Flexible Tracing and Analysis
of Applications’ I/0 Behavior

Tania Esteves

UMinho | 2023

Universidade do Minho
Escola de Engenharia

Téania da Conceicao Araujo Esteves

Flexible Tracing and Analysis
of Applications’ 1/0 Behavior

outubro de 2023

N\
_/

Il\

Universidade do Minho
Escola de Engenharia

Téania da Conceicao Araujo Esteves

Flexible Tracing and Analysis
of Applications’ 1/0 Behavior

Tese de Doutoramento
Doutoramento em Informatica

Trabalho efetuado sob a orientacéo de
Joao Tiago Medeiros Paulo
Rui Carlos Mendes Oliveira

outubro de 2023

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY
This is academic work that can be used by third parties as long as internationally accepted rules and good
practices regarding copyright and related rights are respected.
Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated
licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

(0 @

Creative Commons Attribution 4.0 International
CCBY4.0

https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgements

A longa jornada que termina com a entrega deste documento revelou-se enriquecedora, mas também
desafiadora, e nao teria sido possivel sem o apoio de diversas pessoas com as quais tive a oportunidade
de trabalhar e conviver. A todos agradeco profundamente por me terem apoiado e acreditarem em mim.

Em primeiro lugar quero agradecer ao meu orientador, Professor Joao Paulo, por estar sempre
disponivel para me ouvir e discutir duvidas e novas ideias, e pela incansavel ajuda, motivacéao e exce-
lente orientacao ao longo de todo este processo que foi sem duvida fundamental para atingir este ponto.

Agradeco também ao Professor Rui Oliveira, que coorientou este trabalho, por todas as sugestoes e
dicas que foram essenciais para o sucesso e qualidade deste trabalho.

Quero também expressar um especial obrigado a Claudia Brito e ao Ricardo Macedo por toda a ajuda
e conselhos e boa companhia ao longo deste percurso. Agradeco também ao Bruno Pereira, Francisco
Neves, Jodo Marco e Rui Pedro Oliveira pela colaboracdo em artigos resultantes deste trabalho, e ao
Nuno Machado e Rogério Pontes pelas sugestdes que tornaram o meu trabalho mais vigoroso. | am also
grateful to Jason Haga for hosting me for a remote internship at AIST and for his insightful suggestions.

Agradeco igualmente aos demais colegas do laboratério, nomeadamente: Alberto Faria, Ana Alonso,
Catarina Leones, Daniel Cruz, Diogo Couto, Diogo Ribeiro, Fabia Pereira, Fabio Coelho, Francisco Cruz,
Francisco Maia, Jodo Dias, Luis Meruje, Mariana Miranda, Miguel Peixoto, Paula Rodrigues, Ricardo Vilaca,
Rita Moutinho, Rui Miguel, Rui Monteiro, Rui Pedro Oliveira, Susana Marques, Vitor Enes, e demais corpo
docente, por todos 0s momentos de companheirismo, desabafo e alegria.

Quero também agradecer aos meus amigos que me acompanharam e apoiaram, e tornaram esta
jornada mais interessante e alegre, nomeadamente: Andreia Barros, André Marinho, Bruno Ribeiro, Ed-
uardo Cunha, Gabriel Fernandes, José Lima, José Monteiro, José Santos, Jodo Afonso, Jodo Fernandes,
Luis Marques, Luis Pedro, Luis Viana, Mario Real.

Nao posso deixar de agradecer @ minha familia, em especial aos meus pais, Teresa e Jorge, e ao
meu irmao, Ricardo, por acreditarem em mim e sempre me apoiarem ao longo da minha vida. Muito
obrigada por poder sempre contar convosco.

Adicionalmente, agradeco as instituicdes que apoiaram o trabalho aqui apresentado. A Fundacao para
a Ciéncia e Tecnologia (FCT) apoiou este trabalho através da bolsa de doutoramento DFA/BD/5881/2020.
O Departamento de Informatica da Universidade do Minho, o HASLab, e INESC TEC ofereceram-me as
condicoes necessarias para o desenvolvimento deste trabalho.

E ENSINO SUPERIOR Fundacag .
para a Ciéncia * o K
e a Tecnologia

gume. FCT o g

* *

“ CIENCIA, TECNOLOGIA p qﬂmmm ! 2()20 ** :
~

uuuuuuuuuuuuuuuu

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process leading to
its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the Universidade do
Minho.

Braga October 31st, 2023

(Tania da Conf:ei(;éo Araujo Esteves)

Resumo

Rastreio e Analise Flexiveis do Comportamento de E/S de Apli-
cacoes

A correcao, confiabilidade e desempenho de aplicacdes centradas em dados e de sistemas distribui-
dos (por exemplo, sistemas de ficheiros, bases de dados, plataformas de analise de dados e de aprendiza-
gem de maquina) sao influenciados pela forma como estes acedem, trocam e persistem dados. Portanto,
compreender o comportamento de Entrada/Saida (E/S) destas solucoes ¢ fundamental para as explorar,
encontrar possiveis problemas e otimizar. Para tal, existem ferramentas de diagnostico que dao suporte
a colecao, analise e visualizacdo de padrdes de E/S (por exemplo, chamadas de sistema, funcdes de
kernel). Nesta dissertacdo, argumentamos que estas ferramentas podem ser melhoradas para alcan-
car solucoes de diagnostico integradas e automatizadas que permitam capturar informacdes detalhadas
sobre pedidos de E/S, suportar analises multiplas e automatizadas dos dados colecionados, e fornecer
representacdes visuais que facilitam a interpretacao de padrdes de comportamento de E/S.

