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The imbalance of epigenetic regulatory mechanisms such as DNA methylation, which can promote aberrant
gene expression profiles without affecting the DNA sequence, may cause the deregulation of signaling,

epigen regulatory, and metabolic processes, contributing to a cancerous phenotype. Since some metabolites are
Keywords: substrates and cofactors of epigenetic regulators, their availability can be affected by characteristic cancer
Cancer cell metabolic shifts, feeding cancer onset and progression through epigenetic deregulation. Hence, there is a
Genome-scale metabolic models (GSMMs) need to study the influence of cancer metabolic reprogramming in DNA methylation to design new effective
DNA methylation treatments. In this study, a generic Genome-Scale Metabolic Model (GSMM) of a human cell, integrating

GSMM s enhanced with enzymatic constraints
using kinetic and omics data (GECKOs)

DNA methylation or demethylation reactions, was obtained and used for the reconstruction of Genome-Scale
Metabolic Models enhanced with Enzymatic Constraints using Kinetic and Omics data (GECKOs) of 31 cancer
cell lines. Furthermore, cell-line-specific DNA methylation levels were included in the models, as coefficients
of a DNA composition pseudo-reaction, to depict the influence of metabolism over global DNA methylation in
each of the cancer cell lines. Flux simulations demonstrated the ability of these models to provide simulated
fluxes of exchange reactions similar to the equivalent experimentally measured uptake/secretion rates and to
make good functional predictions. In addition, simulations found metabolic pathways, reactions and enzymes
directly or inversely associated with the gene promoter methylation. Two potential candidates for targeted
cancer epigenetic therapy were identified.

1. Introduction

In the past decades, there has been an increase in the incidence of

Another fundamental feature of cancer is its metabolic rewiring, as
cancer cells are forced to adapt their metabolism to generate enough
energy and elementary metabolites for the synthesis of new cellu-

early-onset cases of cancer [1]. Changes in lifestyle, environment, and
diet, together with genetic susceptibilities, have contributed to genetic
mutations that trigger an imbalance of cell differentiation, survival,
and/or proliferation, promoting cancer onset and development [1,2].
In addition to genetic mutations, which directly affect the DNA se-
quence, the de-regulation of epigenetic mechanisms, which control
the attachment of chemical groups to DNA, histones, and nucleosome-
positioning protein complexes, can also induce cancerous phenotypes.
In particular, the imbalance in epigenetic modifications may change the
chromatin accessibility to transcriptional complexes, and subsequently,
induce aberrant gene expression profiles without affecting the genomic
sequence [2].

* Corresponding author.

lar membranes, proteins, or nucleic acids necessary for cell prolif-
eration [3,4]. Furthermore, given that distinct metabolites are also
substrates or cofactors of epigenetic regulators [5], alterations in their
availability, as a consequence of metabolic reprogramming, can induce
a cancerous phenotype through epigenetic deregulation [2,6], whereas,
on the other end, epigenetic alterations on genes encoding metabolic
enzymes may contribute to the metabolic shift characteristic of cancer.
Therefore, there is an urge to investigate the cross-talk between cancer,
epigenetics, and metabolism to develop new and efficient therapeutic
strategies against the disease.
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Genome-Scale Metabolic Models (GSMMs) are mathematical repre-
sentations of all metabolic reactions of a cell, where reactions catalyzed
by enzymes are mapped to associated genes and/or proteins [7]. By as-
suming the steady state (that metabolite concentrations do not change
over time), it has been possible to utilize these in silico constructs in the
prediction of metabolic phenotypes. In detail, the product of a matrix
with the stoichiometric coefficients (where columns and rows represent
respectively the reactions and metabolites) and a vector of reaction
fluxes (rates) is assumed to be zero upon the steady state. This results in
a solvable system of linear equations, the solution of which comprises
fluxes of all metabolic reactions represented in the system [8]. The
development of methodologies for omics data acquisition over the years
has favored the reconstruction of this type of model under specific
biological contexts by integration of omics data of a particular tissue
or cell type. In particular, a variety of healthy cells and morbidities [9-
13], including cancer [14-16] have been modeled with context-specific
GSMMs.

The main disadvantage of traditional constraint-based GSMMs is
that, unless nutrient uptake fluxes are known, no finite flux distribution
can be obtained. Unlike traditional GSMMs, Genome-Scale Metabolic
Models enhanced with Enzymatic Constraints using Kinetic and Omics
data (GECKOs) do not require nutrient-uptake rates to produce finite
flux values during simulations, as they integrate both enzymatic kinetic
information and concentration, that serve as additional constraints to
the flux solution space. Specifically, enzymes are added as pseudo-
metabolites that although represented as substrates, do not affect the
mass balance of the reactions they catalyze, and pseudo-uptake reac-
tions for each enzyme are included to guarantee enzyme mass balance.
This results in an extended version of the abovementioned matrix
of stoichiometric coefficients, where additional rows representing the
enzyme mass balance and columns depicting enzyme usage reactions
are introduced. The catalytic information is presented in the form of the
inverse of turnover number (k,,,) values, as coefficients to the enzymes
in metabolic reactions, whereas enzyme concentrations are used as the
upper bounds of enzyme usage reactions. When no proteomics data is
available to limit the flux of each enzyme usage reaction, an enzyme
usage reaction of the pool of all enzymes is introduced instead and each
enzyme is drawn from the enzyme pool [17].

Few studies have attempted to use GSMMs to model the inter-
action of metabolism and epigenetics. An old study from 2014 [18]
integrated the decrease in gene expression observed upon mutation
of histone tails, which are often mutated in cancer and are targeted
by epigenetic marks, into a yeast model to represent the effect of
those mutations on the rate of production/consumption of acetyl-CoA,
a substrate for histone acetylation. In the following year, an analysis
was published [19] where metabolic models reconstructed for differ-
ent time points, based on time-course transcriptomics data, provided
simulations that were compared with ChIP-seq data for a histone-
acetylation mark, to capture the differentiation of primary human
monocytes to macrophages. The authors observed that enhancers of
metabolic genes under high regulatory load (close to histones with high
levels of the acetylation mark) were mainly associated with transport
reactions and other metabolic pathway entry points in comparison
with other metabolic genes, suggesting that the former are critical
epigenetic-regulatory control points for the metabolic reprogramming
during monocyte to macrophage differentiation [19]. In another study
from 2017, Chandrasekaran et al. [20] tried to predict in which of
the two states murine pluripotent stem cells go through during em-
bryonic development, preceding (naive state) or succeeding (primed
state) the implantation of the embryo in the uterus, was producing
more S-Adenosyl-Methionine (SAM), a substrate for methylation. Using
a semi-dynamic modeling approach, the authors suggested that histone
methylation was more intense in the primed cells, which was experi-
mentally verified afterward [20]. Most recently, Shen et al. successfully
predicted the increase or decrease in protein acetylation levels in
human cells in the presence of different nutrient sources. Furthermore,

Computers in Biology and Medicine 170 (2024) 108052

through the inclusion of one reaction representing the overall protein
acetylation, cancer cell lines that were more sensitive to vorinostat,
a deacetylase inhibitor used in cancer treatment, were estimated to
have higher acetylation levels, suggesting that GSMMs could be used
to identify cancer cells more responsive to treatments with deacetylase
inhibitors [21].

Although those studies represent important steps toward the mod-
ulation of the interplay between metabolism and epigenetics, they all
focus on histone modifications, particularly acetylation. The only study
that addresses methylation dwells on histone methylation in murine
cells and simply uses the flux of SAM as a surrogate for methylation.
In the present work, we reconstruct models for 31 human cancer cell
lines which included DNA methylation and demethylation reactions
described in the literature, as well as DNA methylation levels estimated
from experimental data. Furthermore, these models are GECKOs, which
present the advantage of providing more accurate flux distributions
than traditional GSMMs when experimental flux values are unava-
ilable.

2. Results

In this study, GECKO models containing DNA methylation and
demethylation reactions were reconstructed for different cancer cell
lines. Those reactions, which included DNA containing modified cy-
tosines were retrieved from literature, adapted for charge and mass
balance, and were first introduced on the generic GSMM Humanl [22]
(more details on Creation of the generic DNA methylation model section
of Materials and Methods). The complete list of reactions introduced
is shown in 1xt and a simplified visual representation of how those
reactions integrate with the model is presented in Fig. 1.

