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Abstract: Lactobacillus species are the main colonizers of the vaginal microbiota in healthy women.
Their absolute quantification by culture-based methods is limited due to their fastidious growth.
Flow cytometry can quantify the bacterial concentration of these bacteria but requires the acquisition
of expensive equipment. More affordable non-culturable methods, such as fluorescence microscopy,
are hampered by the small size of the bacteria. Herein, we developed an indirect fluorescence
microscopy method to determine vaginal lactobacilli concentration by determining the correlation
between surface area bacterial measurement and initial concentration of an easily cultivable bacterium
(Escherichia coli) and applying it to lactobacilli fluorescence microscopy counts. In addition, vaginal
lactobacilli were quantified by colony-forming units and flow cytometry in order to compare these
results with the indirect method results. The colony-forming-unit values were lower than the results
obtained from the other two techniques, while flow cytometry and fluorescence microscopy results
agreed. Thus, our developed method was able to accurately quantify vaginal lactobacilli.

Keywords: bacterial quantification; flow cytometry; fluorescence microscopy; colony forming units;
vaginal lactobacilli

1. Introduction

Lactobacillus species (spp.) frequently dominate the vaginal microbiota of healthy
women [1]. The most common species of this genus present in the vaginal microbiota are
Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus gasseri, and Lactobacillus iners [2]. Of
note, L. crispatus is the most dominant vaginal lactobacillus in the majority of reproductive-
age women [3]. Recent reviews on the role of L. iners in vaginal health have pointed out its
presence in both optimal vaginal microbiota and in vaginal dysbiosis, making it unclear
whether it is protective or pathogenic [4,5]. The dysbiotic state characterized by a depletion
in vaginal lactobacilli with an increase in facultative and obligative anaerobes colonizing
the vaginal milieu is designated bacterial vaginosis (BV) [6], the most common vaginal
infection in women of childbearing age [7].

BV is clinically relevant as it affects millions of women annually and is associated
with multiple complications [8,9] including pelvic inflammatory disease [10], preterm
delivery [11], miscarriage [12], infertility [13], and an increased risk of acquisition of
sexually transmitted infections (STIs) including HIV [14], gonorrhea, and chlamydia [15].
Furthermore, despite initial response to antimicrobial therapy, a large proportion of women
with BV experience multiple episodes of recurrent disease [16]. However, after more
than 60 years of intense research, the exact etiology of BV is still unknown [17]. A recent
conceptual model for BV pathogenesis hypothesizes that virulent strains of Gardnerella spp.
are responsible for the initiation of the BV biofilm, first by displacing lactobacilli from
the vaginal epithelium, adhering to the vaginal epithelium in high numbers, and then by
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initiating BV biofilm formation [18]. Key interactions between Gardnerella spp. and P. bivia
then promote the next step of BV biofilm formation. During this period Gardnerella spp.
Acts in synergism with Prevotella bivia, leading to the production of vaginal sialidase which
disrupts the mucin layer on the vaginal epithelium. This disruption then promotes the
adherence of other BV-associated bacteria (BVAB) to the maturing BV biofilm [18]. The
incorporation of other BV-associated species in the BV biofilm can induce Gardnerella spp.
virulence factors [19,20], further promoting the development of BV.

Lactobacillus spp. grow fastidiously due to gene loss that occurs during the course
of their evolution, which affects their metabolism and requires a rich nutrient media [21].
Furthermore, vaginal Lactobacillus spp. are anaerobes that tolerate oxygen only to a certain
extent [22]. Their aerobic growth may stimulate oxidative stress and cellular damage in
lactic acid bacteria due to the production of reactive oxygen species [23]. These growth
requirements explain why Lactobacillus spp. are difficult to cultivate [24]. Therefore, culture-
based methods are not adequate to accurately quantify lactobacilli concentration [25], which
is essential for the preparation of an initial inoculum for downstream experiments [26].
Moreover, lactobacilli concentration quantification is important in the food industry, as
Lactobacillus spp. are responsible for nutritious and organoleptic qualities of some food prod-
ucts [27–29]. In addition, lactobacilli quantification can be used in the detection of BV by
microbiological and molecular methods [30] and to evaluate their role as probiotics [31,32].