Estes objetivos sao alcancados através de trés novas plataformas de diagnostico. Em primeiro lugar
apresentamos o CaT, uma solucdo orientada ao contetdo que permite uma analise mais abrangente de
sistemas distribuidos, revelando como os dados fluem pelos distintos componentes até que sejam persisti-
dos. Através de dois casos de estudo reais mostramos que esta informacao é fundamental para identificar
padrdes de corrupcao e adulteracao de dados em solucdes distribuidas. Em seguida propomos o DIO,
uma solucao genérica para o diagnostico de aplicacdes centradas em dados que oferece funcionalida-
des de colecao, analise e visualizacao detalhadas, flexiveis, e personalizaveis. Através de uma avaliacdo
experimental, com quatro aplicacées utilizadas pela industria, mostramos que a nossa solucao facilita a
analise da origem de problemas conhecidos, e permite observar e validar padrdes de E/S ineficientes
(e anteriormente desconhecidos). Por fim, apresentamos o CRIBA, uma plataforma que estende o DIO
para fornecer uma solucao especializada e automatizada que permite caracterizar o comportamento de
E/S de ransomware criptografico. O nosso estudo com cinco familias de ransomware para Linux mostra
como o CRIBA permite a analise e observacado dos seus comportamentos intrinsecos e complexos.

As contribuicdes anteriores facilitam e melhoram o diagndstico de aplicacoes e de sistemas de arma-
zenamento. Acreditamos que solucdes de diagndstico detalhadas, flexiveis e personalizaveis, como as
propostas neste trabalho, sdo fundamentais para a construcao de sistemas mais robustos e eficientes.

Palavras-chave: Diagnostico de E/S, Rastreio, Analise, Visualizacao, Aplicacdes centradas em dados,

Sistemas de armazenamento

Abstract

Flexible Tracing and Analysis of Applications’ 1/0 Behavior

The correctness, dependability and performance of data-centric applications and distributed systems
(e.g., file systems, databases, analytical engines, machine learning frameworks) are highly influenced by
the way these access, exchange and persist data. Therefore, understanding the Input/Output (I/0) be-
havior of such solutions is key for efficiently exploring, debugging and optimizing them. This endeavor
is possible through diagnosis tools that provide support for the collection, analysis and visualization of
information (e.g., logs, system calls, kernel functions) from targeted applications and storage systems. In
this thesis, we argue that these tools can be further enhanced to achieve fully automated and integrated
diagnosis pipelines that allow capturing comprehensive information about 1/0 requests, supporting mul-
tipurpose and automated analysis of collected data, and providing informative and summarized visual
representations that ease the interpretation of I/0 behavior patterns for users.

We accomplish these goals by proposing three novel diagnosis frameworks. First, we introduce CaT,
a content-aware solution that enables a more comprehensive analysis of distributed systems by revealing
how data requests flow across distinct components until these are persisted. We show that this informa-
tion is key for identifying data corruption and adulteration patterns in complex distributed solutions. Then,
we propose DIO, a general-purpose solution for diagnosing data-centric applications that offers flexible,
comprehensive and customizable tracing, analysis and visualization in near real-time. Through an exper-
imental evaluation including four production-level applications, we show that our solution eases the root
cause analysis of known issues and allows observing and validating inefficient (and previously unknown)
|/O patterns. Finally, we present CRIBA, a framework that extends DIO to provide a specialized and au-
tomated pipeline for characterizing the 1/0 behavior of cryptographic ransomware. Our study, including
five Linux ransomware families, shows that CRIBA enables the analysis and observation of intrinsic and
complex /0 behavior from malicious samples.

The previous contributions ease and improve the process of diagnosing applications and storage
systems for users. We believe that comprehensive, flexible and customizable diagnosis pipelines, such as
the ones proposed in this work, are key for building systems that are more robust and efficient.

Keywords: 1/0 diagnosis, Tracing, Analysis, Visualization, Data-centric applications, Storage systems

Vi

List of Figures

List of Tables

List of Algorithms

List of Listings

Acronyms

1 Introduction
1.1 Problem Statement and Objectives
1.2 Contributions
1.3 Results
1.4 Outline

2 1/0 Diagnosis Background

2.1

2.2

2.3

Data Collection
2.1.1 Application and System Logs
2.1.2 Application Instrumentation
2.1.3 Middleware Instrumentation
2.1.4 OS Instrumentation.
DataAnalysis
22.1 Purpose
2.2.2 Algorithms
223 Backends,
Data Visualization
231 Type

Vil

Contents

xii
Xiii

xiv

o o b~ w e

............. 11
............. 13
............. 14
............. 15
............. 16
............. 19
............. 19
............. 20
............. 22
............. 23
............. 23

CONTENTS

2.4

2.3.2 Tools
Lessons Learned

3 Content-aware Tracing and Analysis for Distributed Systems

3.1
3.2

3.3

3.4

3.5

3.6
3.7

4 Pract
4.1
4.2

4.3

4.4

Falcon e
CaTinaNutshell
3.2.1 SystemOverview
3.2.2 Architectural Componentes
Algorithms and Prototype
3.3.1 Contentaware Tracing
3.3.2 Similarity-based Data Analysis
3.3.3 Content Flow Visualization
3.34 Implementation
CaTinAction
3.4.1 Observing TensorFlow's Dataset Shuffle Pattern
3.4.2 Verifying the HDFS File Replication Protocol
343 Summary ... e e
Experimental Evaluation
3.5.1 TensorFlow
3.5.2 BigDataBench
353 Summary ... e,
Related Work
Summary and Discussion
ical and Timely Diagnosis of Applications’ I/0 Behavior

