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Abstract

The current confidence levels in the ability to provide buildings with adequate resistance to horizontal actions do not easily apply to historic
and existing masonry structures. Limit analysis is often not sufficient for a full structural analysis under seismic loads, but it can be profitably used
in order to obtain a simple and fast estimation of collapse loads. Often, the limit analysis of ancient masonry structures is used in the context of
several simplifications, the assumptions about the collapse mechanisms being the most relevant. Aiming at a more general framework, a micro-
mechanical model developed previously by the authors for the limit analysis of isolated in- and out-of-plane loaded masonry walls is extended
here and utilized in the presence of coupled membrane and flexural effects. In the model, the elementary cell is subdivided along its thickness
in several layers, where fully equilibrated stress fields adopting a polynomial expansion are assumed. The continuity of the stress vector on the
interfaces between adjacent sub-domains and anti-periodicity conditions on the boundary surface are further imposed. Linearized homogenized
surfaces for masonry in six dimensions are obtained and implemented in a FE limit analysis code, and two 3D case studies are analyzed making
use of the kinematic theorem of limit analysis. From the results, the approach proposed is validated and its usefulness for solving engineering
problems is demonstrated.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been shown that the high vulnerability of historical
masonry buildings to horizontal actions is mostly due to the
absence of adequate connections between the various parts,
especially when wooden beams are present both in the floors
and in the roof [1]. This characteristic leads to overturning
collapses of the perimeter walls under seismic horizontal
acceleration and combined in- and out-of-plane failures. The
evaluation of the ultimate load bearing capacity of masonry
buildings subjected to horizontal loads is a fundamental task
in their design and safety assessment. Simplified limit analysis
methods are usually adopted by practitioners for safety analyses
and design of strengthening [2]. However, codes of practice,
such as for instance the recent Italian O.P.C.M. 3431 [3,
4], require a static nonlinear analysis for existing masonry
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buildings, in which a limited ductile behavior of the elements
is taken into account, featuring failure mechanisms such as
rocking, shear and diagonal cracking of the walls. Nowadays,
several models for the analysis of masonry buildings are at
our disposal, but the approach based on the use of averaged
constitutive equations seems to be the only one suitable
for employment in a large scale finite element analysis [5].
Heterogeneous approaches based on a distinct representation
of bricks and joints seem to be limited to the study of panels
of small dimensions, due to the large number of variables
involved in a nonlinear finite element analysis. Therefore,
alternative strategies based on macro-modeling have been
recently developed in order to tackle engineering problems (see
Lourenço et al. [6]). Obviously, macro-approaches require a
preliminary mechanical characterization of the model, which
has to be derived from experimental data from laboratory or in
situ testing [7].

In this framework, homogenization techniques can be used
for the analysis of large scale structures. Such techniques
take into account at a cell level the mechanical properties of
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constituent materials and the geometry of the elementary cell,
allowing the analysis of entire buildings through standard finite
element codes. Furthermore, the application of homogenization
theory to the rigid-plastic case [8] requires only a reduced
number of material parameters and provides significant
information at failure, such as limit multipliers, collapse
mechanisms, and at least on critical sections, the stress
distribution [9].

In this paper, the micro-mechanical model presented by the
authors in [9,10] and [11] for the limit analysis of in- and
out-of-plane loaded masonry walls respectively, is extended
and utilized in the presence of coupled membrane and flexural
effects. In the model, the elementary cell is subdivided along its
thickness into several layers. For each layer, fully equilibrated
stress fields are assumed, adopting polynomial expressions for
the stress tensor components in a finite number of sub-domains.
The continuity of the stress vector on the interfaces between
adjacent sub-domains and suitable anti-periodicity conditions
on the boundary surface are further imposed. In this way,
linearized homogenized surfaces in six dimensions (polytopes)
for in- and out-of-plane loaded masonry are obtained. Such
surfaces are then implemented in a FE limit analysis code for
the analysis at collapse of entire 3D structures, and meaningful
examples of technical relevance are discussed in detail.

In Section 2, the micro-mechanical model adopted for
obtaining masonry homogenized polytopes is recalled, whereas
in Section 3 the FE upper bound approach is presented. The
method is based on a triangular discretization of the structure,
so that the velocity field interpolation is linear inside each
element. Plastic dissipation can occur for in-plane actions both
in the continuum and in the interfaces. On the other hand,
since the velocities interpolation is assumed linear inside each
element, the curvature rate tensor is equal to zero for each
triangle, and out-of-plane dissipation can take place only at the
interfaces between adjoining triangles.

Two meaningful structural examples are treated in detail in
Section 4. The first numerical simulation refers to the prediction
of the ultimate seismic load of a two story masonry building of
dimensions 7.32 × 7.32 × 7.14 m (length × width × height).
The building was experimentally tested by Yi et al. [12] under
cyclic loads in the inelastic range at Georgia Tech, USA. The
second example consists of an ancient house already studied by
De Benedictis et al. in [13] within an extensive survey project
coordinated by Giuffrè [2] of the entire Ortigia (Italy) city
center.

