pdf.

[107] Stephen Smalley, Chris Vance, and Wayne Salamon. “Implementing SELinux as a Linux Security

Module”. In: NAI Labs Report 1.43 (2001), p. 139. url: http://www.cs.unibo.it/
~sacerdot/doc/so/slm/selinux-module.pdf.

118

https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1016/j.cose.2018.01.001
https://www.usenix.org/legacy/event/usenix2000/general/full_papers/roselli/roselli_html/
https://www.usenix.org/legacy/event/usenix2000/general/full_papers/roselli/roselli_html/
https://www.usenix.org/legacy/event/usenix2000/general/full_papers/roselli/roselli_html/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-3-030-02465-9_7
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://www.snia.org/sites/default/files/SDC/2019/presentations/Machine_Learning/Sarkar_Sanhita_A_Scalable_Artificial_Intelligence_Data_Pipeline_for_Accelerating_Time_to_Insight.pdf
https://doi.org/10.1109/ICDCS.2016.46
https://doi.org/10.1109/COMSNETS.2018.8328219
https://doi.org/10.1109/COMSNETS.2018.8328219
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
http://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf
http://www.cs.unibo.it/~sacerdot/doc/so/slm/selinux-module.pdf

BIBLIOGRAPHY

[108] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K Lockwood, and Nicholas J Wright.

“Modular HPC I/O Characterization with Darshan”. In: 5th Workshop on Extreme-Scale Program-

ming Tools. IEEE. 2016, pp. 9–17. doi: 10.1109/ESPT.2016.006.

[109] Strace: Linux Syscall Tracer. Accessed on October, 2023. url: https://strace.io.

[110] Chun Hui Suen, Ryan KL Ko, Yu Shyang Tan, Peter Jagadpramana, and Bu Sung Lee. “S2Logger:

End-to-End Data Tracking Mechanism for Cloud Data Provenance”. In: 12th International Confer-

ence on Trust, Security and Privacy in Computing and Communications. IEEE, 2013, pp. 594–

602. doi: 10.1109/TrustCom.2013.73.

[111] Sysdig. Accessed on October, 2023. url: https://github.com/draios/sysdig/.

[112] Sysdig and Falco Now Powered by eBPF. Accessed on October, 2023. url: https://sysdig.
com/blog/sysdig-and-falco-now-powered-by-ebpf/.

[113] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. “CopperDroid: Automatic

Reconstruction of Android Malware Behaviors”. In: Network and Distributed System Security Sym-

posium. 2015, pp. 1–15. url: http://dx.doi.org/10.14722/ndss.2015.23145.

[114] Vasily Tarasov, Erez Zadok, and Spencer Shepler. “Filebench: A Flexible Framework for File Sys-

tem Benchmarking”. In: The USENIX Magazine 41.1 (2016), pp. 6–12. url: https://www.
usenix.org/system/files/login/articles/login_spring16_02_tarasov.
pdf.

[115] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez,

and Gregory R Ganger. “Stardust: Tracking Activity in a Distributed Storage System”. In: SIGMET-

RICS Performance Evaluation Review 34.1 (2006), pp. 3–14. doi: 10.1145/1140103.11402
80.

[116] Tracee: Linux Runtime Security and Forensics using eBPF. Accessed on October, 2023. url:

https://github.com/aquasecurity/tracee.

[117] Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C Roth. “Scalable I/O Tracing and

Analysis”. In: 4th Annual Workshop on Petascale Data Storage. ACM, 2009, pp. 26–31. doi:

10.1145/1713072.1713080.

[118] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao,

Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu

Qiu. “Bigdatabench: a Big Data Benchmark Suite from Internet Services”. In: 20th International

Symposium on High Performance Computer Architecture. IEEE, 2014, pp. 488–499. doi: 10.1
109/HPCA.2014.6835958.