Motivation
DIOinaNutshell
421 SystemOverview e
4.2.2 Architectural Components
Algorithms and Prototype
4.3.1 Collected information
4.3.2 File Path Correlation Algorithm
4.3.3 Nanosecond Visualization
4.3.4 Implementation
4.3.5 ConfigurationandUsage
DIOinAction
4.4.1 Top-Down Exploration and Diagnosis of Elasticsearch
4.4.2 ldentifying Fluent Bit's Erroneous Actions That Lead to Data Loss

viii

24
24

27
29
30
31
31
33
33
35
36
36
37
37
38
40
40
41
42
44
45
45

47
49
51
51
52
53
54
57
57
57
58
59
59
61

CONTENTS

4.4.3 Finding the Root Cause of RocksDB’s Performance Anomalies 64

4.4.4 Performance Impact and /0 Events Handling 66

445 Summary ... e 68

4.5 Experimental Study 68
45.1 Comparison With State-of-the-art Tracers 70

4.5.2 Inline Analysis Pipeline 76

4.5.3 DIO’s Adaptability to Different|/ORates 80

454 DIO'sFiltersImpact 81

455 Summary ... 83

4.6 RelatedWork 83

4.7 Summary and DisSCUSSION e 85

5 Comprehensive Analysis of Cryptographic Ransomware’s /0 Behavior 86
5.1 Ransomware Overview 88

52 CRIBAinaNutshell 90
5.2.1 SystemWorkflow 90

5.2.2 Architectural Components 90

5.3 Algorithms and Prototype 92
5.3.1 Correlation Algorithms 92

5.3.2 Implementation 94

54 CRIBAinAction e 95
54.1 General Statistics 97

542 RansomNotes 98

5.4.3 Dataset’s Files Access and Encryption 100

5.4.4 Dataset’s Files Selection and Evasion Techniques 102

5.4.5 Families Similarity and Summary L. 103

55 RelatedWork 104

5.6 Summary and Discussion 105

6 Conclusion 106
6.1 FutureWork 107
Bibliography 109

List of Figures

2.1 High-level design of a diagnosis pipeline. 9
2.2 Different data collection levels throughoutthe I/Ostack. 11
3.1 Context vs content-aware tracing analysis. 28
3.2 CaT'sarchitecture. 31
3.3 CatStrace’'scomponents. e 33
3.4 CatBpfscomponents.. e 34
3.5 CaSolverscomponents.. e 35
3.6 CaT'svisualizeroutputexample.o 36
3.7 Disk access pattern for TensorFlow’s dataset shuffle. 38
3.8 HDFSreplicationofafile. 39
3.9 BigDataBenchelapsedtimes. 42
4.1 Log file access pattern for Redis's version including inefficient I/O patterns. 49
4.2 Log file access pattern for Redis's version including the corrections. 50
4.3 DlO'sdesignand flowofevents. 52
4.4 Kernel structuresused by DIO. 55
4.5 Elasticsearch's file access pattern. L 60
4.6 Accessed file offsets for Fluent Bit (v1.4.0). 62
4.7 Fluent Bit (v1.4.0) erroneous access pattern. 63
4.8 Accessed file offsets for Fluent Bit (v2.0.5). 64
4.9 Fluent Bit (v2.0.5) correctaccesspattern 64
4.10 99" percentile latency for RocksDB client operations. 65
4.11 Syscalls issued by RocksDB over time, aggregated by thread name. 65
4.12 Average execution time for Elasticsearch, Redis and RocksDB use cases with DIO, Sysdig

and Strace. L 67
4.13 Filebench’s performance overhead and collected events for Strace, Sysdig, and DIO. . . 70
4.14 CPU usage by Strace, Sysdig, andDIO. 73

LIST OF FIGURES

4.15
4.16
4.17

4.18
4.19

4.20

421

4.22
4.23

4.24

5.1
5.2
53
54
5.5
5.6
5.7

Memory usage by Strace, Sysdig, and DIO.
Size of the traces generated by Strace, Sysdig and DIO when writing these to disk.

Size of the indices generated by Sysdig and DIO when using Elasticsearch as storage back-
end. .. e
Network usage by Sysdig and DIO with the Elasticsearch backend
Performance overhead, collected events, and resource usage for different ring buffer sizes
iNnDIO. . . .
Performance overhead, collected events, and resource usage for different batches sizes in

Performance overhead, collected events, and resource usage for different batches sizes in
DIO. .
Execution times for inline and offline analysis approaches with Sysdig and DIO.
Performance overhead and collected events of DIO’s setups (with Elasticsearch backend)
when tracing Filebench with different I/Orates.
Performance overhead and collected events of DIO (with detailedP,; setup and Elasticsearch

storage backend) when applying different filters.

CRIBA'’s design and flow of events for the tracing and analysis phases.
Distribution of files’ size and extensions for the dataset used in CRIBA's experiments. . .
Aggregated number of operations, per syscall, for three distinct threads launched by REvil.
Syscalls issued over time by RansomEXX's encryption threads to file F10573.bgt.vmdk. .
File offsets accessed per family when reading and writing file F10573.bgt.vmdk.