In a nutshell, the DNA methylation process starts when SAM is
produced in the one-carbon cycle in the cytoplasm through reac-
tion MARO03875, and, once inside the nucleus, it is used as a sub-
strate of DNA methylation through reaction MAR0O8641 (Fig. 1). DNA
can then be demethylated using different pathways (Fig. 1). DNA-
5-methylcytosines (DNA5SmC) can be successively oxidized to DNA-
5-hydroxymethylcytosines (DNA5ShmC), DNA-5-formylcytosines (DNA-
5fC), and DNA-5-carboxylcytosines (DNA5CaC) or converted to thy-
mines, i.e. DNA-5-methyluracils (DNA5SmU). DNA5SfC and DNAS5CaC
can be transformed back to unmethylated cytosines in DNA (through
the enzyme non-catalyzed reactions consdirectDNASfC and consdirect-
DNA5CaC), or like DNA5SmU, they can be replaced by unmethylated-
cytosines through the cellular Base-Excision Repair (BER) mechanism.
The BER starts with the excision of the modified cytosine (reactions
prodAPsite3 and prodAPsite4) or the mismatched thymine (prodAPsitel
reaction) using DNA-glycosylases that cleave the bound between the
base and the deoxyribose creating an apyrimidinic site (APsite). An
endonuclease then cuts the phosphate backbone at the APsite, leaving
a nick and a deoxyribo-5’-phosphate (dRP) to which the excised base
was connected (in reaction proddRPsite). A new unmethylated cytosine
is inserted afterward, while the dRP is still hung by its 3’ side to the
phosphate backbone (in prodhangdRPsite reaction). The dRP is excised
by a dRP lyase, creating a nick in the DNA strand (in prodDNAnick reac-
tion), which is then ligated by a DNA ligase, restoring the unmethylated
DNA (in ligate DNA reaction) (see Fig. 1).

Since the ratio of DNA5mC, DNA5hmC, and DNASfC in relation to
unmethylated DNA can be estimated, a pseudo-reaction representing
the composition of total DNA (DNAtot) in terms of those species was
also introduced in the model (prodDNAtot reaction), and the original
biomass reaction was replaced by an equivalent one (adaptbiomass
reaction) where DNA was substituted by DNAtot (Fig. 1).

The final adapted generic model was able to produce biomass
and none of the introduced (de)/methylation reactions were blocked.
Context-specific GSMMs were then built for different NCI-60 cell lines
through the integration of transcriptomics data, and a procedure from
Robinson et al. [22] was used to convert those traditional GSMMs into
GECKO models.
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Fig. 1. Visual representation of reactions contributing to DNA methylation and demethylation. Note that this is just a simplified scheme, as it does not reflect the stoichiometric

proportions and excludes many metabolites and transport reactions (for all complete

reactions see Tab. A.1). Reaction identifiers are in italic. Those in red color were added

to the original Humanl (version 1.12) generic model. Gly: Glycine; Ser: Serine; Met: Methionine; THF: Tetrahydrofolate; mTHF: methyl-THF; meTHF: 5,10-methylene-THF; SAM:
S-Adenosyl-Methionine; SAH: S-Adenosyl-Homocysteine; hCYS: Homocysteine; DNASmC: DNA-5-methylcytosine (i.e. methylated DNA); DNAShmC: DNA-5-hydroxymethylcytosine;

DNASfC: DNA-5-formylcytosine; DNA5CaC: DNA-5-carboxylcytosine; DNASmU: DNA-5-

2.1. Reconstruction of cell-specific metabolic models

This study tested two strategies previously applied to build GSMMs
of NCI-60 cell lines. One of those, introduced by Richelle et al. [23] in
MATLAB, and here implemented in Python, is based on the inclusion of
cell-type specific metabolic tasks. Initially, gene scores resulting from
the preprocessing of transcriptomics data were converted to reaction
scores for each cell line, using Gene-Protein-Reaction (GPR) rules. The
highest reaction scores in a cell line were then attributed to all reactions
necessary for each generic metabolic task, deeming a generic task as a
metabolic task done by all cell types. Also, the same procedure was ap-
plied for reactions necessary for cell-type specific tasks, as long as those
tasks are done by the specific cell type under consideration. Reactions
necessary for a task were identified as the ones carrying flux after the
implementation of the task-associated flux constraints on the generic
model upon minimization of the sum of all fluxes. In order to determine
whether a cell type performs a certain cell-specific task, a metabolic
score was calculated for each task and cell type combination (see more
details in Reconstruction of cell line-specific traditional GSMMs section
of Materials and Methods). Afterward, the reconstruction algorithm
FASTCORE was applied to build the cell-specific models, because, like
other MBA-based methods and unlike iMAT-based methods (such as
INIT), it preserves almost all tasks after reconstruction [23].

The second strategy consisted of directly using a version of the tINIT
algorithm already implemented in MATLAB by Robinson et al. [22],
which preserves the generic metabolic tasks (see more details in the
Reconstruction of cell line-specific traditional GSMMs section of Materials
and Methods).

For the selection of the best reconstruction and simulation strate-
gies, models were initially built for only 40 to 42 of the NCI-60 cell
lines, due to the lack of transcriptomics data, DNA methylation mea-
surements, and metabolite uptake rates for some cell lines. The exact
number varied with the reconstruction strategy applied depending on
the number of infeasible models (1 or 2). However, after the selection of

methyluracil.

the best strategy, the number of models used in subsequent simulations
was reduced to 31, due to the lack of another data type needed for
model integration with the degree of DNA methylation, as will be
explained further below.

2.2. Detection and validation of the best reconstruction and simulation
pipelines

Since no flux distribution can be obtained from unconstrained tra-
ditional GSMMs, the uptake rates of metabolites in Ham’s media were
loosely constrained (from —1000 to 1000) and those of other metabo-
lites were closed (set from O to 1000). Then, a parsimonious Flux
Balance Analysis (pFBA) was applied and the resulting simulated fluxes
of exchange reactions of 26 metabolites were compared with experi-
mentally measured ones. Although there was a small correlation be-
tween simulated and measured fluxes, 0.33-0.51 and 0.34-0.49 of
Pearson and Spearman correlation respectively (with a p-value of zero),
most of the simulated values did not match measured ones, i.e. the
logarithm of their absolute values was higher or lower than + 1 of
log;o(Jmeasured value|) (most data points fell outside the pink area
of the graphs in Fig. A.1). Note that the absolute values of the fluxes
were logarithmized as the majority presented small values (close to
zero) (Fig. A.1-E). Richelle’s approach (Fig. A.1-A,B) showed a higher
percentage of matching values than Robinson’s strategy (Fig. A.1-C,D),
and the integration of tasks was slightly detrimental to the correlation
values in both reconstruction methodologies (Fig. A.1-A,C versus B,D).
The predicted flux values of biomass were much higher than the
measured ones and the relative errors of predicted growth rates were
high (Fig. A.2). Note that the goal of this analysis is not to assess
whether one reconstruction algorithm is better than the other (tINIT
and FASTCORE), as that would require both algorithms to be run with
the same programming language, but instead find a reconstruction
approach that provides good quality models for the specific NCI-60 cell
line dataset.
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Given that constraints in the uptake/secretion rates of three metabo-
lites (glucose, lactate, and threonine) with experimentally measured
values had been previously reported as sufficient to generate small
growth rate prediction errors for the models of eleven of the NCI-60 cell
lines [22], we decided to test the effect of those constraints here. The
absolute values of the fluxes were again logarithmized because many
presented small values (close to zero) (Fig. A.3-E), and only 23 metabo-
lites were taken into account, as the three metabolites whose fluxes
were constrained were excluded from the analysis to prevent bias.
Overall, there was an increase in the percentage of simulated fluxes
whose values were similar to those measured (the log;,(|simulated
value|) was within log;,(|measured value|) + 1, as 65%-74% of data
points are inside the pink area of the graphs in Fig. A.3) in relation
to the loosely constrained models (Fig. A.1). This was coupled with
an improvement in the correlation between simulated and measured
values (the Pearson and Spearman correlations enhanced to 0.47-0.62
and 0.54-0.59). Furthermore, the correlations and the percentages of
biomass flux values in close proximity to those measured greatly in-
creased, while the relative errors of predicted growth rates reduced
in comparison with the loosely constrained models (Fig. A.4 versus
Fig. A.2). Unlike the loosely constrained models, the integration of
cell-specific tasks provided a slight improvement when using Richelle’s
strategy (Fig. A.3-A versus B) and the overall best-performing recon-
struction strategy was, in this case, Robinson’s approach (Fig. A.3-A,B
versus C,D).