Common molecular and non-molecular, culture-independent methods that allow for
researchers to quantify bacteria include quantitative polymerase chain reaction (qPCR), flow
cytometry (FC), and fluorescence microscopy (FM), respectively [33]. qPCR is widely use
to quantify bacteria [34], due to its reproducibility, ease of experimental design, robustness,
and affordability [35]. qPCR requires knowledge of the sequence data of the specific target
gene of interest, but allows for very high specificity [35]. However, the adequate use of
qPCR to quantify bacteria requires the use of exogenous controls to normalize the results,
which is often ignored in many microbiology research studies [36]. The second mentioned
method, FC, is fast, robust, and reproducible for determining total and viable bacterial
counts, with the potential for automation; however, it is not cost effective [37,38]. FM
is more affordable than qPCR and FC, but more time consuming [39–42], and requires
the use of a Neubauer chamber or ocular grids installed in the microscope [43]. Smaller
dimensions of bacteria present a limitation in the accuracy of this method, due to locating
bacterial cells at different focal points [44]. Moreover, not all microscopes have ocular grids
installed. We previously used FM to quantify vaginal lactobacilli and other vaginal bacterial
species, by determining the surface colonization of these species [45,46]. However, surface
colonization quantification has limited application and is unable to quantify bacterial
suspension concentration in standard measurement units, such as colony-forming units
(CFUs) per milliliter. Thus, we aimed to develop an indirect FM method for absolute
quantification of vaginal lactobacilli in an attempt to overcome these limitations.

The need to develop a method to quantify lactobacilli emerged from the need to
further study bacterial interactions between vaginal lactobacilli and BV-associated bacteria
(BVAB) in BV pathogenesis research [18]. To achieve this goal, we used an easily cultivable
bacterium, Escherichia coli, with well-defined bacterial density for a certain optical density
(OD), to perform an indirect comparison. We were able to transform a three-dimensional
quantification (CFU/mL) into a two-dimensional quantification (CFU/cm2), which allowed
for us to quantify vaginal lactobacilli concentrations in suspensions.

2. Materials and Methods
2.1. Culture Conditions and Strains

L. crispatus CCUG 44128, L. jensenii CCUG 44492, L. gasseri CCUG 44075, and L. iners
CCUG 38955 A were grown on Columbia blood agar base (CBA) (Oxoid, Basingstoke, UK)
supplemented with 5% (v/v) defibrinated horse blood (Oxoid), at 37 ◦C under 10% CO2.
Escherichia coli ATCC 25922 was also grown on CBA supplemented with 5% (v/v) defib-
rinated horse blood, but in an aerobic atmosphere at 37 ◦C. Candida albicans SC 5413 was
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grown on Sabouraud dextrose agar (SDA; Liofilchem, Waltham, MA, USA) plates and
incubated for 24 h at 37 ◦C, as described by Fernandes et al. [47].

2.2. Colony-Forming Units Counting Method

Each lactobacillus biomass was resuspended in 1× phosphate-buffered saline (PBS)
(composed by 8 g·L−1 of NaCl, 0.2 g·L−1 of KCl, 0.2 g·L−1 of KH2PO4, and 1.15 g·L−1 of
Na2HPO4, with pH 7.4 ± 0.05) and sonicated 3 times for 10 s at 40% with 10 s intervals
between cycles. Each suspension OD620nm was adjusted to 0.5 and serial dilutions ranging
from 10−1 to 10−6 were performed in 0.9% (w/v) NaCl. Then, 10 µL of each dilution was
spread into CBA plates and incubated for 48 h at 37 ◦C under 10% CO2. For E. coli, biomass
was resuspended in 1× PBS and sonicated 10 s at 33% on ice. This suspension was adjusted
to OD620nm of 0.125, 0.25, and 0.5, which were then serial diluted from 10−1 to 10−6 and
plated into CBA plates. The E. coli plates were then incubated at 37 ◦C for 18 h. These
assays were performed with two replicates and repeated three times on separate days.

2.3. Flow Cytometry Quantification

Suspensions of the four vaginal lactobacilli of interest and E. coli were prepared as
mentioned above, and their OD was adjusted to 0.5. Lactobacillus suspensions were stained
using acridine orange (Alfa Aesar, Haverhill, MA, USA) 0.002 mg/mL for 15 min in the
dark at room temperature. The E. coli suspension was stained using SYBR green (Invitrogen,
Waltham, MA, USA) 1:10,000 for 15 min. Two different dyes were used in an attempt to
obtain the higher percentage of stained bacteria. FC (Cytoflex, Beckman Coulter, Brea, CA,
USA) counts were performed using the FITC filter block. The sampling rate was 10 µL/min,
and the total number of events was set to 30,000 cells. Data were acquired and analyzed
using CytExpert 2.4 software; multiparametric analyses were performed on forward and
side scatter. To perform the manual gating, 1× PBS was analyzed in the FC before the
bacterial suspensions, in order to define the area that corresponds to the events that are not
cells. Since all bacteria were resuspended in 1× PBS, the particles present in this solution
appeared in every bacteria analysis, for this reason, it is crucial to define what corresponds
to 1× PBS events. All assays were repeated three times on separate days.