119

https://doi.org/10.1109/ESPT.2016.006
https://strace.io
https://doi.org/10.1109/TrustCom.2013.73
https://github.com/draios/sysdig/
https://sysdig.com/blog/sysdig-and-falco-now-powered-by-ebpf/
https://sysdig.com/blog/sysdig-and-falco-now-powered-by-ebpf/
http://dx.doi.org/10.14722/ndss.2015.23145
https://www.usenix.org/system/files/login/articles/login_spring16_02_tarasov.pdf
https://www.usenix.org/system/files/login/articles/login_spring16_02_tarasov.pdf
https://www.usenix.org/system/files/login/articles/login_spring16_02_tarasov.pdf
https://doi.org/10.1145/1140103.1140280
https://doi.org/10.1145/1140103.1140280
https://github.com/aquasecurity/tracee
https://doi.org/10.1145/1713072.1713080
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1109/HPCA.2014.6835958

BIBLIOGRAPHY

[119] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. “Ceph: A

Scalable, High-Performance Distributed File System”. In: 7th symposium on Operating Systems

Design and Implementation. USENIX, 2006, pp. 307–320. url: https://www.usenix.org/
legacy/events/osdi06/tech/full_papers/weil/weil_html/.

[120] What We Know About the DarkSide Ransomware and the US Pipeline Attack. Accessed on October,

2023. url: https://www.trendmicro.com/en%5C%5Fus/research/21/e/what-we-
know-about-darkside-ransomware-and-the-us-pipeline-attac.html.

[121] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman. “Linux

Security Modules: General Security Support for the Linux Kernel”. In: 11th USENIX Security Sym-

posium. USENIX, 2002. url: https://www.usenix.org/legacy/event/sec02/full_
papers/wright/wright_html/.

[122] Cong Xu, Shane Snyder, Vishwanath Venkatesan, Philip Carns, Omkar Kulkarni, Suren Byna,

Roberto Sisneros, and Kalyana Chadalavada. Dxt: Darshan Extended Tracing. Tech. rep. Argonne

National Lab, 2017. url: https://www.osti.gov/servlets/purl/1392598.

[123] Wei Xu. “System Problem Detection by Mining Console Logs”. PhD thesis. University of California,

Berkeley, 2010.

[124] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. “Detecting Large-

Scale System Problems by Mining Console Logs”. In: 22nd Symposium on Operating Systems

Principles. ACM, 2009, pp. 117–132. doi: 10.1145/1629575.1629587.

[125] Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu, Cunyin Chang,

Gang Cao, Jonathan Stern, Vishal Verma, and Luse E Paul. “SPDK: A Development Kit to Build

High Performance Storage Applications”. In: 2017 IEEE International Conference on Cloud Com-

puting Technology and Science. IEEE, 2017, pp. 154–161. doi: 10.1109/CloudCom.2017
.14.

[126] Seunghoon Yoo, Jaemin Jo, Bohyoung Kim, and Jinwook Seo. “LongLine: Visual analytics system

for large-scale audit logs”. In: Visual Informatics 2.1 (2018), pp. 82–97. doi: 10.1016/j.
visinf.2018.04.009.

[127] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo Choi, Hyeong Seog Kim,

Hyeonsang Eom, and Heon Young Yeom. “Optimizing the Block I/O Subsystem for Fast Storage

Devices”. In: ACM Transactions on Computer Systems 32.2 (2014), pp. 1–48. doi: 10.1145/2
619092.

[128] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy. “Sher-

Log: Error Diagnosis by Connecting Clues from Run-Time Logs”. In: 15th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems. ACM, 2010,

pp. 143–154. doi: 10.1145/1736020.1736038.