CPU usage per ransomware family.
Heatmaps comparing the families regarding the type of issued syscalls, and accessed file
extensionsand names. L

Xi

73
74

74
75

76

77

78
79

80

82

90
96
98
101
102
103

103

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1

5.2

53

54
5.5
5.6

List of Tables

Categorization of diagnosis tools regarding data collection, analysis and visualization. . .

Performance and accuracy results for TensorFlow experiments.
Accuracy results for the BigDataBench experiments.

System calls supported by DIO.
Minimum DIO’s tracing mode for successfully diagnosing each usecase.
Description of each setup used in the experiments for Strace, Sysdig, and DIO tracers.

Comparison between DIO and related solutions.

List of syscalls supported by CRIBA.
SHA256 hashes and execution commands for the 5 ransomware samples analyzed with
CRIBA. . . .
Execution time, process creation, accessed files and issued syscalls statistics for the ran-
somware families.
Top 3 syscall types issued per ransomware family.
Syscall sequences for ransom notes per family.
Syscall sequences issued per family over a small and large datasetfile.

Xii

10

41
43

53
66
69
84

92

96

97
97
99
100

4.1
4.2

5.1
5.2

DIO’s EventPath and file tag generation algorithm
DIQ’s file path correlation algorithm.

List of Algorithms

CRIBA's algorithm for identifying a Depth First Search.

FSysSeq correlation algorithm provided by CRIBA

Xiii

56
57

93
94

List of Listings

4.1 System calls made by Elasticsearch to the .es_temp_file file and observable with
DIO. . . 60

4.2 Elasticsearch source code for accessing the .es_temp_filefile. 61

Xiv

API

BCC
BFS

C&C
CPU

CTF
CUDA

DAG
DBSCAN
DFS
DPDK
eBPF
ETW

FSA

GPU
gRPC

Acronyms

Application Programming Interface 12, 14, 58, 86, 90, 104

BPF Compiler Collection 37
Breadth First Search 93

Command and Control 88, 89, 98

Central Processing Unit 4, 6, 14, 25, 29, 34, 35, 37, 41, 42, 43, 44, 52, 67, 70, 72, 77,
78,79, 82, 87, 88, 89, 91, 96, 102, 103

Common Trace Format 17

Compute Unified Device Architecture 37

Directed Acyclic Graph 21

Density-Based Spatial Clustering of Applications with Noise 21
Depth First Search 93, 97

Data Plane Development Kit 12

Extended Berkeley Packet Filter 5, 9, 17, 18, 25, 29, 33, 34, 35, 36, 37, 40, 42, 45, 48,
52, b5, b7, 58, 69, 72, 73, 75, 83, 94, 106, 108
Event Tracing for Windows 14

Finite-State Automaton 21

Graphics Processing Unit 37, 41
Google Remote Procedure Call 11

XV

ACRONYMS

HDD
HPC

1/0

IT

J2EE
JiIT

KVS

LoC

LOF

LSH

LSM
LSM-tree
LTTng

ML
MPI

NIC
NVMe

0s
0SsD

PCA
PID
POSIX
PVFS

RAM
RPC

Hard Disk Drive 37
High-Performance Computing 20

Input/Output 1, 2, 3, 4, 5,6, 7,8,9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 57, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 75, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 98, 104, 105, 106, 107
Information Technology 19

Java 2 Platform Enterprise Edition 15
Just-In-Time 17

Key-Value Store 22, 47, 64, 66

Lines of Code 2, 36, 37, 47, 57, 58, 61, 65

Local Outlier Factor 21

Locality-Sensitive Hashing 35, 36, 37

Linux Security Module 16, 17, 45

Log-Structured Merge tree 66

Linux Trace Toolkit Next Generation 9, 16, 17, 18, 25, 83, 108

Machine Learning 20, 21, 25, 31, 37, 45, 47, 86, 107, 108
Message Passing Interface 11, 15, 16

Network Interface Controller 11
Non-Volatile Memory Express 37, 57, 59, 96

Operating System 3, 9, 11, 13, 16, 17, 18, 25, 62, 72, 86, 87, 96, 108

Object Storage Devices 23

Principal Component Analysis 21

Process Identifier 5, 14, 15, 16, 17, 27, 31, 32, 33, 34, 36, 43, 48, 51, 52, 54, 84, 87, 88
Portable Operating System Interface 5, 6, 12, 47, 48, 51, 85, 106

Parallel Virtual File System 16

Random Access Memory 4, 25, 29, 37, 42, 43, 44, 59, 91, 96
Remote Procedure Call 15

XVi

ACRONYMS

SCI
SCSI
SDK
SMT
SPDK
SQL
SSD
SVM

TF-IDF
tSNE
TID

UPGMA

VFS
VM

System Call Interface 3, 11, 12, 15
Small Computer Systems Interface 17
Software Development Kit 14
Satisfiability Modulo Theories 21, 32
Storage Performance Development Kit 12
Structured Query Language 22

Solid State Drive 37, 59, 96

Support Vector Machine 21

Term Frequency-Inverse Document Frequency 94
t-distributed Stochastic Neighbor Embedding 21
Thread Identifier 14, 48, 51, 52, 54, 81, 87, 98, 100

Unweighted Pair Group Method with Arithmetic Mean 21

Virtual File System 3, 11, 12, 18, 83
Virtual Machine 17, 89, 91, 96

XVii

Introduction

In the last decades, we have witnessed exponential growth in the amount of digital information generated.
Further, this data contains more and more information that is crucial for critical services such as health-
care, finance, and governance to work properly, which raises the need to design efficient, dependable and
secure solutions for storing and retrieving data [22]. As the complexity (i.e., codebase size, number of
components, Input/Output (I/O) optimizations) of data-centric applications and storage systems grows, it
becomes increasingly difficult to debug, validate, or even improve the aforementioned guarantees.