The reliability of the proposed model is assessed through
previously presented numerical results [14], and through
comparisons with results obtained by means of standard
nonlinear FE approaches.

2. In- and out-of-plane homogenized failure surfaces

A masonry wall Ω constituted by a periodic arrangement
of bricks and mortar disposed in running bond texture is
considered, as shown in Fig. 1a. As pointed out by Suquet
in [8] from a general point of view, homogenization techniques
combined with limit analysis can be applied for the evaluation
of the homogenized in- and out-of-plane strength domains Shom

of the masonry. Under the assumptions of perfect plasticity and
its associated flow rule for the constituent materials, and in the
framework of the lower bound limit analysis theorem, Shom can
be derived by means of the following (nonlinear) optimization
problem (see also Fig. 1):

Shom

=


max(M, N)|



N =
l

|Y |

∫
y×h

σdV (a)

M =
l

|Y |

∫
Y×h

y3σdV (b)

div σ = 0 (c)
[[σ ]]nint

= 0 (d)
σn anti-periodic on ∂Yl (e)
σ (y) ∈ Sm

∀y ∈ Y m
; σ (y) ∈ Sb

∀y ∈ Y b (f)




(1)

where:

– N and M are the macroscopic in-plane (membrane forces)
and out-of-plane (bending moments and torsion) tensors;

– σ denotes the microscopic stress tensor;
– n is the outward versor of ∂Yl surface, Fig. 1a;
– ∂Yl is defined in Fig. 1a;
– [[σ ]] is the jump of micro-stresses across any discontinuity

surface of normal nint, Fig. 1c;
– Sm and Sb denote respectively the strength domains of

mortar and bricks;
– Y is the cross-section of the 3D elementary cell with y3 = 0

(see Fig. 1) |Y | is its area, V is the elementary cell volume,
h represents the wall thickness, and y =

(
y1 y2 y3

)
are

the assumed material axes;
– condition (1(c)) imposes a micro-equilibrium with zero

body forces, usually neglected in the framework of the
homogenization theory;

– anti-periodicity condition (1(e)) requires that the stress
vectors σn are opposite on opposite sides of ∂Yl , Fig. 1c,
i.e. σ (m)n1 = −σ (n)n2;

– Y m and Y b represent mortar joints and bricks respectively,
see Fig. 1.

In order to solve Eq. (1) numerically, the simple admissible
and equilibrated micro-mechanical model proposed in [10] is
adopted. The unit cell is subdivided into a fixed number of
layers along its thickness, as shown in Fig. 1b. For each layer,
out-of-plane components σi3 (i = 1, 2, 3) of the micro-stress
tensor σ are set to zero, so that only in-plane components
σi j (i, j = 1, 2) are considered active. Furthermore, σi j (i, j =

1, 2) are kept constant along the ∆L thickness of each layer,
i.e. in each layer σi j = σi j (y1, y2). For each layer, one-
fourth of the representative volume element is sub-divided into
nine geometrical elementary entities (sub-domains), so that
the entire elementary cell is sub-divided into 36 sub-domains
(see [10] for further details and Fig. 1b).

For each sub-domain (k) and layer (L), polynomial
distributions of degree (m) in the variables (y1, y2) are a
priori assumed for the stress components. Since the stresses
are polynomial expressions, the generic i j th component can be
written as follows:

σ
(k,L)
i j = X(y)S(k,L)T

i j y ∈ Y (k,L) (2)
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Fig. 1. The micro-mechanical model proposed. a: the elementary cell. b: subdivision in layers along the thickness and subdivision of each layer in sub-domains.
c: imposition of internal equilibrium, equilibrium on interfaces, and anti-periodicity.
where:

– X(y) =
[
1 y2 y2

1 y1 y2 y2
2 . . .

]
– S(k,L)

i j = [S(k,L)(1)
i j S(k,L)(2)

i j S(k,L)(3)
i j S(k,L)(4)

i j S(k,L)(5)
i j

S(k,L)(6)
i j . . .] is a vector representing the unknown stress

parameters of sub-domain (k) of layer (L);

– Y (k,L) represents the kth sub-domain of layer (L).

The imposition of equilibrium inside each sub-domain, the
continuity of the stress vector on the interfaces, and the anti-
periodicity of σn permit a strong reduction in the number of
independent stress parameters. For the sake of conciseness, the
reader is referred to [10] for further details.

Elementary assemblage operations on the local variables
allow us to write the stress vector σ̃ (k,L) of layer L inside each
sub-domain as:

σ̃ (k,L)
= X̃(k,L)

(y)̃S(L)
k = 1, . . . , no. of sub-domains

L = 1, . . . , no. of layers (3)

where S̃(L)
is a Nuk ×1 (Nuk = number of unknowns per layer)

vector of linearly independent unknown stress parameters of
layer L and X̃(k,L)

(y) is a 3 × Nuk matrix depending only on
the geometry of the elementary cell and on the position y of the
point in which the micro-stress is evaluated.