With this data set, good simulations were obtained by limiting
the fluxes of three exometabolites with experimental data. However,
one of the purposes of this study is to present a pipeline that can be
adopted in the future to different datasets, creating models that depict
the interplay of metabolism and DNA methylation in other biological
contexts, for most of which such experimentally measured metabolite
uptake/secretion rates are unknown. Therefore, we assessed whether
GECKO models without constraints on exchange metabolite uptake
rates could be enough to make accurate predictions. Although an
enzymatic pFBA with GECKO models in which the only constraint was
the limitation of the protein pool uptake (with estimated cell-specific
total protein concentrations) provided smaller correlations, it predicted
more fluxes in close agreement with measured values (69%-77% in
Fig. A.5) than both the traditional loosely constrained GSMMs (1%-3%
in Fig. A.1) and those constrained with the three exometabolites uptake
rates (65%-74% in Fig. A.3). Robinson’s strategy was the reconstruc-
tion approach that gave the best results with enzyme-constrained mod-
els (Fig. A.5-A,B versus C,D) and the inclusion of tasks was detrimental
(Fig. A.5-A,C versus B,D). Hence, subsequent simulations were per-
formed with GECKO models reconstructed with Robinson’s approach
and excluding reactions necessary for tissue-specific tasks.

Even though 100% of log;(|biomass flux|) values predicted with
GECKO models lay within + 1 of log;(|measured value|) (fig. A.6)
and the relative error in prediction of growth rates is in agreement with
previously reported values for eleven of the NCI-60 cell lines [22], there
is no significant correlation (p-value > 0.05) between simulated and
real biomass flux values as the simulated values were underestimated
(i.e. most data points are below the diagonal line in Fig. A.6-A-D).

One possible explanation for this is the assignment of default values
to two parameters influencing the limitation given to the total protein
uptake flux. Those parameters are o, which accounts for the level of
enzyme saturation in vivo, and f, the mass fraction of enzymes that
are accounted for in the model out of all proteins present in the cell.
These parameters can change with the cell type and are unknown for
NCI-60 cell lines. Another factor that could have contributed to the
underestimation of biomass flux is an incorrect assessment of the real
value of total protein concentration.

In fact, when biomass fluxes together with the total protein con-
centration were constrained with experimental values and an FBA
with minimization of total protein uptake reaction was performed
on GECKOs reconstructed with the best strategy (Robinson’s pipeline
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and without tasks), only two models were feasible, reinforcing that
the aforementioned parameters or total protein concentrations are not
correct. Therefore, we did a similar simulation where biomass fluxes
were limited with experimentally measured flux rates, but without
limiting the total enzyme pool uptake rate.

As expected, the limitation of the biomass flux with bounds deter-
mined from experimental values led the biomass simulated flux to be
closer to the mean measured flux (Fig. 2-B versus Fig. A.6-C), improving
the relative error of the growth rate (Fig. 2-D versus Fig. A.6-E). Regard-
ing the fluxes of the 26 exometabolites, the restriction of growth rates
gave similar results as without the constraints on biomass (Fig. 2-A
versus Fig. A.5-C). Furthermore, the percentage of simulated flux values
within proximity to those measured in GECKOs with a constraint on
biomass (77% in Fig. 2) is higher than with traditional GSMMs with a
constraint on biomass (71% in Fig. A.7). Hence, subsequent simulations
were done with GECKO models reconstructed with Robinson’s approach
and limited by experimental growth rates, while minimizing the total
enzyme usage.

2.3. Integration of models with cell line-specific DNA methylation levels and
generic DNA methylation flux rules

The overall degree of protein acetylation of different human cell
lines has been previously predicted in a study using traditional GSMMs,
in which the simulated flux of a pseudo-reaction of global protein
acetylation was shown to correlate with the amount of one type of
histone acetylation mark that functions as an epigenetic regulator [21].
Therefore, in this study, we assessed whether an equivalent correlation
could be observed between the simulated DNA methylation flux and the
degree of DNA methylation estimated with experimental data (details
on the estimation procedure in Comparison of fluxes of reactions involved
in DNA (de)/methylation and the degree of DNA methylation section of
Material and Methods).

The results presented in Fig. A.8-A demonstrate a lack of strong
correlation between the actual global DNA methylation level (details
of its estimation in Calculation of the composition of total DNA section of
Materials and Methods) and the simulated flux of the DNA methylation
reaction (MAR08641) as well as between the first and the flux of the re-
action that produces the cytoplasmatic SAM (MAR03875), which is one
of the substrates of DNA methylation. Note that the values in the scatter
plots were logarithmized because many of the simulated flux values
of reactions MAR03875 and MAR08641 were close to zero (Fig. A.8-
B). Only a weak, but significant (p-value < 0.05) correlation, with just
the Spearman (not with the Pearson) method, was observed between
the flux of each mentioned reaction and the global DNA methylation.
The genomic region that gave the best significant correlations for the
DNA methylation reaction (MAR08641), although still weak (0.36 and
0.52 of Pearson and Spearman coefficients respectively), was the one
comprising 1000bp upstream of the genes’ Transcription Start Sites
(TSS), i.e. gene promoters (see reaction MAR0O8641 in Fig. A.8-A). In
addition, it was observed that the overall correlation values are slightly
higher for the DNA methylation reaction (MAR08641) than the one
producing SAM (MARO03875).

Since the simulated methylation fluxes were not able to strongly
predict the degree of DNA methylation, we switched our focus to
understanding how metabolic mechanisms and metabolic shifts are
related to the overall degree of DNA methylation in cancer, which
is the ultimate goal of the present work. For that purpose, the de-
gree of DNA methylation across the genome was integrated within
the models. Specifically, the stoichiometric coefficients of the pseudo-
reaction prodDNAtot, which represents the composition of total DNA in
terms of DNA cytosine (de)/methylation marks, were modified based on
published cell/tissue-specific DNASmC and DNA5ShmC datasets (more
details on Calculation of the composition of total DNA section of Materials
and Methods). Note that values of DNA5ShmC levels were not available
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for all cell lines. Hence, from then on simulations were made with
models for only 31 of the 41 cell lines.

Another interesting observation from the previous simulations is
that while the DNA methylation reaction always carried flux for any
of the different cell lines, none of the DNA demethylation reactions
included in the model was able to do the same, because the for-
mation of unmethylated DNA necessary for the biomass production
was directly obtained through the DNA polymerization reaction of the
individual nucleotides instead of the DNA demethylation reactions.
However, it is known that the extent to which the DNA is methylated
depends on the balance between the rates of the reactions of methyla-
tion and demethylation, which produces a dynamic DNA methylation
turnover steady-state [24]. In fact, variations in the proportion of those
rates can originate methylation deregulation like the hypermethyla-
tion (i.e. silencing) of tumor suppressor genes and hypomethylation
(i.e. activation) of pro-metastatic genes observed in cancer cells [24—
26]. Hence, to guarantee that the simulations can reflect the dynamic
DNA methylation turnover state, the flux of certain DNA demethylation
reactions was forced to be positive in the subsequent simulations by
first, including reactions necessary for DNA demethylation tasks when
the task score was high in each specific cell line (above a threshold
- details in Materials and Methods); second, by constraining the flux
of DNA demethylation reactions in each model with reaction rate
ratios previously described in the literature, as long as the imposed
constraints would not produce an infeasible flux distribution. Those
rate ratios are described in Tab. A.8 and will herein forth be called
methylation flux rules.

As would be expected, there was an improvement in the correlation
between the simulated fluxes of reactions MAR0O8641 or MAR03875 and
the estimated degree of DNA methylation after adapting the composi-
tion of total DNA with cell-specific information (compare Fig. 3 with
Fig. A.8). This time, the correlation between the DNA methylation flux
(MARO08641) and the global DNA methylation was strong (0.62 and
0.73 of Pearson and Spearman coefficients respectively) and significant

(p-value < 0.05), and the Upstream of TSS was again the genomic feature
that gave the best correlations (Fig. 3). Also, the integration of the
abovementioned methylation flux rules for models where their inclusion
provided feasible flux distributions enabled the activation of some DNA
demethylation reactions in those models, whereas neither a positive
nor negative correlation was observed between simulated fluxes of
any DNA demethylation reaction and the degree of DNA methylation
(Fig. A.9 and A.10). Note that, although the number of models used was
lower than in previous simulations because the cell-specific methylation
ratios could only be estimated for 31 cell lines, the correlations between
measured and simulated fluxes and the percentage of simulated flux
values in close proximity to the real ones for exchange reactions or
biomass, as well as the relative errors of biomass were as good as
without the cell-specific methylation ratios and the methylation flux
rules (Fig. A.11 versus Fig. 2).