2.4. Visualization of Bacteria and Yeast in the Neubauer Chamber

A suspension of L. crispatus was prepared, as mentioned previously, and a suspension
of C. albicans was prepared by resuspending its biomass in 1× PBS. The OD620nm of both
suspensions was adjusted to 0.5 and then diluted 10×. Next, 10 µL of Acridine orange
0.02 mg/mL was added to 20 µL of each suspension. After 5 min of incubation in the
dark, 10 µL of the mixture were added to a Neubauer chamber, a lamella was placed on
it, and the cells were visualized under the 40× objective of an epifluorescence microscope
(Olympus BX51, Olympus, Lisbon, Portugal), capturing images with a screen resolution of
1360 × 1024 pixels with the Olympus Cellsens software 4.2.1 and using filters capable of
detecting acridine orange (BP 470–490, FT500, LP 516).

2.5. Fluorescence Microscopy Quantification of Total Counts

Suspensions in PBS 1× of the four Lactobacillus spp. and E. coli were prepared, as
described above. For Lactobacillus spp. the OD620nm was adjusted to 0.5, and for E. coli
it was adjusted to 0.125, 0.25, and 0.5. Next, a 1:500 dilution of each suspension was
prepared and 20 µL of each dilution was spread on epoxy-coated microscope glass slides
(Thermo Fisher Scientific, Waltham, MA, USA), and the slides were dried at 60 ◦C. Cells
were then fixed by adding 100% (v/v) methanol to the slide for 20 min to, followed by
4% (w/v) paraformaldehyde (Thermo Fisher Scientific) for 10 min, and 50% (v/v) ethanol
(Thermo Fisher Scientific) for 15 min [48]. After fixation, cells were covered with 20 µL of
acridine orange (0.02 mg/mL) for 5 min. The slides were subsequently visualized under
the 40× objective of an epifluorescence microscope, Olympus BX51 (Olympus, Lisbon,
Portugal), using filters capable of detecting acridine orange (BP 470–490, FT500, LP 516).
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The number of bacterial cells were manually counted at the adequate dilution (<100 bacteria
per field). We have previously determined that at least 13 images per sample are needed
to have a high correlation between bacterial counts and bacterial concentration [48]. The
surface area of each image was determined using the pixel area equivalent to the Neubauer
chamber. In our optical system, each image was equivalent to 3.56 × 10−4 cm2. All assays
were repeated three times on separate days.

2.6. Indirect Assessment of Bacterial Concentration by Measurement of Bacterial Surface Area

After performing the total counts for E. coli, a calibration curve was constructed,
relating the E. coli CFUs (x axis) for each optical density and the total number of cells
fixed to the microscopic glass surface (y axis). To determine the lactobacilli suspension
concentration in CFU/mL, we performed the fixation of a lactobacilli suspension in a
microscopic glass surface and quantified the total number of fixed cells following the same
procedure as for E. coli. The obtained valued of fixed lactobacilli/cm2 was then applied
in the calibration curve equation to convert the measured cells/cm2 by CFU/mL(i.e., we
determined the lactobacilli concentrations using data (CFUs and total counts) from an
unrelated bacterial species, namely, E. coli).

2.7. Statistical Analysis

The obtained results from FM, FC, and CFU for the four Lactobacillus species of interest
were analyzed using the t-test paired samples with Microsoft Excel 2019. A p-value ≤ 0.05
was deemed statistically significant.