As already pointed out, once an equilibrated polynomial
field in each layer is obtained, the proposed in- and out-of-
plane model requires a subdivision (nL) of the wall thickness
into several layers (Fig. 1b), with a fixed constant thickness
∆L = h/nL for each layer. This allows us to derive the
following simple (non) linear optimization problem:
Shom

≡



such that

max{λ}

Ñ =

∫
k,L

σ̃ (k,L)dV (a)

M̃ =

∫
k,L

y3σ̃
(k,L)dV (b)

Σ = [Ñ M̃] = λnΣ (c)
σ̃ (k,L)

= X̃(k,L)
(y)̃S (d)

σ̃ (k,L)
∈ S(k,L) (e)

k = 1, . . . , number of sub-domains (f)
L = 1, . . . , number of layers (g)

(4)

where:

– λ is the load multiplier (ultimate moment, ultimate
membrane action, or a combination of moments and
membrane actions) with fixed direction nΣ in the
six dimensional space of membrane actions (Ñ =

[Nxx Nxy Nyy]) and bending + torsion moments (M̃ =

[Mxx Mxy Myy]).
– S(k,L) denotes the (nonlinear) strength domain of the

constituent material (mortar or brick) corresponding to the
kth sub-domain and Lth layer.

– S̃ collects all the unknown polynomial coefficients (of each
sub-domain of each layer).

It is noted that the direction nΣ is fixed arbitrarily in
six dimensional space [Ñ M̃]. As a rule, since nΣ =

[α1, α2, . . . , α6] with Σα2
i = 1, the parameteres αi are chosen

randomly between 0 to 1 sastisfying the constraint Σα2
i =

1, so that a number of directions nΣ are selected. For each
direction, a linear programming problem is solved and a point
of the failure surface obtained. By means of the points obtained
through such a process, a Delaunay tessellation is performed,
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Fig. 2. a: Triangular plate and shell element used for the upper bound FE limit analysis. b: discontinuity of the in-plane velocity field. c: perfect interlocking and
absence of connections between perpendicular walls.
and a lower bound linear approximation of the failure surface is
recovered.

In what follows, the wall thickness is subdivided into thirty
layers, a subdivision which represents a marginal processing
time and should be compared with the typical less than ten
thickness integration points in FE analysis using layered shell
elements. The authors found that more refined discretizations
resulted in negligible changes in the homogenized failure
surface.

It is worth noting that the model at hand is able to reproduce
the typical anisotropic behavior of masonry at failure, as well as
a no tension material if a Mohr–Coulomb failure criterion with
zero cohesion is assumed for joints and vertical compressive
stresses are not present.

3. 3D kinematic FE limit analysis: Basic assumptions

The upper bound approach developed in this paper is
based both on the formulation presented in [15] by Sloan and
Kleeman for the in-plane case and on the formulation by Munro
and Da Fonseca [16] for out-of-plane actions, also adopted
in [17].

The formulation uses three-noded (triangular) elements with
linear interpolation of the velocity field inside each element. In
addition, for the in-plane case, discontinuities of the velocity
field along the edges of adjacent triangles are introduced. It has
been shown [9,15], in fact, that the definition of kinematically
admissible velocity fields with discontinuities on interfaces is
adequate for purely cohesive or cohesive-frictional materials,
which is the case of masonry.

On the other hand, it is stressed that an important limitation
of the limit analysis approach adopted here is its inability to
give information of the displacements at collapse (information
required by some codes of practice). Moreover, an infinite
plastic deformation capacity of the material is assumed: this
hypothesis should be checked case by case, depending on the
geometry of the masonry wall and on the distribution of loads
applied.
3.1. Kinematic constraints and plastic flow relationships

Three velocity unknowns per node i , say wi
xx , wi

yy , and wi
zz

(respectively 2 in-plane velocities and 1 out-of-plane velocity,
see Fig. 2a) are introduced for each element E , so that the
velocity field is linear inside an element, whereas the strain rate
field is constant for in-plane actions.

For the sake of simplicity, it is assumed that any jump of
velocities on interfaces occurs only in the plane containing two
contiguous and coplanar elements, with linear interpolation of
the jump along the interface. Hence, for each interface between
coplanar adjacent elements, four additional unknowns are
introduced (∆uI

=
[
∆v1 ∆u1 ∆v2 ∆u2

]T
), representing

the normal (∆vi ) and tangential (∆ui ) jumps of velocities
(with respect to the discontinuity direction) evaluated on nodes
i = 1 and i = 2 of the interface (see Fig. 2b). For the sake
of simplicity, it is assumed in the model that, if two adjacent
elements do not lie in the same plane, no discontinuity occurs
between the velocities belonging to the elements, so a priori we
assume a perfect interlocking between perpendicular walls (see
Fig. 2c). This interlocking can be controlled indirectly by the
horizontal masonry tensile strength or forced equal to zero, in
case of in situ evidence after a survey of the building.