For example, to scale and reliably handle the sheer volume of data, applications and storage systems
typically adhere to distributed designs composed of several components, including coordination services,
communication middleware, databases and file systems. These components need to exchange data
among themselves and thus often implement complex protocols, such as data replication techniques,
that are susceptible to subtle errors [3].

As another example, the interaction between applications and storage systems is also complex and
subtle, both in distributed and local designs. Application developers must be knowledgeable about the
interface and characteristics (e.g., optimal /0 size, access pattern) of the underlying storage system to
take advantage of its optimizations (e.g., caching, scheduling) and extract the best performance from
it [31]. Also, the incorrect use of such interfaces (e.g., improper use of asynchronous 1/0, absence of
fsync system calls to make data durable) can introduce critical bugs that compromise dependability, for
instance, leading to data loss [96].

In this thesis, we argue that it is crucial to comprehensively study and understand the intrinsic 1/0
behavior of applications and storage systems and their interplay. This process, which we refer to as “//0
diagnosis”, holds critical significance for various purposes.

Debugging. Be it due to human error, lack of detailed knowledge on how to efficiently and correctly
access the underlying storage (e.g., file system, block-device), or usage of high-level libraries that obfuscate
the actual I/ O requests being made to storage systems, applications often exhibit: i) costly access patterns,
such as small-sized I/ 0O requests or random accesses [31], ii) redundant operations, such as unnecessarily
re-opening and closing a given file;! jii) 1/0 contention caused by having concurrent requests accessing

!Logging improvements issue from Redis’ GitHub repository: https://github.com/redis/redis/pull/10531

https://github.com/redis/redis/pull/10531

CHAPTER 1. INTRODUCTION

shared storage resources [12]; and iv) erroneous usage of 1/0 calls, for example, by accessing wrong file
offsets.23 Therefore, understanding the 1/0 behavior of applications is essential for uncovering the root
cause of errors, inefficiencies and unattained performance.

Validation. Studying applications and storage systems’ I/O patterns is also fundamental for validating
their implementations. For instance, it allows checking if applications are following the intended storage
access patterns (e.g., training dataset shuffling in deep learning frameworks [1]) or if complex distributed
protocols respect their specifications (e.g., synchronous data replication in distributed file systems [46]).
Further, by studying I/0O patterns, one can also validate that the implementation corrections for a given
error or inefficiency found at the debugging phase are working properly.

Exploration. Lastly, understanding how applications and storage systems handle data requests is also
valuable for exploring new features and optimizations. For instance, by profiling the 1/0 requests made
by applications (e.g., random file access patterns), one can then configure and optimize storage systems
to achieve better performance [31]. Additionally, learning the I/0 behavior of closed source applications
(i.e., whose source code is unavailable) can be valuable for security purposes, for instance, to uncover
specific patterns that characterize malware activity and that can be used in its detection [88].

Despite the importance and benefits of 1/0 diagnosis to the dependability and performance of key
information systems, as the preceding examples depict, how to do it efficiently remains an open challenge.
Understanding applications’ behavior through manual code inspection is a difficult, if not impossible, task.
First, the source code must be available, which is not the case for many applications (e.g., malware
binaries, commercial products). Even if the source code is available, the applications may have complex
and large codebases with components implemented in different programming languages and by different
developers. For example, Fluent Bit's open-source project has around 5K files, most of them containing C
code, but it also includes files written in Python, Go, and Java. In total, the project contains ~1M Lines of
Code (LoC) developed by more than 300 contributors. TensorFlow’s codebase has even more files, almost
20K, with more than 4M LoC written by 3K contributors in several programming languages. Exploring and
understanding these multi-language and extensive codebases is a hard and time-consuming endeavor.
Further, code inspection mainly focuses on the structure of the source code, not assessing the impact of
different program inputs on the application’s behavior, thus limiting the scope of the analysis [23].

These challenges motivate the use of diagnosis tools to automate the processes of I/0 debugging,
validation, and exploration. The pipeline of these tools is typically divided into two main phases: i) data
collection and ii) data analysis and visualization.

The data collection phase involves collecting information related to the I/0 requests that applications
and storage systems handle at runtime. This can be done by resorting to source code instrumentation,
which is the process of adding extra code (i.e., instrumentation code) in key parts of the codebase to
record, for instance, the values of function parameters and timing statistics [13, 45, 115]. Another widely

2\Wrong offsets issue from Fluent Bit's repository: https://github.com/fluent/fluent-bit/issues/1875
3Log missing issue from Fluent Bit's repository: https://github.com/fluent/fluent-bit/issues/4895

https://github.com/fluent/fluent-bit/issues/1875
https://github.com/fluent/fluent-bit/issues/4895

1.1. PROBLEM STATEMENT AND OBJECTIVES

used strategy is to rely on tracing tools, which allow instrumenting lower layers of the Operating System
(OS) (e.g., the System Call Interface (SCI)) to collect information about the 1/0 requests submitted by the
application to this layer without requiring any modifications to its source code [32, 64, 109, 111].