3. Results
3.1. Comparison of CFU and FC in the Quantification of Vaginal Lactobacilli

To assess the culturability of our vaginal Lactobacillus spp. of interest, we prepared sus-
pensions of each of the 4 species, that were adjusted to obtain approximately 108 CFU/mL,
as described above. Then, we assessed the bacterial concentration of each suspension
by two independent methods. As seen in Figure 1, both L. crispatus and L. iners had a
significantly lower CFU quantification, in comparison with the FC analysis (for L. iners the
difference was approximately 4 log).
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Figure 1. Quantification of bacterial concentrations of L. crispatus, L. jensenii, L. gasseri, and L. iners
suspensions with an OD of 0.5 by culture-dependent (CFU) and -independent (Flow cytometry)
techniques. The bars represent the mean and the standard deviation of 3 independent experiments.
* Represents statistical significance (t-test paired samples, parametric, p ≤ 0.05).
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3.2. Neubauer Chamber to Quantify Bacteria vs. Yeast

To highlight the importance of this novel indirect method, we started by demonstrating
the limitation of the Neubauer chamber to quantify Lactobacillus spp. As can be seen in
Figure 2, we observed that L. crispatus can be found at different focal points due to its small
dimensions (in comparison with the depth of the Neubauer chamber), which could lead
to miscalculation on the initial bacterial concentration. For comparison purposes, we also
included the yeast C. albicans, whose cells are significantly larger and could be observed
throughout the different depths of view.
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Figure 2. Comparison of the use of Neubauer chamber for (a) L. crispatus and (b) C. albicans using three
z-stacks. The observation of these microorganisms was performed using fluorescence microscopy.
For L. crispatus (a), the variation of focal points demonstrates different numbers of counts, while for
C. albicans (b) the number of cells is the same for the three z-stacks. The red circles surround the
bacteria that are not visible in the first focal plan. Scale bar: 20 µm.

3.3. Correlation of Surface Area Bacterial Measurement with Initial Bacterial Density

In order to overcome the above focal point limitation of the Neubauer chamber, we
aimed to correlate the bacterial concentration contained in an equivalent volume used
on the Neubauer chamber, after fixation on a regular microscopic slide. To validate this
proof of principle, we selected an easily cultivable bacterial species, E. coli, that is known to
be accurately quantified by CFUs [49]. Three different bacterial concentrations of E. coli,
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quantified by optical density, were used in this experiment. As shown in Figure 3, this
method allowed for us to correlate the initial bacterial concentration (a 3D measurement),
to a 2D bacterial measurement (surface area of the fixated suspension), thus allowing for us
to use FM for bacterial culture concentration determination by eliminating the focal point
limitation of the Neubauer chamber.
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for the same OD. Three bacterial suspensions initially adjusted to different OD620nm, namely, 0.5,
0.25, and 0.125, were quantified by both FM and by plate counting. The dots correspond to three
independent assays for each OD.

3.4. Quantification of Lactobacillus spp. Concentration by an Indirect Microscopy Method

By applying the same experimental procedure to the lactobacillus suspensions, we
were able to infer their initial bacterial concentrations from the analysis of the quantified
adhered bacteria, as shown in Figure 4. After performing total counts of the lactobacilli, we
applied these results to the equation in Figure 3, converting total counts into CFUs. To con-
firm the accuracy of this method, we used the same bacterial concentrations used in the FM
analysis and compared them to FC quantification. As can be seen in Figure 5, both methods
resulted in very similar bacterial concentrations, despite some significative differences for
L. jensenii, which had a lower concentration observed for the FC measurements.
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Figure 5. Quantification of bacterial concentrations of L. crispatus, L. jensenii, L. gasseri, and L. iners
suspensions with an OD of 0.5, using fluorescence microscopy and flow cytometry techniques. The
bars represent the mean and the standard deviation of 3 independent experiments. * Represents
statistical significance (t-test paired samples, parametric, p ≤ 0.05).

4. Discussion

Bacterial quantification is a common and required experimental step in a wide variety of
experimental set ups, including medical settings [50,51], food industry [52,53], environmental
quality control [54,55], and industry [56,57]. Traditionally, the plate method colony count-
ing is considered the gold standard for bacterial quantification [58,59]; however, with the
realization that many bacterial species can develop viable but not cultivable state [60–62],
non-culture-dependent methods have been developed [63,64]. However, development
of new non-culture-dependent methods highlighted that often, different methodologies
can yield significant different bacterial quantification [65–67]. As such, depending on the
experimental design and model organism, accurate bacterial quantification might require
the utilization of multiple techniques.