Hence, for any pair of nodes on the interface between two
adjacent and coplanar triangles R and K , the tangential and
normal velocity jumps can be written in terms of the Cartesian
nodal velocities of elements R − K (see [15] for details), so that
four linear equations in the following form can be written:

Aeq
11wR

+ Aeq
12wK

+ Aeq
13∆uI

= 0 (5)

where wR and wK are the 9 × 1 vectors that collect velocities
of elements R and K respectively, and Aeq

1 j j = 1, 2, 3 are
matrices which depend only on the interface orientation Ω I

(Fig. 2).
For a continuum under in-plane loads, three equality

constrains representing the plastic flow in the continuum
(obeying an associated flow rule) are introduced for each
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element:

ε̇E
pl =

[
∂uxx

∂x
∂u yy

∂y
∂u yy

∂x
+

∂uxx

∂y

]
= λ̇E∂Shom/∂Σ (6)

where:

– ε̇E
pl is the plastic strain rate vector of element E ;

– λ̇E
≥ 0 is the plastic multiplier;

– Shom is the homogenized (non) linear failure polytope of
masonry;

– Σ is the vector of macroscopic variables Σ =

(N11, N12, N22, M11, M12, M22).

It is worth noting that out-of-plane components of the plastic
strain rate are ε̇pl,xz = ε̇pl,yz = 0, whereas ε̇pl,zz is constant.

We refer the reader to the previous section and to [9] for
further details on the procedure used for obtaining a linear
approximation (with m hyper-planes) of the failure polytope in
the form Shom

≡ AinΣ ≤ bin, where Ain is a m × 6 matrix of
coefficients of each hyper-plane and bin is a m × 1 vector of the
right hand sides of the linear approximation.

The three linear equality constraints per element can be
written in the form Aeq

11wE
+ Aeq

12λ
E

= 0, where wE is the

vector of element velocities and λ̇
E is a m × 1 vector of plastic

multiplier rates (one for each plane of the linearized failure
surface).

Following Munro and Da Fonseca [16], out-of-plane plastic
dissipation occurs only along each interface I between two
adjacent triangles R and K or on a boundary side B of an
element Q (see Fig. 3).

Denoting wzz,E = [w
i(E)
zz w

j (E)
zz w

k(E)
zz ]

T as the element
E out-of-plane nodal velocities and θ̇ E = [ϑ̇ E

i ϑ̇ E
j ϑ̇ E

k ]
T as

the side normal rotation rates, θ̇ E and wzz,E are linked by the
compatibility equation (Fig. 3):

θ̇ E = BE wzz,E (7)

where

BE =
1

2AE



bi bi + ci ci

li

bi b j + ci c j

li

bi bk + ci ck

li
b j bi + c j ci

l j

b j b j + c j c j

l j

b j bk + c j ck

l j

bkbi + ckci

lk

bkb j + ckc j

lk

bkbk + ckck

lk

 ,

with bi = y j − yk, ci = xk − x j

and AE is the element area.

3.2. Internal and external power dissipation

The total internal power dissipated, P in, is constituted by the
power dissipated in the continuum P in

E and the power dissipated
in the interfaces P in

I · P in
E , and can be evaluated for each triangle

E of area AE , taking into account that curvature rates χ̇xx ,
χ̇xy , χ̇yy are zero in continuum, so that the flexural part of
the model does not dissipate power in the continuum. As the
homogenized (linearized) failure surface is constituted by the
m hyper-planes of the equation Aq

xx Nxx + Aq
yy Nyy + Aq

xy Nxy +
Bq
xx Mxx + Bq

yy Myy + Bq
xy Mxy = Cq

E , with the subscript q
such that 1 ≤ q ≤ m, an estimation of P in

E can be obtained
as follows:

P in
E = AE

m∑
q=1

Cq
E λ̇

(q)
E

χ̇rq =

m∑
q=1

λ̇
(q)
E ∂Shom/∂ΣMrq = 0

rq = xx, xy, yyΣMrq = Mrq

(8)

where λ̇
(q)
E is the plastic multiplier rate of the triangle E

associated with the qth hyper-plane of the linearized failure
surface.

For an interface I of length Γ and orientation Ω I , a
rotation operator is applied to the linearized homogenized
failure surface in order to obtain, with a few row operations,
m equations (one for each hyper-plane) in the form Aq

tt Nt t +

Aq
nn Nnn + Aq

tn Ntn + Bq
tt Mt t + Bq

nn Mnn + Bq
tn Mtn = Cq

I
representing the homogenized failure surface S̃hom in the n–t
interface frame of reference, Fig. 2.