The data analysis and visualization phase involves the analysis and exploration of the previously col-
lected information. The information captured for all I/O requests is inspected and correlated, for instance,
by checking the types of requests and their arguments, analyzing the time and order in which they oc-
curred, or identifying the processes and threads that originated different groups of requests. The output
of this analysis, which in some cases may be delivered to users through visual representations, is key to
better understanding the 1/0 behavior of applications and storage systems [18, 126].

Currently, many of the existing solutions only consider one of these phases (e.g., tracing tools aim
at data collection, and visualization tools focus on data analysis), while few solutions provide a complete
pipeline that includes components for collecting, analyzing and visualizing 1/0 requests.

1.1 Problem Statement and Objectives

Despite the considerable advantages brought by current I/0 diagnosis tools, in this dissertation, we argue
that the diagnosis process can be made more flexible and practical and can be further automated by

overcoming the following challenges:

Tracing Transparency. Many data collection tools rely on source code instrumentation to obtain infor-
mation about the applications’ I/0 requests [13, 45, 62, 74, 75, 115, 132]. While code instrumentation
solves some of the challenges associated with manual code inspection and exploration (e.g., by observing
the runtime 1/0 behavior of applications), it still requires a manual analysis of complex and extended
codebases to identify the key parts of the source code that must be instrumented. Moreover, code instru-
mentation is unsuitable for diagnosing closed source applications whose codebase is unavailable.

In this work, we explore non-intrusive approaches to intercept 1/0 requests at lower OS layers, achiev-
ing a transparent solution applicable to any traditional kernel-based storage application.

Tracing Accuracy. The OS layer where |/0 requests are intercepted influences the detail of information
one can infer about the applications’ behavior. The lower the layer is at the OS (e.g., Virtual File System
(VES), block device), the more optimizations like |/0O merging and reordering are applied, thus masking
the exact requests submitted by applications [127]. Also, the amount of information captured for each I/0
request influences the types of analysis users can do. While capturing only the type (e.g., open, read,
write, close)and number of I/ O requests already provides valuable insights about the applications’ I/0
behavior, collecting the requests’ arguments and return value can further expand the analysis possibilities,
for instance, to uncover scenarios where system calls are specified erroneously.

We study the most appropriate layer for intercepting I/0 requests and explore the impact of capturing
more or less detailed information about these.

CHAPTER 1. INTRODUCTION

Tracing Overhead. Another key aspect that must be considered is the overhead imposed on the under-
lying storage and the targeted application’s performance when intercepting and collecting 1/0 requests.
By increasing the amount of information being collected, one is also increasing the storage space needed
to persist such traces for later analysis. Similarly, capturing more information can result in a higher con-
sumption of system resources (e.g., Random Access Memory (RAM), Central Processing Unit (CPU), and
disk), slowing down the targeted application and impacting its performance.

We explore different strategies to balance the amount of collected data (accuracy) with its impact on
performance overhead and resource usage.

Integrated and Automated Analysis and Visualization. Another challenge to bear in mind is the
need to provide mechanisms for facilitating the analysis and visualization of collected data. The sheer
number of storage operations generated by data-centric applications, ranging from hundreds to thousands
of operations per second, makes their analysis complex and time-consuming when done manually.

We enhance diagnosis pipelines with efficient and integrated components that allow collecting, ana-
lyzing, and visualizing |/0 requests in a more practical way. Moreover, we provide mechanisms to further
automate the analysis process by preprocessing and correlating the collected data and outputting sum-
marized insights about the analyzed 1/0 requests.

Flexible and Comprehensive Diagneosis. Existing diagnosis tools are often designed for rigid analysis
scenarios, such as detecting unreproducible builds [98], observing file offset access patterns [102], or
identifying security issues [64, 126]. Thus, for multipurpose diagnosis tasks, one needs to combine
several tools and repeat the data collection and analysis phases multiple times for the same application.

We provide a more comprehensive solution that allows users to simultaneously debug, validate, and
explore different kinds of /0 behaviors. By offering users the flexibility to narrow or broaden both data col-
lection and analysis scopes, our solution allows them to explore a wider range of correctness, dependability
and performance issues that applications may exhibit.

1.2 Contributions

This thesis presents three main contributions, which are aligned with the aforementioned goals and that
advance the state of the art for 1/0 diagnosis.

Content-aware Diagnosis. As the first contribution, we explore how the contents of /0 requests can
be useful for improved diagnosis of distributed systems. Namely, we propose CaT, a novel framework for
collecting and analyzing storage and network 1/0 requests of distributed systems. The key insight and
novelty behind CaT relies on intercepting and analyzing the content of data buffers transmitted between
different components of a distributed deployment. By following this idea, CaT allows identifying duplicate
data as well as near-duplicate data (with a high degree of similarity, for instance, >80%) that was slightly
modified while flowing through different components (e.g., messages that include the same payload but
have a different metadata header).

1.2. CONTRIBUTIONS

To transparently intercept the applications’ I/0 requests, CaT explores two kernel-level tracing tools,
Strace [109] and Extended Berkeley Packet Filter (eBPF) [76], which provide different tradeoffs regarding
resource usage, amount of collected information, and 1/0 performance impact.