2.4. Analysis of active pathways and protein usage in cell-line-specific
models

After model reconstruction and integration with methylation data,
the results from simulated flux value distributions of each cell line were
analyzed. From Fig. 4-A, it was possible to observe that among the
central carbon metabolism pathways, Glycolysis or Gluconeogenesis is
the one carrying the most flux for all cell lines, while the flux through
the pathways directly or indirectly to DNA (de)/methylation (Folate
metabolism, Cysteine and methionine metabolism and DNA methylation or
demethylation) is very low. However, simulations suggest that these
cell lines utilize a higher mass of enzymes to activate reactions as-
sociated with Cysteine and methionine metabolism than those involved
in Glycolysis or Gluconeogenesis (Fig. 4-B). Furthermore, the top five
pathways with the most flux were identified as Glycolysis or Gluconeoge-
nesis, Oxidative phosphorylation, Purine metabolism, Fatty-acid biosynthesis
(even-chain), and Aminoacyl-tRNA biosynthesis. With respect to protein
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Fig. 3. Comparison of simulated fluxes of reactions involved in DNA methylation and the estimated degree of DNA methylation for models with methylation flux rules, as well as
with cell-specific methylation ratios and demethylation tasks. Scatter plots with log,, values of simulated fluxes versus the experimentally estimated degree of methylation across
all genome or in close proximity to different genomic features. The procedure and the description of datasets applied to estimate the level of DNA methylation is detailed in
Comparison of fluxes of reactions involved in DNA (de)/methylation and the degree of DNA methylation section of Materials and methods. The vertical labels are identifiers of reactions
shown in Fig. 1. Zero flux values were replaced with a very small value (1 x 107'%) because /og,,(0) is undetermined. Only the 30 cell lines for which there was experimental data

across all types of genomic intervals were used.

mass, the top five scoring pathways were Cholesterol biosynthesis 2, Glyc-
erophospholipid metabolism, Cholesterol biosynthesis 1 (Bloch pathway),
Acylglycerides metabolism, and Aminoacyl-tRNA biosynthesis (Fig. 5).

2.5. Pathways and individual reactions/enzymes that influence or are in-
fluenced by overall DNA methylation

The pathways whose average flux and protein usage significantly
correlated (p-value < 0.05) with overall DNA methylation levels in-
dependently of cell growth rate across the cell lines were identified
to figure out which pathways could influence or be influenced by
the overall DNA methylation. The pathways in which both average
flux and protein usage are positively correlated with DNA methylation
are Dna (de)/methylation, Cysteine and methionine metabolism, Butanoate
metabolism, Bile acid biosynthesis, Cholesterol metabolism and Cholesterol
biosynthesis 3 (Kandustch-Russell pathway). The pathway in which both
average flux and protein usage are negatively correlated with DNA
methylation is Beta oxidation of even-chain fatty acids (mitochondrial).

The specific reactions in which flux, and enzymes whose protein
usage, significantly correlated (positively/negatively) with overall DNA
methylation independently of growth rate were also detected and
shown in tables Tab. A.9 and Tab. A.10. Most of them were involved in
the metabolic pathways mentioned above. Some reactions and enzymes
negatively correlated with methylation were also associated with the
pathway Fatty acid oxidation. Among the reactions in which flux corre-
lated positively with overall methylation, those with higher correlation
coefficients and lowest p-values, apart from the DNA methylation
reaction, are two transport reactions: one related to the transport of
S-Adenosyl-Homocysteine (SAH), a product of DNA methylation, from
the nucleus to the cytoplasm probably to be recycled by the methionine
cycle, and the other is the transport of SAM from cytoplasm to the

nucleus, to allow DNA methylation. The only reaction attributed to
butanoate metabolism in which flux correlated positively with methy-
lation (reaction id: MAR01434_REVNol in Tab. A.10) was the one
converting acetyl-CoA to acetoacetyl-CoA. Also, one of the enzymes
(Uniprot id: Q01581) whose protein usage is directly correlated with
methylation is the one that catalyzes the condensation of acetyl-CoA
with acetoacetyl-CoA to form HMG-CoA Tab. A.10, which can be
converted to mevalonate, the precursor for cholesterol synthesis. This
suggests that the only reason why flux and protein usage in Butanoate
metabolism increases with methylation is that this allows the diversion
of acetyl-CoA to cholesterol production.

In order to test whether the metabolic shifts observed with the
increase in overall DNA methylation independently of the growth rate
could be predicted using only experimental data (i.e. without using
the cell-specific models), we identified a list of the metabolic reactions
associated with genes whose expression was positively and significantly
correlated with the overall DNA methylation, together with the cor-
responding metabolic pathways. A hypergeometric test was done to
assess the over-representation of each metabolic pathway in that list of
reactions. Note that overall DNA methylation values were first divided
by corresponding experimental cell growth rates to correct for the in-
fluence of cell growth. Tab. A.11 shows that, unlike the pathway whose
flux and protein usage negatively correlated with overall methylation,
none of those that positively correlated with it (independently of cell
growth rates) could be predicted using only experimental (methylation
and gene expression) data.

2.6. Genes whose changes in methylation may affect cancer cell growth rate

Next, genes that could be potentially targeted by DNA methylases
or demethylases to inhibit cancer cell growth through gene expression
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regulation were detected. For that, the list of genes whose promoter negative correlations tested is shown in Tab. A.12. Since methylation
methylation significantly correlated (positively/negatively) with their is mostly (although not always) associated with gene expression si-
transcription levels and with the cell growth rate across different lencing [2], and the gene promoter methylation moderately correlates
cell lines was overlapped with the group of genes associated either with growth rate across the tested cell lines (Fig. A.12), it would be
with reactions whose flux or with enzymes whose protein usage was expected that genes in which promoter methylation increases would
significantly (positively/negatively) correlated with cell growth rates. lead to a reduction in gene expression and consequently affect the flux
A diagram representing the different combinations of positive and and availability of some reactions/enzymes, indirectly enhancing the
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cell growth rate. However, as the cell growth rate increased across the
different cell lines, no genes could significantly enhance their promot-
ers’ methylation while simultaneously reducing both their expression
and the flux or protein usage of associated metabolic reactions/enzymes
(Tab. A.12 - Correlation group B in Reaction flux and Enzyme usage
tabs).

In contrast, as the cell growth rate increased, two genes signif-
icantly enhanced their promoters’ methylation while also increasing
their expression and the flux of associated metabolic reactions, one
of which encodes an enzyme whose protein usage kept up with the
rise in growth rate: the TXNRD2 (Tab. A.12 - Correlation group A).
In addition, one gene whose increase in promoters’ methylation was
inversely proportional to the rise of cell growth rate across the cell
lines, had its expression and both the flux and protein usage of as-
sociated metabolic reactions/enzymes enhanced: the TPK1 (Tab. A.12
— Correlation group C). Interestingly, eighteen genes experienced an
increase in methylation and in the flux of associated reactions with
the rise of cell growth rate across the cell lines, while their expression
was reduced (Tab. A.12 — Correlation group G in Reaction flux tab).
Furthermore, from those, three also underwent a concerted increase in
corresponding enzyme usage: GFPT2, UAP1, and SQLE (Tab. A.12 —
Correlation group G in Enzyme usage tab). Note that each gene may be
associated with more than one reaction and that is why the ACSF2 gene
is in more than one group of genes in Reaction flux tab of Tab. A.12.

3. Discussion

To the best of our knowledge, this is the first time that models were
built to simulate the influence of metabolism over DNA methylation.
Past studies have tackled the interplay between metabolism and epi-
genetics, but most focused on histone acetylation [18,19,21]. Besides,
the only study covering methylation [20] dealt with methylation of his-
tones on murine cells and used the flux of the substrate for methylation
(SAM) as a surrogate for methylation, instead of introducing protein
methylation reactions.

In this study, we developed models for 31 human cancer cell
lines that capture the influence of metabolism over DNA methylation,
through the integration of reactions related to DNA methylation and
demethylation, and cell-type specific DNA methylation levels.

Furthermore, past studies trying to mimic the relationship be-
tween metabolism and epigenetics utilized traditional GSMMs. When
no metabolite uptake rates are known traditional constraint-based
GSMMs cannot provide a finite flux distribution, because the solution
is unbounded [22]. To improve the predictability of those models, it
is important to constrain exchange fluxes, with real flux values [22],
which are not always available. On the other hand, GECKO models
do not require the definition of specific uptake rates to provide ac-
curate flux distributions, because they introduce enzyme kinetics and
concentration data that are able to reduce the flux solution space.