Therefore, the power dissipated, P in
I , along an interface I of

length Γ and with orientation Ω I can be estimated as follows:

P in
I =

∫
Γ

m∑
q=1

Cq
I λ̇

(q)
I (ξ)dξ ϑ̇ I

= ϑ̇ R
i + ϑ̇ K

j

ϑ̇ I
nt =

m∑
q=1

λ̇
(q)
E ∂ S̃hom/∂ΣMnt = 0

ϑ̇ I
t t =

m∑
q=1

λ̇
(q)
E ∂ S̃hom/∂ΣMt t = 0

∆I
t t =

m∑
q=1

λ̇
(q)
E ∂ S̃hom/∂ΣNt t = 0

ϑ̇ I
nn =

m∑
q=1

λ̇
(q)
E ∂ S̃hom/∂ΣMnn = ϑ̇ I

(9)

where:

– λ̇
(q)
I (ξ) represents the qth plastic multiplier rate of a point

ξ of the interface I . Assuming the plastic multipliers on
the interfaces are linear, Eq. (9) can be written as P in

I =

Γ/2
∑m

q=1 Cq
I (λ̇

(q)

I 1 + λ̇
(q)

I 2 ), where λ̇
(q)

I 1 and λ̇
(q)

I 2 are the
interface plastic multiplier rates of nodes 1 and 2;

– ϑ̇ I
nt is the torsional rotation rate between R and K along I

(see Fig. 3), assumed equal to zero in the model;
– ϑ̇ I

t t is the bending rotation rate between R and K on I along
t, assumed equal to zero;

– ∆I
t t represents the interface plastic strain rate of I along t,

integrated along the infinitesimal thickness of the interface.
It is worth noting that this equation involves only the
plastic multipliers of the interfaces and is different from
the procedure reported in [18], which represents a weak
compatibility condition for the interface;

– ΣMnt , ΣMt t , and ΣNt t are the torsional moments on
I (ΣMnt = Mnt ), the bending moment perpendicular to t
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Fig. 3. Rotation along an interface between adjacent triangles or in correspondence of a boundary side.
direction (ΣMt t = Mt t ) and the in-plane action parallel to
t (ΣNt t = Nt t ) respectively;

– ϑ̇ I
nn is the bending rotation rate between R and K on I along

n, i.e. ϑ̇ I (Fig. 3).

External power dissipated can be written as Pex
= (P + λPT

1 )w,
where P0 is the vector of (equivalent lumped) permanent
loads, λ is the load multiplier for the structure examined,
PT

1 is the vector of (lumped) variable loads, and w is the
vector of assembled nodal velocities. As the amplitude of
the failure mechanism is arbitrary, a further normalization
condition PT

1 w = 1 is usually introduced. Hence, the external
power becomes linear in w and λ, i.e. Pex

= PT
0 w + λ.

3.3. The linear programming (LP) problem

After some elementary assemblage operations, a simple
linear programming problem is obtained (analogous to that
reported in [15]), where the objective function consists in the
minimization of the total internal power dissipated:

min

 n I∑
I=1

P in
I +

nE∑
E=1

P in
E − PT

0 w


such that


AeqU = beq

λ̇I,ass
≥ 0 λ̇E,ass

≥ 0
θ̇

ass
= θ̇

+
− θ̇

−

θ̇
+

≥ 0 θ−
≥ 0

(10)

where:

– U is the vector of global unknowns and collects the vector
of assembled nodal velocities (w), the vector of assembled
element plastic multiplier rates (λ̇E,ass), the vector of
assembled jump of velocities on interfaces (∆uI,ass),
the vector of assembled interface plastic multiplier rates
(λ̇

I,ass
), and the vector of interface and boundary out-of-

plane rotation angles θ̇ .
– Aeq is the overall constraints matrix and collects normaliza-

tion conditions, velocity boundary conditions, relations be-
tween velocity jumps on interfaces and elements velocities,
constraints for plastic flow in velocity discontinuities, and
constraints for plastic flow in the continuum.

– nE and n I are the total number of elements and interfaces,
respectively.
The reader is referred to [19] and [20] for a critical discussion
of the most efficient tools for solving the problem given in
Eq. (10).

4. Structural examples

In this section, two structural examples are presented,
namely a full scale two story building experimentally tested by
Yi et al. [12], and an ancient house already studied both by De
Benedictis et al. in [13] and by Orduna in [21].

In both the cases presented, a homogenized limit analysis
approach is used to predict the ultimate shear at the base for
seismic actions and the relevant failure mechanisms. It is worth
noting that, for all the cases analyzed, the so called primary
collapse mechanisms, as for instance overturnings of single
façades, are excluded from imposing perfect interlocking at
each corner.

In this way, the limit analysis approach proposed can be
compared with standard FE elastic–plastic analyses performed
by means of commercially available code (Strand 7). Both
failure mechanisms and failure loads show that technically
meaningful results can be obtained with the proposed approach.