Moreover, CaT uses hashing techniques to summarize the requests’ content and minimize the storage
space overhead, applies near-duplicate detection algorithms to find similarities between data from distinct
distributed events, and uses a color-based scheme to visually pinpoint /0 events handling near-similar
data. These algorithms are integrated into a complete pipeline that allows automating the process of
capturing, analyzing, and visualizing the context and content of applications’ 1/0 requests.

CaT’s content-aware approach enables detecting data adulteration, corruption, and leakage patterns
in complex systems and I/0 flows that would go unnoticed with state-of-the-art context-based approaches.

Comprehensive and Flexible Diagnosis. As the second contribution, we explore how current tools
could be improved to aid in the diagnosis of a wider range of storage correctness, dependability and perfor-
mance issues that applications may exhibit. To this end, we propose DIO, a generic tool for observing and
diagnosing the I/0 interactions between applications and in-kernel Portable Operating System Interface
(POSIX) storage systems.

DIO’s main insight is that by combining system call tracing with a customizable analysis pipeline,
one can achieve non-intrusive and comprehensive 1/0 diagnosis for applications. To that end, it offers
a new eBPF-based tracer that non-intrusively intercepts storage system calls submitted by applications,
collects a compressive set of information for each operation, and enriches such information with additional
context obtained from kernel structures (e.g., file offset for read and write operations). Nonetheless,
the amount and detail of collected information can be specified and filtered according to the needs of each

user, thus balancing the accuracy and performance/storage overhead of our tracing solution.

Further, DIO follows an inline approach by automatically collecting the desired information and for-
warding it directly to the analysis pipeline, allowing users to query and visualize captured data in near
real-time. Moreover, DIO’s analysis pipeline is flexible and configurable, allowing users to implement
correlation algorithms and build custom visual representations that better fit their analysis requirements.

Through a comprehensive and integrated pipeline that automates the process of tracing, filtering,
correlating, and visualizing millions of system calls, DIO enables the diagnosis of a wide range of I/0
issues, avoiding the need for combining multiple tools and running the application multiple times.

Custom and Improved Analysis. As the third contribution, we explore how DIO’s analysis capabilities
can be improved through custom correlation algorithms. We focus on a new use case, namely analyzing
the 1/0 behavior of cryptographic ransomware, and on how this endeavor can help security analysts find
both characteristic and deviating 1/0 actions for building or improving detection tools.

Leveraging DIO’s pipeline, we built CRIBA, a tool for capturing, analyzing, and visualizing the behavior
of Linux cryptographic ransomware. CRIBA supports the collection and analysis of comprehensive infor-
mation about 1/0 system calls (e.g., type, arguments), their contextual information (e.g., Process Identifier

CHAPTER 1. INTRODUCTION

(PID), offset), and their correlation with other system metrics (e.g., CPU). Moreover, CRIBA offers auto-
mated analysis capabilities through six algorithms that ease the study and comparison of ransomware
samples by pinpointing their file system transversal, file access, and file extension manipulation patterns.
It also includes a predefined set of visualizations, organized into eight distinct dashboards, for summarizing
and exploring the collected information and the outputs of the correlation algorithms in a human-readable
and explainable fashion.

A comprehensive analysis and comparison of five Linux ransomware families shows that CRIBA auto-
mates the analysis and observation of generic behavior from ransomware samples (e.g., the number of
processes, type of system calls, file system transversal). Further, it enables the analysis and comparison
of intrinsic and complex /0 behavior (e.g., file access patterns, extension manipulation) related to the
creation of ransom notes, file encryption, and evasion techniques used by each family.

1.3 Results

Core Publications. The work discussed in this thesis resulted in a number of publications in international
conferences, journals, and workshops.

Tania Esteves, Francisco Neves, Rui Oliveira, Joao Paulo. CaT: Content-aware Tracing and
Analysis for Distributed Systems. In 22nd International Middleware Conference, 2021.

This conference publication describes CaT, a novel framework for collecting and analyzing storage
and network |/0 requests of distributed systems. CaT proposes a content-aware tracing and anal-
ysis strategy that correlates the context and content of events to better understand the data flow
of systems. Through a detailed evaluation of CaT’s open-source prototype with real applications,
we show that, depending on the target workload, it is possible to capture most of the /0 events
while incurring negligible performance overhead. Moreover, we showcase that CaT’s content-aware
approach can improve the analysis of distributed systems by pinpointing their data flows and I/0
access patterns. CaT is publicly available at https://github.com/dsrhaslab/cat.

Tania Esteves, Ricardo Macedo, Rui Oliveira, Joao Paulo. Diagnosing Applications’ I/0 Behav-
ior through System Call Observability. In 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, 2023.

This workshop publication presents DIO, a generic tool for observing and diagnosing |/0 interac-
tions between applications and in-kernel POSIX storage systems. DIO helps users diagnose 1/0
issues through a pipeline that automates the process of tracing, filtering, correlating, and visualiz-
ing millions of system calls. Our experiments with the RocksDB and Fluent Bit systems show that
DIO provides key information for observing erroneous |/ O access patterns that lead to data loss and
identifying resource contention in multithreaded 1/0 that leads to high tail latency. DIO is publicly
available at https://github.com/dsrhaslab/dio.