In the present study, even though uptake/production rates of some
exometabolites were available and therefore could be used to make
acceptable predictions with traditional GSMMs, the use of GECKO
models provided better results than traditional GSMMs constrained
with flux values of three metabolites (compare percentages between
Fig. A.5 and Fig. A.3, and between Fig. 2 and Fig. A.7). Additionally,
the use of cell-specific GECKO models is useful in presenting a proof-
of-concept pipeline, that can be adopted in the future to other datasets
for the production of models portraying the interplay of metabolism
and DNA methylation in other biological contexts, for most of which
such experimentally measured uptake/secretion rates may be unknown.
Also, it is important to note that even though a constraint, the limitation
of biomass flux with measured growth rates, had to be eventually
applied to GECKO models, that process still requires gathering less ex-
perimental data than when applying measured fluxes of three different
metabolites (as in constrained traditional models).
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In this study, the stoichiometric coefficients of modified methyl-
cytosines in the reaction representing the total DNA composition were
adapted in accordance with experimentally measured DNA methylation
levels specific to each cell line, so that the simulations could predict
metabolic phenotypes associated with DNA methylation that were cell-
type specific. Naturally, one of the consequences of this adaptation
was the increase in correlation between fluxes of the reactions of DNA
methylation and of the production of SAM and the experimentally
observed DNA methylation levels. Notably, those correlations were
higher in the region Upstream of TSS of genes (i.e. gene promoters)
than in other genomic regions, including regions surrounding upstream
and downstream of the TSS (the TSS (clusters)), suggesting that the
variation in global DNA methylation across these cell lines can be in
its majority attributed to alteration of methylation in gene promoters.
Ghandi et al. [27] observed a negative correlation between gene ex-
pression and promoter methylation of many genes in these cell lines.
Besides, another study with the same cell lines reported that the most
significant correlation between DNA methylation and gene expression
was an inverse correlation for epithelial and mesenchymal genes, more
expressive for the former than the latter (—0.639 versus —0.525 cor-
relation), and although to a smaller degree, with tumor suppressors
as well [28]. This suggests that the increase in promoter methylation
across different cell lines is mostly associated with endothelial-to-
mesenchymal transition and silencing of tumor suppressor genes, and
therefore, it would be expected that the proliferation ability of these
cell lines to increase with the gene promoter methylation levels. To test
this, we compared the growth rate of the cell lines and their promoter
methylation levels and, in fact, a significant but moderate correlation
could be observed in Fig. A.12.

Another important observation was that the inclusion of the afore-
mentioned methylation flux rules based on reported values of ratios of
DNA (de)/methylation reaction rates in the model simulations guaran-
teed flux through the DNA demethylation reactions at least in some
models. This is relevant because it is known that there is a dynamic
DNA methylation turnover steady-state, where both methylation and
demethylation reactions are active [24]. Nevertheless, the methylation
flux rules could only be applied to some of the cell lines without
affecting the feasibility of the flux distribution, maybe because the
metabolite pools (for e.g. protein pools) are not adapted to the cell type
or because those flux rules are general rules that might not apply to
all cell lines. In that sense, future in silico studies could try to integrate
more cell-detailed experimentally determined flux rules as soon as they
become available. The main reason the DNA demethylation reactions
are not active without setting flux rules is that the model can produce
demethylated DNA using less overall protein through the DNA polymer-
ization reaction than by using the DNA demethylation reactions. And
that might be happening just because there is a lack of information
regarding reactions that happen inside the nucleus and that produce
components of the biomass. In fact, the nucleus of the traditional
generic model including the DNA (de)/methylation reactions is the
organelle with less amount of reactions and metabolites: 218 and 142
respectively. Note that the model compartment inner mitochondria has
less, but is part of the organelle mitochondria, that has much more.
Besides, for some (de)/methylation reactions not to be blocked, there
was a need to add reactions created based on assumptions (mainly
transport reactions), which indicates that the biological knowledge
is still missing information regarding reactions that happen in the
nucleus.

The final models here created, which represented 31 different cell
lines, provided a high percentage of simulated flux values in close prox-
imity to corresponding experimental values (around 77% in Fig. A.11)
for exchange reactions of 26 metabolites, which in itself serves as
a good validation criteria. Furthermore, the flux and protein mass
distribution across metabolic pathways agreed with the reported ex-
perimental evidence.
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Glycolysis or Gluconeogenesis was the subsystem among the central
carbon metabolism pathways to carry more flux, and it was the most
active metabolic pathway. This is expected because aerobic glycolysis
is one of the characteristics of cancer cells, as it allows them to quickly
obtain energy and elementary metabolites for fast growth [29,30].

Although Glycolysis is more active than Oxidative phosphorylation
across the models of all cell lines, as expected in cancer cells, the latter
is still the second pathway with the most flux. A possible explanation
for this is that, even though cancer cells prefer in general aerobic gly-
colysis, they utilize Oxidative Phosphorylation (OXPHOS) to produce
at least some level of Reactive Oxygen Species (ROS). This is because
a moderate amount of ROS is beneficial for tumorigenesis, resistance
to chemotherapy and cancer progression [31]. Another putative reason
could be the increased levels of citrate in cancer cells, due to the
conversion of a-KG to citrate induced by oncogenes, which indirectly
would allow the production of some energy through the Oxidative phos-
phorylation by feeding the Tricarboxylic acid cycle (TCA cycle) [30].
However, in that case, it would be expected that the TCA cycle was
also among the most activated pathways, which is not the case.

In addition, the fact that Purine metabolism, Fatty acid biosynthesis
and Aminoacyl-tRNA biosynthesis are the third, fourth and fifth pathways
with the most flux in the models could also be anticipated because
the first is necessary for the synthesis of nucleotides fundamental for
the production of new DNA molecules, the second is essential for the
formation of new cell membranes and the last allows protein produc-
tion through mRNA translation, all of which are important factors for
fast-dividing cells.

The first and third pathways to use most protein mass are related to
Cholesterol biosynthesis, which is also in accordance with the literature.
Cholesterol biosynthesis is often enhanced in cancer as on the one
hand, it can activate mTORCI signaling, which in turn promotes cell
proliferation, invasion, and metastasis, while on the other hand it alters
lipid rafts composition, promoting the loss of integrin-mediated cell
adhesion, and consequently contributing to cancer aggressiveness [32,
33]. The second and fourth pathways to use most protein mass, the
Glycerophospholipid metabolism and Acylglycerides metabolism, are ex-
pected to be activated in cancer cells as well, because those metabolites
are part of new cell membranes needed for intense cell proliferation.

With respect to pathways directly or indirectly related to DNA
(de)/methylation, the flux is reduced. This is expected, since it is
possible to anticipate that a small DNA methylation rate is enough
to methylate less than 1% of the genome (the average percentage of
methylation of the human genome). Nevertheless, the use of protein
mass in one of those pathways, Cysteine and methionine metabolism
is elevated, even more than in glycolysis, suggesting that although
holding a small amount of flux, it is an important pathway.

Cysteine and methionine metabolism, Bile acid biosynthesis, Bu-
tanoate metabolism and subsystems related to cholesterol metabolism
(including biosynthesis of cholesterol) were pathways predicted to
carry more flux and use more protein on average, while Beta oxidation
of even-chain fatty acids (mitochondrial) predicted to carry less flux and
use less protein, as overall DNA methylation increases independently
of cell growth rate. Besides, the flux of several individual reactions
and protein usage of many individual enzymes of the Fatty acid ox-
idation pathway were inversely correlated with overall methylation
independently of cell growth rate. Although the decrease in fatty acid
oxidation could be anticipated without the use of models (based solely
on experimental gene expression and overall DNA methylation), given
the negative correlation of the gene expression in the pathways of fatty
acid oxidation with the overall DNA methylation (independently of cell
growth rates), the increase in activity of pathways positively correlated
with methylation could only be predicted while utilizing the models,
since the gene expression of such pathways did not correlate positively
with overall methylation levels.