A sensitivity analysis is also reported, varying in a wide
range for both mortar cohesion and mortar friction angle.

It is worth noting that the usefulness of a global limit
analysis conducted by means of plate and shell elements on
entire buildings stands in its capacity to take into account
simultaneously in- and out-of-plane failures, as well as partial
collapse mechanisms of single panels. Furthermore, an a priori
estimation of the most probable collapse mechanism is not
required.

4.1. 3D limit analysis of a two story unreinforced masonry
building

A 3D FE limit analysis on a two story unreinforced masonry
(URM) building experimentally tested by Yi et al. in [12] is
considered.

The structure, see Fig. 4, reproduces some structural
characteristics of typically existing URM buildings in the mid-
America area. The dimensions of the structure are 7.32×7.32 m
in plan, with story heights of 3.6 m for the first story and
3.54 m for the second story. The structure is constituted by four
masonry walls labeled walls A, B, 1, and 2, respectively, see
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Fig. 4. Yi et al. [12] building, geometry.
Fig. 4. The walls have different thicknesses and opening ratios.
Walls 1 and 2 are composed of brick masonry with thickness
20 cm. Wall 1 has relatively small openings, whereas wall 2
contains a large door opening and larger window openings.
Therefore, the large difference in stiffness between walls 1 and
2 allows the torsional behavior of the URM building to be
investigated. Walls A and B are identical, and with a nominal
thickness equal to 30 cm. The moderate opening ratios in
these two walls are representative of many existing masonry
buildings. The aspect ratios of piers range from 0.4 to 4.0.
The four masonry walls are considered perfectly connected at
the corners, a feature not always reproduced in the past URM
tests. This allows us to investigate also the contribution of the
transverse walls to the strength of the overall building.

For walls A and B, Yi et al. [12] employed masonry
arch lintels, whereas for walls 1 and 2, steel lintels were
used. A wood diaphragm and a timber roof are present in
correspondence of the floors. Both solid bricks and hollow-
cored bricks are employed in the structure. The nominal
dimensions of both types of bricks are 200 × 89 mm (length ×

width). The cored bricks contain a longitudinal hole through
the center with a diameter of 22 mm. Solid bricks are used
for the lower 54 courses in the first story of the test structure
to approximately the 3.8 m level, whereas cored bricks are
used for the remaining parts of the structure. Vertical loading
is constituted only by the wall’s self weight, and the permanent
loads of the first floor and of the roof.

For the numerical simulations, the masonry density is
kept equal to 22.19 kN/m3 [14]. The analysis is conducted
using a mesh of 858 triangular elements, Fig. 5a. In order
to numerically reproduce the actual experimental set-up,
horizontal loads, depending on the limit multiplier, are applied
Table 1
Mechanical characteristics assumed for joints and bricks, Yi et al. [12] masonry
building

Joint Brick

c (N/mm2)

cohesion
Φ friction
angle

fc (N/mm2) compressive strength

0.01 tan−1(1.0) 10 (solid bricks) 4.1 (hollow bricks)

in correspondence to the first and second floor levels of wall
1, as shown in Fig. 5b. Parameters αi in this figure are taken
equal to Wi/

∑2
i Wi , where Wi is the i th floor vertical load. The

masonry self weight, which corresponds to a large percentage
of the total gravity load, is supposed for the sake of simplicity,
to be concentrated in correspondence to the first and second
floors. The mechanical properties of the bricks and mortar
are reported in Table 1. Such characteristics are found to be
in agreement both with experimental data collected in [12]
and the pushover analyses presented in [14]. For the joints, a
classic Mohr–Coulomb failure criterion is adopted, whereas a
compressive cut-off is adopted for the bricks.

The results obtained with the homogenized FE limit analysis
model (i.e. failure shear at the base and failure mechanism) are
compared with the experimental force–displacement diagrams
in Fig. 6, where the total shears at the base of walls
A and B are reported. The kinematic FE homogenized
limit analysis gives a base shear of 183 kN for walls A
and B, respectively, in excellent agreement with the results
obtained experimentally [12]. Finally, a comparison between
the deformed shape at collapse obtained with the model
proposed, Fig. 7a and b, and the deformed shape of the
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Fig. 5. Yi et al. [12] building. a: mesh used for the limit analysis and b: points of application of horizontal loads.
Fig. 6. Yi et al. [12] building. Comparison between force–displacement
experimental curves and the numerical collapse load.

model developed in [14], Fig. 7c, shows the accuracy of the
homogenized limit analysis presented.

A sensitivity analysis is also conducted on the example at
hand. A classic Mohr–Coulomb failure criterion with tension
cut-off ft is considered for joints, assuming ft being constantly
equal to min{0.05 N/mm2c/ tan Φ}, and varying the cohesion c
and the friction angle Φ in a wide range. Five different values Φ
are considered, equal to 45◦, 37.5◦, 30◦, and 20◦ respectively.
Similarly, six different values of cohesion are adopted, equal to
0.01, 0.05, 0.1, 0.2, and 0.4 N/mm2 respectively.