6

https://github.com/dsrhaslab/cat
https://github.com/dsrhaslab/dio

1.3. RESULTS

Tania Esteves, Bruno Pereira, Rui Pedro Oliveira, Jodo Marco, Jodo Paulo. CRIBA: A Tool for
Comprehensive Analysis of Cryptographic Ransomware’s 1/0 Behavior. In 42nd Sym-
posium on Reliable Distributed Systems, 2023.

This conference publication describes CRIBA, a tool for simplifying and automating the exploration,
analysis, and comparison of |/O patterns for Linux cryptographic ransomware. CRIBA supports
the non-intrusive and comprehensive collection of /0 information from ransomware samples and
combines it with an integrated analysis and visualization pipeline. The latter is enhanced with six
custom correlation algorithms and different predefined dashboards. As shown in our experimental
study, these features are key for j) automating the analysis of ransomware families; ii) understanding
complex and intrinsic behavior from each sample; iij) and pinpointing common and distinct traits
across families. CRIBA is publicly available at https://github.com/dsrhaslab/criba.

Tania Esteves, Ricardo Macedo, Rui Oliveira, Jodo Paulo. Toward a Practical and Timely
Diagnosing of Applications’ /0 Behavior. In I[EEE Access, 2023.

This journal publication extends DIO’s workshop paper by providing further details about the tool’s
design and implementation, introducing two new use cases with the Elasticsearch and Redis
production-level applications that demonstrate the readiness and relevance of our solution, and
providing new experiments that evaluate and compare DIO with related solutions. The conducted
experimental evaluation highlights the different tradeoffs in terms of performance impact, resource
usage, and data collection accuracy when using the different tracing modes and configurations
provided by DIO while validating our solution against two state-of-the-art system calls tracers:
Strace [109] and Sysdig [111]. Results show that when compared with an inline diagnosis pipeline
using Sysdig, DIO provides timely analysis for users and improves the number of captured events
by up to 28x while keeping performance overhead between 14% and 51%.

Complementary Publications. The following work was published in collaboration with multiple re-
searchers from both academia and industry. While complementary to the core contributions of this thesis,
these works leverage the topics discussed in it.

Mariana Miranda, Tania Esteves, Bernardo Portela, Jodo Paulo. S2Dedup: SGX-enabled se-
cure deduplication. In 14th ACM International Conference on Systems and Storage, 2021.

This conference publication describes S2Dedup, a secure deduplication system based on trusted
hardware. By supporting multiple schemes, S2Dedup can offer tailored deployments for applica-
tions with distinct security, performance, and space savings requirements. Moreover, compared
to state-of-the-art solutions, its novel Epoch and Exact Frequency scheme enables improved secu-
rity without sacrificing storage performance or deduplication space savings. S2Dedup is publicly
available at https://github.com/dsrhaslab/s2dedup.

https://github.com/dsrhaslab/criba
https://github.com/dsrhaslab/s2dedup

CHAPTER 1. INTRODUCTION

Tania Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela, Joao Paulo, José Pereira, Danny
Harnik. TrustFS: An SGX-enabled Stackable File System Framework. In 38th International
Symposium on Reliable Distributed Systems Workshops, 2019.

This workshop publication describes TrustFS, a programmable and modular stackable file system
framework for implementing secure content-aware storage functionalities over hardware-assisted
trusted execution environments [41]. It extends the original design of the SafeFS system [91] to pro-
vide the isolated execution guarantees of Intel Software Guard Extensions [30]. A preliminary eval-
uation of a compression prototype built using TrustFS shows that it incurs reasonable performance
overhead under most workloads when compared to conventional storage systems, with throughput
degradation ranging from 6.5% up to 31.3%. TrustFS is publicly available at https://github.com/-
taniaesteves/TrustFS.git.

1.4 Outline

The rest of the document is organized as follows:

e Chapter 2. We introduce background concepts of the |/0 diagnosis process and discuss the
approaches followed by existing diagnosis solutions regarding their techniques for data collection,
analysis and visualization.

* Chapter 3. We introduce the design, implementation, and evaluation of CaT, a novel framework
for collecting and analyzing storage and network |/O requests of distributed systems.

e Chapter 4. We discuss the design, implementation, and evaluation of DIO, a generic tool for

observing and diagnosing |/0 interactions between applications and in-kernel storage systems.

e Chapter 5. We present the design, implementation, and evaluation of CRIBA, a tool built upon
DIO that simplifies and automates the exploration, analysis, and comparison of |/O patterns for

Linux cryptographic ransomware.

* Chapter 6. We discuss future research work and present the final remarks of this thesis.

https://github.com/taniaesteves/TrustFS.git
https://github.com/taniaesteves/TrustFS.git

2

|/O Diagnosis Background

The 1/0 diagnosis process includes two major phases: i) data collection, and ii) data analysis and visual-

ization (as depicted in Fig. 2.1). These phases are typically carried out by multiple components that work

WMIN Backend queries _|
(e.g., file, database) IR

aCCesses aCcesses

together as part of a pipeline.

Application
: . preprocesses

generates

Parser

I/0 re:quests Logs

Tracer

Resources
(e.g, disk network) Data Collection l | Data Analysis & Visualization

Figure 2.1. High-level design of a diagnosis pipeline.

The data collection phase comprises the process of obtaining information about the targeted appli-
cation, for instance, through a parser that preprocesses applications or system logs, or a tracer that
instruments applications, middleware components (e.g., network protocols or system libraries), or the OS
to intercept the applications’ requests. The data analysis and visualization phase is dedicated to process-
ing the collected data and presenting summarized