It is expected for Cysteine and methionine metabolism to increase
with overall DNA methylation level, as the production of cysteine
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from serine and uptake of methionine can increase the activity of
the one carbon-cycle (folate and methionine cycles) producing more
SAM, that is used for methylation. In fact, even the observed increase
of flux through the individual reactions transporting SAM and SAH
respectively in and out of the nucleus could be anticipated. More-
over, Yokogami et al. previously reported that methionine depletion
in glioma-initiating cells leads to a decrease in cholesterol biosyn-
thesis by a decrease in the expression of SREBP2 and ACA43, while
promoting fatty acid oxidation through an increase in the expression
of methyltransferase METTL20 that methylates the electron carrier
coupling mitochondrial fatty acid oxidation to respiration (flavopro-
tein subunit beta) and in that way serves as a positive regulator of
beta-oxidation of fatty acids [34]. This suggests that an increase in
methionine metabolism accompanying the overall increase in DNA
methylation, as observed across the cell line-specific models, could
enhance the cholesterol biosynthesis on one side and decrease beta-
oxidation of fatty acids on the other. This is in accordance with our
results as cholesterol metabolism and bile acid synthesis, which uses
cholesterol as substrate, increase in activity, while Beta oxidation of
even-chain fatty acids (mitochondrial) decrease with the rise in methio-
nine metabolism (i.e. overall methylation) across the different cell
lines. Nevertheless, the observed effect, in this case, does not seem
to be mediated by changes in the expression of genes mentioned in
the abovementioned publication (SREBF2, METTL20, METTL16) [34],
since those were not in the list of genes which expression correlates
with overall methylation independently of biomass. The involvement
of ACA43 (i.e. SNORA17B) could not be tested as that gene was not
present in the gene expression data.

As explained in the results section, the increase in flux and protein
usage in Butanoate metabolism with overall methylation (indepen-
dently of growth rate) is caused by the increase in the conversion of
acetyl-CoA to acetoacetyl-CoA. Acetoacetyl-CoA is then used to produce
HMG-CoA a precursor of the mevalonate pathway. Besides, acetoacetyl-
CoA could not be produced instead from butyric acid/butanoate (a
short-chain fatty acid resulting from gut bacteria fermentation and
usually obtained by human cells [35,36]), as the models do not allow
the uptake of compounds other than the pre-defined media compo-
nents. Therefore, the observed increase in Butanoate metabolism is
most probably a strategy to increase cholesterol synthesis through an
increase in the consumption of acetyl-CoA.

This study identified five genes whose changes in methylation may
potentially affect cancer cell growth rate. The methylation of TXNRD2
promoters significantly increased with its expression across the cell
lines, concurrently with a raise in the flux and protein usage of asso-
ciated reactions/enzymes and a boost in the cell growth rate. TXNRD2
encodes thioredoxin reductase 2, an antioxidant enzyme that controls
the levels of ROS. It has been reported before that the treatment of
triple-negative breast cancer cells with a cancer drug reduced TXNRD2
expression through an epigenetic mechanism (an increase in histone
acetylation) resulting in ROS accumulation and cell senescence [37].
This suggests that expression of TXNRD2 in those cancer cells is needed
to prevent cell death induced by ROS accumulation, and that could
serve as an explanation for the TXNRD2 gene expression and enzyme
usage/reaction flux association with higher cell growth rates in this
analysis. There have been publications stating a negative correlation
between gene expression and methylation of TXNRD2 in different
biological contexts [38-40], and one article mentioning both the hy-
permethylation and hypomethylation of that gene in a cancer cell line
respectively at 24 and 48 h after treatment with resveratrol [41].
Nonetheless, to the best of our knowledge, no association has been re-
ported before between hypermethylation of TXNRD2 gene, its increase
in expression, and the increase in cancer aggressiveness/progression
(which can be understood as a surrogate for an increase in cancer cell
growth rate). Such a relationship would therefore be an interesting
research subject of experimental prospective studies.
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TPK1 was the gene whose promoter’s methylation significantly
decreased with the rise in cell growth rate while its gene expression
and the flux and protein usage of associated reactions/enzymes also
increased. TPK1 is a gene that encodes the enzyme thiamine py-
rophosphokinase 1, which catalyzes the phosphorylation of the essen-
tial metabolite thiamine (i.e. vitamin B1) into thiamine pyrophosphate
(TPP). In turn, TPP acts as a cofactor of metabolic enzymes such
as pyruvate dehydrogenase (producing acetyl-CoA from pyruvate and
subsequently promoting the activation of TCA cycle), a-ketoglutarate
dehydrogenase (catalyzing a-ketoglutarate to succinyl-CoA conversion
in TCA cycle), and transketolase (an enzyme of the PPP pathway
involved in the production of ribose-5-phosphate, a precursor of nu-
cleotide synthesis) [42]. Besides its role in energy and nucleotide
production, TPP may also act as an intracellular antioxidant, preventing
the accumulation of ROS during stress conditions. Therefore, the in-
crease in thiamine uptake and upregulation TPK1 during hypoxic and
oxidative stress are characteristic of some cancer cells [42]. Further-
more, thiamine supplementation and TPP have been associated with
cancer cell survival, proliferation, and resistance to chemotherapy [43].
This fact is in accordance with the correlation between the observed
increase in cell growth rate and the rise in the expression of TPK1 and of
the flux and protein usage. To the best of our knowledge, no connection
was previously established between demethylation of TPK1 gene and
higher cancer cell growth.

There are three genes whose promoter’s methylation increases with
the cell growth rate while their transcription reduces despite the rise
of simulated flux and protein usage of corresponding reactions/enzyme.
Different biological processes could explain an inconsistency between
gene expression reduction and the increase of corresponding reaction
flux and enzyme usage in vivo. One is that the enzymes could previously
be produced and stored in vivo, and continue to be used afterward even
if the transcription of the genes encoding those enzymes decreases. An-
other explanation could be that post-translation modifications (PTMs)
are increasing the activity of those enzymes and accelerating the cor-
responding reactions, but as the models do not reflect changes in
catalytic activity through PTMs the increase in activity translates into
more protein usage in the models’ simulations. This suggests that only
the enzymes could be potential targets for cancer treatment and that
epigenetic remodeling through targeted gene hypo/hypermethylation
would not be effective.

The main disadvantage of these models is that they only mirror ac-
tive DNA demethylation mechanisms, whereas passive DNA demethyla-
tion, i.e. the dilution of DNA methylation signal as a result of fast cellu-
lar division in the absence of functional DNA methylation maintenance
machinery, is not taken into account [44].

Another limitation is the use of a generic biomass composition
reaction, which can reduce the accuracy of predictions with cell line-
specific models, since it is known that different cell types have distinct
biomass compositions, which can even change according with en-
vironmental conditions [45,46]. Therefore, prospective investigations
should integrate experimentally measured cell line-specific biomass
composition values.

In addition, the models created in the present study can only model
the impact of metabolism on global DNA methylation, while it is known
that the DNA methylation also influences metabolism, directly through
the regulation of transcription of genes encoding metabolic enzymes
and indirectly by affecting the expression of genes associated with
signaling proteins. Furthermore, DNA methylation is strongly swayed
by other regulatory mechanisms, such as other epigenetic modifica-
tions [47]. Therefore, it will be important to integrate regulatory and
signaling networks into future metabolic models of cancer cells with
epigenetic machinery.
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4. Conclusion

In this study, GECKO models that integrate the DNA methylation
and demethylation machinery for 31 of the NCI-60 human cancer
cell lines were built. Those models were validated by comparison of
simulated fluxes of 26 metabolites with experimentally measured up-
take/production rates. The flux and protein mass distribution observed
across different metabolic pathways was in line with what was reported
in the literature for cancer cells. Cell-line-specific DNA methylation
levels estimated based on experimental data were introduced in the
models to understand how metabolism affects DNA methylation. In
fact, with these models it was possible to identify metabolic pathways
and specific reactions/enzymes in which variation in flux or protein
usage either follows or opposes the change in gene promoter methyla-
tion levels across the different cell lines. Furthermore, we were able to
identify two genes whose changes in methylation seem to affect cancer
cell growth rate: TXNRD2 and TPK1, and therefore might be good
candidates to study their potential role as targets of cancer epigenetic
drugs in an in vitro setting.

Furthermore, the same generic model and reconstruction pipeline
validated in this study could be applied to other datasets. For example,
to understand the interplay between metabolism and DNA methylation
of cancer cells exposed to epigenetic remodeling compounds, or even
to study the effect of metabolic diseases, like obesity, insulin resistance,
or dyslipidemia in DNA methylation [48]. The models created present
certain limitations, some of which might be solved in the future when
information regarding cell line-specific methylation flux rules or the
expansion of knowledge of the metabolic network in the cell nucleus
becomes available.

5. Materials and methods
5.1. Creation of the generic DNA methylation model

Since, to the best of our knowledge, no human generic model
available contained the reactions needed to simulate both the DNA
methylation and demethylation, alterations were made to the model
Humanl (version 1.12) to create a generic model depicting those
processes, which was made available to the community.