The results of this study demonstrate a feasible and affordable indirect method to
determine vaginal Lactobacillus spp. concentrations. With the exception of L. iners, these
species are considered as vaginal health markers, protecting the vaginal epithelium from col-
onization of pathogenic microorganisms [1]. However, due to their fastidious nature, these
species are difficult to cultivate [24], as demonstrated in Figure 1. Previously, Lahtinen et al.
compared four methods for the quantification of probiotic bifidobacteria and concluded
that the choice of quantification method for fastidious bacteria may have a significant effect
on the results of the analysis [68]. Thus, taking into consideration lactobacillus growth
characteristics, we considered the use of culture-independent methods to enable their quan-
tification, namely FC and FM. Our aim to develop an affordable, fast, and accurate method
to quantify vaginal Lactobacillus spp. was motivated by the development and application of
in vitro models to better study BV pathogenesis, in particular bacterial interactions between
protective lactobacilli and key BV-associated bacteria (BVAB) [18]. We have previously
proposed that some species of Gardnerella, the genus thought to initiate the formation of the
polymicrobial BV biofilm, form a scaffold for which other BVAB can adhere, leading to a
mature, polymicrobial biofilm. We have shown that Gardnerella spp. displace pre-adhered
L. crispatus, which we hypothesized to be a pivotal event for BV development [69]. How-
ever, some Lactobacilli have also been shown to impair Gardnerella spp. [70,71] and other
BVAB [72,73]. As such, it is important to better study interactions between Lactobacilli and
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BVAB, in order to better understand BV etiology, and the method developed herein can
contribute to this goal.

Regarding the quantification of the four Lactobacillus spp. by CFUs and FC, the results
of this study show that CFUs are not an appropriate method for accurate quantification of
L. crispatus and L. iners, which is not surprising, as these species are considered difficult
to cultivate [74]. Also, when comparing Figures 1 and 5, we observed that the FC and FM
results are more similar between all species (average difference of 0.73 ± 0.08 CFU/mL)
than the results of FC and CFU (average difference of 1.31 ± 0.19), as well as FM and
CFU (average difference of 1.81 ± 0.18), wherein CFU determination often underestimates
the bacterial concentration. Moreover, other studies have also reported smaller bacterial
concentrations determined by CFUs compared to FC and FM quantifications, suggesting
that some of these bacteria may have become dormant [68,75,76].

We show the limitation of the Neubauer chamber to quantify bacteria, which we
confirmed in Figure 2, with bacteria appearing in certain focal points, which is corroborated
by the literature [44]. The reported lactobacilli and C. albicans dimensions found justify
this limitation, with lactobacilli length as small as 2 µm [77], while C. albicans could have
a diameter of approximately 12 µm [78]. Considering this and the high costs of FC [24],
we developed a method based on FM to quantify vaginal lactobacilli, as this technique is
readily available in many research labs [79]. We have shown that the relationship between
total counts and plate counting for E. coli for three OD620nm is linear, which allowed for
us to determine the correlation between a surface area (2D) bacterial measurement with
the initial bacterial concentration obtained with CFUs (3D). Thus, after counting total
lactobacilli using FM, we converted those results to CFUs/mL.

Comparing the FC and FM results, statistical differences were verified only for
L. jensenii; however, these differences were smaller than 1 log. Some differences be-
tween different methods are to be expected, and the subjectivity of cytometry manual
gating (the process of identification of a cellular population) may have contributed to
these differences [80,81]. A gate is a region in a biaxial plot of forward and side scatter,
in which the cells with the desired phenotype are chosen. This first cell’s gate is then
visualized in another biaxial plot, being redefined. However, as this is a manual process,
it becomes subjective, as the sequence of biaxial plots depends on the user’s knowledge
and view [82]. Nevertheless, for the other three vaginal lactobacilli there was agreement
between quantifications obtained by FC and FM. Previous agreements between FC and
FM measurements have been reported in studies with other microorganisms [83,84]. This
supports the accuracy of our developed method. Precision, which is also important in
fluorescence microscopy [85], was not determined in these experiments. However, im-
precision can be overcome by counting more images [86]. We previously observed that
a minimum of 13 images per sample would be required to obtain high precision, and no
significant increase in precision was observed after increasing the number of images up to
20 images per field [48]. Our strategy to convert a surface area measurement in a bacterial
concentration, using data from an unrelated species (E. coli) whose CFU relationship to
OD is linear, was proven successful and can be used in future studies that require accurate
assessment of vaginal lactobacilli concentrations. This method also has the potential to be
adapted for other fastidious and/or dormant-inducing bacterial species including fastidious
BV-associated bacteria.
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