In Fig. 8, the failure load of the structure is reported
as varying with the mortar cohesion and friction angle. Of
course, the failure load varies enormously as the range of the
parameters’ variation adopted is far too excessive for practical
purposes. Nevertheless, this makes it possible to easily identify
different possible failure mechanisms and to make interesting
observations. Points A, B, C, and D correspond to lower and
upper bound assumptions for the cohesion and friction angle.
For each of these points, the corresponding deformed shapes
at collapse are reported in Fig. 9. As it is possible to note, the
different values of mortar friction angle and cohesion determine
four different failure mechanisms for the whole structure. In
particular, mechanism A corresponds to a combined rocking
and shear failure of walls A and B; in mechanism B walls A and
B fail in the sliding mode corresponding to the first story only;
mechanism C involves only wall A with a clear torsional effect
of the whole structure; whereas mechanism D is a combination
of the global failure of walls A and B and the out-of-plane
overturning of façades 1 and 2.

The difference between failure mechanisms A and B is
evident if the deformed shape at collapse of the second
story is observed. In fact, in mechanism B the second story
rigidly translates, so does not contributing significantly to the
ultimate strength of the building, except for a small out-of-plane
dissipation mainly concentrated on walls 1 and 2.

On the other hand, failure mechanisms A and D show that
failure is concentrated on walls A and B under in-plane actions.
Nevertheless, while walls A and B fail for a combination of
rocking and shear in mechanism A (evident in the walls of
the first story), they fail for pure shear in mechanism D. The
difference is particularly clear if the deformed shape of the
elements belonging to the first floor is observed.

Finally, in Fig. 10, the different zones in which the four
different mechanisms occur are indicated. It is worth noting
that, corresponding to the boundary of each zone, mixed failure
mechanisms occur, meaning that for a given set of parameters,
the failure mechanism is more difficult to identify, and a
moderate change in material parameters can result in different
predominant failure mechanisms.

4.2. 3D Limit analysis of an ancient masonry building

In this section, a 3D FE limit analysis on an ancient masonry
building is presented. The model is an adaptation of a real
house analyzed by De Benedictis et al. in [13] within an
extensive survey project of the entire Ortigia (Italy) city center
coordinated by Giuffrè [2]. It is worth noting that the same
example has been studied by Orduna in [21] by means of a
macro-blocks approach and using limit analysis. The building
has two storys and it is assumed, for the sake of simplicity, that
its plan is rectangular, with dimensions 8.30 × 5.35 m.

Vertical loading is constituted by the walls’ self weight and
the permanent and live loads of the first floor and of the roof.
The masonry density is assumed equal to 20 kN/m3. Due
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Fig. 7. Yi et al. [12] building. Deformed shape at collapse. a: walls 1-B view. b: walls 2-A view. PN is the in-plane plastic dissipation evaluated at node N and N is
the node of maximum dissipation. c: Yi et al. [12] deformed shape.
Fig. 8. Yi et al. [12] building. Sensitivity analysis varying mortar cohesion and mortar friction angle.
to the large thickness of the walls, the masonry self weight
represents the majority of the total vertical load. The first floor
permanent and live loads are equal to 1.61 kN/m2 and 2 kN/m2

respectively. On the other hand, the permanent roof and live
loads are equal to 0.87 kN/m2 and 1 kN/m2 respectively. When
the seismic load acts, the live loads are reduced by means of a
coefficient equal to 1/3.

In Fig. 11, a three dimensional representation of the model
is reported. Walls AB and DC are assumed to be 60 cm thick
at the first story and 45 cm at the second story, whereas walls
AD and BC are 74 cm and 52 cm thick respectively. Wall AD is
shared with a contiguous building; consequently only a positive
seismic action along X direction is taken into account.
As underlined by De Benedictis et al. [13], the building
presents a rocking collapse mechanism of the BC façade,
mainly due to the absence of interlocking with its perpendicular
walls. Of course, this implies a very low resistance to seismic
actions, and an intervention is proposed in [13] in order to
improve the interlocking between perpendicular walls and
floor’s stiffness, so aiming at a global failure mechanism.