Overall, the reaction of DNA methylation in the cytoplasm was
removed (as there is no DNA in the cytoplasm), and the gene rule
of the equivalent reaction in the nucleus was updated (explanation in
Tab. A.4). Reactions and corresponding GPR rules involved in DNA
(de)/methylation were obtained by literature curation (see explanation
in Tab. A.1 and Tab. A.4). Some transport reactions were added, and
two reactions that occur when cytosine is inside the DNA were assumed
to take place also when it is in its monomeric form (consdirect5fC
and consdirect5CaC reactions in Tab. A.1), to guarantee flux through
the remaining DNA (de)/methylation reactions (i.e. to prevent their
blockage). Metabolites taking part in the added reactions are described
in Tab. A.5.

A pseudo-reaction representing the average total human DNA com-
position in the nucleus (prodDNAtot) in terms of DNA cytosine (de)/
methylation marks, like DNA-5-methylcytosine (DNA5mC), DNA-5-
hydroxymethylcytosine (DNA5hmC) and DNA-5-formylcytosine
(DNAS5fC) was introduced (Tab. A.2 and Tab. A.3 show how the
composition was determined), so that subsequently generated context-
specific models could reflect cell line-specific DNA (de)/methylation
levels.

Moreover, the generic biomass reaction was replaced by a similar
reaction (adaptbiomass reaction) where the DNA was changed into the
pseudo-metabolite (DNAtot) representing the total DNA harboring all
DNA methylation and demethylation marks (in Tab. A.1).

All introduced reactions were corrected for charge and mass balance
(Tab. A.6). All blocked reactions and associated genes and metabolites
were removed.
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5.2. Reconstruction of cell line-specific traditional GSMMs

Cell line-specific GSMMs were built for different NCI-60 cell lines
through the integration of transcriptomics data from Cancer Cell Line
Encyclopedia (CCLE) deposited in DepMap repository in 2019. This
version of the transcriptomics dataset was chosen because it was pro-
duced by the same study, Ghandi et al. [27], which the Reduced-
Representation Bisulfite Sequencing (RRBS) dataset used in the present
work was retrieved from. The approach presented in Richelle et al. [23]
to build cell type-specific models was implemented in Python and made
available to the public. Gene scores were determined from cell-specific
gene expression data using the following expression:

(€Y

ene score = 5 % loe [ 1 + expression level
& - s threshold

where the threshold is the mean value of gene expression over all
samples unless it is lower than the 25th or higher than the 75th
percentiles of the gene expression value distribution, in which cases
the threshold value is considered to be the same as the mentioned
percentiles.

Reaction scores were subsequently calculated from gene scores
taking the GPR rules into account so that: the score of a reaction
catalyzed by an enzyme complex was the minimum score of all genes
associated with the complex (AND rule) and that of a reaction catalyzed
by isozymes was the maximum score of all genes encoding the isozymes
(OR rule). The highest reaction scores of a cell line were attributed
to the reactions considered necessary for the generic metabolic tasks
(a.k.a. essential metabolic tasks), while the same procedure was applied
to necessary reactions of other tasks if those are performed in that
specific cell type. This was done to give the reconstruction algorithm a
higher probability of building a cell type-specific model that can pass
all the generic tasks and tasks specific to that cell type. A reaction was
considered necessary for a task if it was carrying flux upon the inclusion
of the task-associated flux constraints on the generic model followed by
a minimization of the sum of all fluxes. In order to determine whether a
task was done in a certain cell type, a metabolic score consisting of the
average of the scores of the reactions previously identified as required
for that task was calculated. When the task metabolic score was higher
than 5 * log(2) (the gene/reaction score to which the expression level
is equal to the aforementioned threshold) the task was considered to
be done in that specific cell type. Then, the FASTCORE algorithm from
Troppo package [49] was run to obtain the cell type-specific models.
Note that three DNA demethylation tasks (each one corresponding
to a distinct demethylation pathway) were created and added to the
original list of tissue-specific tasks so that each final cell-line model
could have all reactions necessary for the DNA demethylation pathway
done by that specific cell type. For comparison purposes, an equivalent
analysis was done without including the reactions necessary for cell
type-specific tasks. In both types of analyses, with or without cell-
line-specific tasks, we also included two DNA demethylation-associated
reactions (consdirectDNA5fC and consdirectDNA5CaC in Fig. 1) that
were non-necessary for enzyme-catalyzed DNA demethylation to occur
(demethylation could happen in the generic model without them) be-
cause they were not associated with any gene (were not catalyzed by an
enzyme), and therefore were always excluded from the reconstructed
models (due to the lack of associated reactions scores) although they
could happen without the presence of enzymes.

The second approach to building context-specific models consisted
of the application of a version of the tINIT algorithm run in MATLAB
that had already been implemented by Robinson et al. [22]. That
version tries to include reactions with scores above a threshold while
removing those below the threshold and keeping the connectivity of
the model (i.e. making sure all reactions carry flux). The gene-to-
reaction scores conversion strategy applied was again the minimum and
maximum of gene scores for complexes and isozymes, respectively [22].
The final models also kept the ability to perform the generic metabolic
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tasks, which consisted of the previously reported 57 essential metabolic
tasks [22]. The two non-catalyzed DNA demethylation-associated reac-
tions consdirectDNAS5fC and consdirectDNA5CaC were also introduced
in all models due to the reasons explained above for Richelle’s ap-
proach. When testing the inclusion of cell-line-specific tasks with this
approach, the reactions needed for cell-specific tasks were included
after reconstruction if the task score was above the threshold for a
particular cell line. Note that in one of the analyses, to guarantee that
demethylation could happen, the inclusion of reactions needed only
for cell-specific DNA demethylation tasks together with methylation
flux rules but without including the other cell-specific tasks, was also
assessed.

5.3. Generation of cell line-specific GECKO models from traditional GSMMs

GECKO models were created from traditional GSMMs using a MAT-
LAB script produced by Robinson et al. [22], whose pipeline was
first described in Sanchez et al. [17]. In that pipeline, enzymes are
introduced as pseudo-substrates in the reactions they catalyze and the
stoichiometric coefficients are the inverse of the turnover numbers of
the corresponding enzyme-metabolic substrate pairs. Reversible reac-
tions are split into two irreversible reactions in opposite directions,
and isozymes are separated into different reactions, each catalyzed by
one of the isozymes. Furthermore, for each original un-split isozyme-
associated reaction, a new pseudo-reaction, named arm reaction, is
added. The only product of an arm reaction is an intermediary pseudo-
metabolite which is used as a substrate by each of the isozyme-split
reactions so that the flux bounds of each original un-split reaction can
still be applied. For reactions catalyzed by complexes, each enzyme
of the complex is introduced as a substrate and the stoichiometric
coefficient is in that case the product of the inverse of its turnover
number and the stoichiometric coefficient of the enzyme inside the
complex.

Finally, supply reactions for each enzyme known as protein draw re-
actions, are added, where each reaction consumes a proportion (based
on the enzyme molecular weight) of a total protein pool, which in turn
is supplied by another included boundary reaction called protein pool
exchange reaction [17,22].

5.4. Detection and validation of the best reconstruction and simulation
Ppipelines

For the assessment of the best type of models (traditional GSMMs
or GECKOs) and the selection of the most suitable model reconstruc-
tion and simulation strategies, values of simulated uptake/secretion
rates of 26 metabolites across different cell lines were compared with
corresponding experimentally measured ones originally obtained from
Jain et al. [50]. The 26 metabolites chosen were the ones previously
utilized to validate the reconstruction of eleven NCI-60 cell lines in
Robinson et al. [22] article. The same comparison was made between
the simulated fluxes of biomass reaction and measured rates of cell
growth retrieved from Zielinski et al. [S51]. The strategies and model
types giving the best percentage of simulated flux values in close
proximity to measured ones were identified. For simulations with tra-
ditional GSMMs, parsimonious Flux Balance Analyses (pFBAs) were
carried out whereby the minimization of the sum of all fluxes took place
after constraining the biomass flux with either, the objective value of
an FBA whose metabolic objective was maximization of biomass flux
or with experimentally measured growth rates. For GECKO models,
the simulations were accomplished through either an enzymatic pFBA
where the minimization of the flux of the total protein uptake reaction
followed the maximization of the flux of biomass reaction, or by an FBA
whose metabolic objective was to minimize the total protein uptake
upon limitation of the flux of biomass reaction with measured growth
rates. The last strategy was selected to be applied to all subsequent sim-
ulations, as it was the one to give the best results. Model manipulation
and simulation were done with the MEWpy [52] and COBRApy [53]
python modules.
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5.5. Calculation of the composition of total DNA

The overall composition of the total DNA in terms of modified-
cytosine species involved in methylation and demethylation was ini-
tially estimated for a generic human cell based on general knowl-
edge of the human genome (see Tab. A.2), and the average level
of DNA5hmC sites across different healthy human tissues (Tab. A.3)
obtained from a Chemical-assistant C-to-T conversion of 5ShmC sequenc-
ing (hmC-CATCH) experiment, whose values were kindly provided by
the authors of He et al. [54]. Calculations made were similar to the
ones of stoichiometric coefficients of reactions for synthesis of macro-
molecules (e.g. DNA, proteins) that are consumed in lumped-biomass
reactions [55].