120

https://www.usenix.org/legacy/events/osdi06/tech/full_papers/weil/weil_html/
https://www.usenix.org/legacy/events/osdi06/tech/full_papers/weil/weil_html/
https://www.trendmicro.com/en%5C%5Fus/research/21/e/what-we-know-about-darkside-ransomware-and-the-us-pipeline-attac.html
https://www.trendmicro.com/en%5C%5Fus/research/21/e/what-we-know-about-darkside-ransomware-and-the-us-pipeline-attac.html
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright_html/
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright_html/
https://www.osti.gov/servlets/purl/1392598
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1016/j.visinf.2018.04.009
https://doi.org/10.1016/j.visinf.2018.04.009
https://doi.org/10.1145/2619092
https://doi.org/10.1145/2619092
https://doi.org/10.1145/1736020.1736038

BIBLIOGRAPHY

[129] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. “Improving Software

Diagnosability via Log Enhancement”. In: ACM Transactions on Computer Systems 30.1 (2012),

pp. 1–28. doi: 10.1145/2110356.2110360.

[130] Hanqi Zhang, Xi Xiao, Francesco Mercaldo, Shiguang Ni, Fabio Martinelli, and Arun Kumar Sanga-

iah. “Classification of Ransomware Families with Machine Learning Based on N-gram of Opcode”.

In: Future Generation Computer Systems 90 (2019), pp. 211–221. doi: 10.1016/j.future.2
018.07.052.

[131] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan, and Michael

Stumm. “lprof: A Non-intrusive Request Flow Profiler for Distributed Systems”. In: 11th Sym-

posium on Operating Systems Design and Implementation. USENIX, 2014, pp. 629–644. url:

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
zhao.

[132] Zipkin. Accessed on October, 2023. url: https://zipkin.io.
This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] João M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf.

121

https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1016/j.future.2018.07.052
https://doi.org/10.1016/j.future.2018.07.052
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhao
https://zipkin.io
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Copyright
	Acknowledgements
	Statement
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Introduction
	Problem Statement and Objectives
	Contributions
	Results
	Outline

	I/O Diagnosis Background
	Data Collection
	Application and System Logs
	Application Instrumentation
	Middleware Instrumentation
	OS Instrumentation

	Data Analysis
	Purpose
	Algorithms
	Backends

	Data Visualization
	Type
	Tools

	Lessons Learned

	Content-aware Tracing and Analysis for Distributed Systems
	Falcon
	CaT in a Nutshell
	System Overview
	Architectural Componentes

	Algorithms and Prototype
	Content-aware Tracing
	Similarity-based Data Analysis
	Content Flow Visualization
	Implementation

	CaT in Action
	Observing TensorFlow's Dataset Shuffle Pattern
	Verifying the HDFS File Replication Protocol
	Summary

	Experimental Evaluation
	TensorFlow
	BigDataBench
	Summary

	Related Work
	Summary and Discussion

	Practical and Timely Diagnosis of Applications' I/O Behavior
	Motivation
	DIO in a Nutshell
	System Overview
	Architectural Components

	Algorithms and Prototype
	Collected information
	File Path Correlation Algorithm
	Nanosecond Visualization
	Implementation
	Configuration and Usage

	DIO in Action
	Top-Down Exploration and Diagnosis of Elasticsearch
	Identifying Fluent Bit's Erroneous Actions That Lead to Data Loss
	Finding the Root Cause of RocksDB's Performance Anomalies
	Performance Impact and I/O Events Handling
	Summary

	Experimental Study
	Comparison With State-of-the-art Tracers
	Inline Analysis Pipeline
	DIO's Adaptability to Different I/O Rates
	DIO's Filters Impact
	Summary

	Related Work
	Summary and Discussion

	Comprehensive Analysis of Cryptographic Ransomware's I/O Behavior
	Ransomware Overview
	CRIBA in a Nutshell
	System Workflow
	Architectural Components

	Algorithms and Prototype
	Correlation Algorithms
	Implementation

	CRIBA in Action
	General Statistics
	Ransom Notes
	Dataset's Files Access and Encryption
	Dataset's Files Selection and Evasion Techniques
	Families Similarity and Summary

	Related Work
	Summary and Discussion

	Conclusion
	Future Work

	Bibliography