Those estimations were initially integrated into the total DNA com-
position reaction, the prodDNAtot reaction, of the generic model before
the reconstruction of the context-specific models. However, simulations
with the cell-line-specific models have later been performed with a
cell-line-specific prodDNAtot reaction. The stoichiometric coefficient of
the DNA5hmC in prodDNAtot reaction of a specific cell line was the
estimated ratio of DNA with 5ShmCs of the healthy tissue to which that
cell line corresponds (calculation shown in Tab. A.3). The estimation
of the stoichiometric coefficients of the remaining cytosine species was
grounded on the results of a Reduced-Representation Bisulfite Sequenc-
ing (RRBS) experiment obtained from the same study that produced the
transcriptomics data used in the model reconstruction [27]. The output
of bisulfite sequencing is the proportion of all cytosines that have
remained unconverted (i.e. were not converted to Uracil) during the
bisulfite treatment, and it is generally used as a proxy for the ratio of
cytosines that are methylated. However, in reality, not only DNA5mCs
but also DNA5hmCs are not converted to Uracil [56] upon treatment
with bisulfite, while aside from the fully unmethylated cytosines also
the DNAS5fCs are converted to Uracil [57] during the process. So, the
assumption that the bisulfite sequencing signal is the ratio of DNA
that is methylated could lead to imprecise estimations, as in reality,
it represents the ratio (DNA5mC + DNA5hmC)/(unmethylated DNA-5-
cytosine + DNAS5fC). Fortunately, in this case, the ratio of DNA with
DNA5hmCs and DNAS5fCs could be calculated (from the hmC-CATCH
results and literature, respectively), and therefore, there was no need
to use the bisulfite sequencing signal directly as a proxy (calculations
shown in formulas of excel Tab. A.7).

5.6. Comparison of fluxes of reactions involved in DNA methylation and
the degree of DNA methylation

The correlation between simulated fluxes of important reactions
involved in DNA methylation and demethylation and the overall level
of DNA methylation across different cell lines (represented by the
stoichiometric coefficients of DNA5SmC calculated above) was assessed
in this study. In addition to the global methylation state, the com-
parison to the methylation levels of CpGs at specific genomic regions
was also analyzed. For this, the RRBS signal of CpGs within 1000 bp-
length genomic intervals Upstream of the TSS of genes (gene promoters),
retrieved from the same abovementioned RRBS study [27], was added
across all genomic intervals for each cell line. Note that each genomic
interval had at least one cell line for which the value was not available
(i.e. with NA). So, instead of excluding all genomic intervals with at
least one non-available value, the non-available values were replaced
by the median of the genomic interval across all cell lines. The above-
mentioned sum of the signal was then directly employed as a proxy
for the DNA methylation level, in contrast to the procedure applied
above in the calculation of stoichiometric coefficients, because in this
case, the number of CpGs containing DNA5ShmC and DNAS5fC within
the particular genomic regions was unknown.

This same analysis strategy was further applied to other datasets of
the same study where the level of methylation in methylation clusters
(i.e. regions where CpG sites have similar methylation changes across
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different cell lines) was retrieved for genomic intervals centered around
TSS (from 3000 bp upstream to 2000 bp downstream), CpG islands, and
enhancers (from 2000 bp upstream to 2000 bp downstream).

Furthermore, the methylation level of genes was also roughly de-
termined by adding the methylation values of all genes in each cell
line from a dataset deposited at CellMiner [58] database which resulted
from a DNA methylation array experiment [28]. In that case, the av-
erage gene methylation values (i.e. average of beta values) were given
by the ratio of the intensity of the probes for methylated DNA and the
intensity of all probes (those detecting methylated and unmethylated
DNA) annotated to that gene.

5.7. Analysis of active pathways and protein usage

To compare the simulated flux distributions across the different
metabolic pathways and cell lines, a generic GECKO model was first
created from the generic traditional GSMM, where each reaction was
associated with a metabolic subsystem. The fluxes of all reactions of the
same metabolic subsystem in each cell-line-specific model were added
and divided by the number of reactions attributed to that subsystem in
the generic GECKO model, to correct for the bias that subsystems with
more reactions have a higher chance to have more active reactions (and
therefore carry more flux). Since each isozyme-associated reaction of a
traditional GSMM is split into different reactions in a GECKO model
(each associated with one of the isozymes) that consume the same
pseudo-metabolite of an arm reaction (mentioned above), the flux of
the arm reaction is the sum of the fluxes of the other split-reactions.
Therefore, for reactions associated with isozymes only the arm reactions
were considered in the analysis. Also, the abovementioned protein
draw reactions and the protein pool exchange reaction were naturally
excluded, as they were not associated with any subsystem.

For the estimation of protein usage in each metabolic subsystem,
instead of directly quantifying the amount of enzyme spent in each
draw reaction, the amount of protein used in each enzyme-reaction
combination was calculated instead, because the same enzyme can
participate in different reactions of distinct metabolic subsystems. The
flux of each reaction (in mmol.gDW~1.h~1) was divided by the k,,, of
each enzyme-reaction combination (in h~1), and then multiplied by the
molecular weight of the enzyme (in KDa, i.e. 1 g.mmol~1) and 1000,
to obtain the amount of the enzyme used in the reaction (in mg/gDW).
All reactions that do not use any enzyme as a pseudo-substrate (the arm
reactions and non-catalyzed reactions) were excluded. Then, the sum of
all protein usage values of each metabolic subsystem was divided by the
number of enzyme-reaction combinations attributed to that subsystem
in the generic GECKO model to correct for the bias that subsystems
with more reactions and with reactions containing more enzymes have
the tendency to use more protein.

5.8. Identify pathways and individual reactions/enzymes that influence or
are influenced by overall DNA methylation

In order to obtain the metabolic pathways that correlated with
DNA methylation independently of cell growth rate across the different
cell lines, each reaction’s flux or protein usage was first divided by
the simulated cell growth rate and the sum of flux or protein usage
values of all reactions of each subsystem was divided by the number
of reactions of that subsystem in the generic model. This average flux
or protein usage value was calculated for each metabolic subsystem
of each cell line. Then, those subsystems were identified in which
flux or protein usage significantly correlated (p-value < 0.05) with the
global DNA methylation level across the different cell lines. This was
done with both the Spearman and Pearson correlation. The subsystems
that correlated positively with global DNA methylation levels (with
correlation coefficients > 0) in both types of correlation coefficients
were selected and sorted based on their Pearson correlation coefficient.
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The same was done with those negatively correlated (correlation coeffi-
cients < 0). The individual reactions whose flux and the enzymes whose
protein usage significantly and positively or negatively correlated with
overall DNA methylation level were also identified.

The genes whose transcription was positively or negatively and
significantly (p-value < 0.05) correlated with the ratio between overall
DNA methylation level and experimental cell growth rate were iden-
tified in this study. Then, the metabolic reactions and corresponding
pathways/subsystems associated with those genes were listed using
the generic model’s gene-protein-reaction rules. A hypergeometric test
was applied to determine the over-representation of each metabolic
pathway in that list of reactions, followed by a multiple test correction
of Benjamin-Hoersch. The pathways/subsystems that correlated signifi-
cantly in both types of correlation coefficients were selected and sorted
based on the adjusted p-value of the hypergeometric test. This was
done to assess whether the metabolic shifts observed with the increase
in overall DNA methylation independently of cell growth could be
predicted only by utilizing experimental data instead of the metabolic
models.

5.9. Identify genes whose changes in methylation may affect cancer cell
growth rate

To identify genes whose changes in methylation levels may affect
cancer growth rate through changes in gene expression regulation,
a list of genes whose promoter methylation (1000 bp upstream of
TSS) significantly correlated (either positively/negatively) with its tran-
scription and with the cell growth rate across the different cell lines
was intersected with either the group of genes associated with reac-
tions whose flux, or the genes associated with enzymes whose protein
usage, significantly correlated (either positively/negatively) with the
cell growth rate. Entities (genes/reactions/enzymes) were considered
significantly correlated when the p-value was below 0.5 with both the
Spearman and Pearson correlation methods.
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