In the simulation presented here, the building is taken into
consideration only after the intervention proposed in [13]. The
intervention provides a new wooden beam floor on the first
floor, as well as steel ties at the floor level. Furthermore, the
roof structures are strengthened in order to provide in-plane
load distribution capacity.
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Fig. 9. Yi et al. [12] building. Different failure mechanisms for the structure varying mortar cohesion and friction angle. a. Failure mechanism A. b. failure
mechanisms B. c. failure mechanism C. d. failure mechanism D. PN is the in-plane plastic dissipation evaluated at node N and N is the node of maximum
dissipation.
Fig. 10. Yi et al. [12] building. Sensitivity analysis, failure mechanisms patch.
The masonry is supposedly constituted by blocks of
dimensions around 46 × 14 × 22 cm. In the homogenized FE
limit analysis model, for the joints reduced to interfaces a pure
Mohr–Coulomb failure criterion with friction angle Φ = 30◦

and cohesion c = 0.01 N/mm2 is adopted, in order to represent
the very low tensile strength of masonry, whereas blocks are
supposed to be infinitely resistant. It is stressed that such a
value of the friction angle is chosen according to Orduna [21],
in absence of precise data available from the literature and in
any case in agreement with typical values adopted for the joint.

In the 3D FE limit analysis model, a mesh with 1576
triangular elements is used, as shown in Fig. 12a.

The results obtained with the homogenized FE limit analysis
model (i.e. failure shear at the base and failure mechanism)
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Fig. 11. De Benedictis et al. [13] house, geometry.

Fig. 12. De Benedictis et al. [13] house. a: mesh used for the limit analysis (1576 triangular elements) and b: mesh used in Strand 7 for an elastic–plastic analysis
with Mohr–Coulomb failure criterion.
are compared with a standard FE elastic–perfectly plastic
analysis performed by means of commercial code, Fig. 12b.
The analysis is conducted using a mesh of 788 four-noded
plate elements supposing that the masonry is isotropic with a
pure Mohr–Coulomb failure criterion (c = 0.01 N/mm2 and
Φ = 30◦).

As one can note, an isotropic global Mohr–Coulomb failure
criterion strongly differs form a joint Mohr–Coulomb failure
criterion, as for instance adopted in this paper, for obtaining
masonry macroscopic failure surfaces. In fact, even when an
isotropic Mohr–Coulomb failure criterion is chosen for the
joints, it has been shown that an orthotropic strength domain
for masonry is obtained (see [10] for further details), due to the
bricks staggering. As a consequence, masonry strengths along
vertical and horizontal directions can differ sensibly and the
results are dependent both on the geometry of the elementary
cell and on the mechanical properties of mortar.

Thus, isotropic models are not recommended for the
analysis of masonry at collapse, since the horizontal strength
can significantly differ from the vertical one. Therefore, the
comparisons reported here have the sole aim of showing that
standard elastic–plastic procedures can fit results obtained
with more sophisticated procedures when ad hoc mechanical
properties for the isotropic material are adopted. Hence,
particular care should be taken by practitioners both in the
analysis at collapse of complex masonry structures as well as
in the interpretation of the results.

The kinematic FE homogenized limit analysis gives a total
shear at the base of the building of 701 kN, in good agreement
with the results obtained with a standard isotropic FE procedure
(710 kN).

In Fig. 13a, the total shear at the base obtained by means
of the FE commercial code against the node N displacement
(see Fig. 13b) is reported. Furthermore, a comparison between
deformed shapes at collapse of both models, Figs. 13b and 14,
shows the accuracy of the homogenized model and that the
failure is mainly concentrated on wall BC. The opening close to
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Fig. 13. De Benedictis et al. [13] house. Standard FE elastic–plastic approach. Shear at the base a: node N displacement curve. b: deformed shape at collapse.

Fig. 14. De Benedictis et al. [13] house. Deformed shape at collapse and concentration of plastic dissipation for the entire building, homogenization FE limit
analysis approach. PN is the in-plane plastic dissipation evaluated at node N and N is the node of maximum dissipation.
wall BC at the top of the structure strongly affects the behavior,
despite the ties existing at the roof level.

On the other hand, even if a limit analysis gives similar
results to a FE elastic–plastic isotropic approach, it cannot
prove that either method is accurate or that the predicted
failure modes are correct. Nevertheless, it is stressed that the
comparison can be useful for practitioners in order to have
at their disposal a number of different kinds of information
at collapse, such as for instance (a) a reliable prediction
of the total shear at the base, (b) plastic dissipation zones,
(c) displacements, (d) failure mechanism of the structure,
and (e) identification of the more critical zones for possible
strengthening, interventions, etc.

Finally, a comparison between the results obtained by means
of the homogenization approach proposed here and those
obtained with a macro-blocks procedure (see Orduna [21]) is
rather interesting. The so called “proportionality coefficients”
α, defined as the ratios between horizontal loads at failure
and vertical loads, are compared. The present homogenization
model approximately gives an α equal to 0.36, whereas with the
macro-blocks approach (see [21]) a proportionality coefficient
equal to 0.38 is found.
A sensitivity analysis is also conducted for the example at
hand. A classic Mohr–Coulomb failure criterion with tension
cut-off ft is considered for the joints, assuming ft constantly
equal to min{0.05 N/mm2c/ tan Φ} and varying the cohesion c
and friction angle Φ in a wide range. Five different values Φ
have been considered, respectively equal to 5◦, 15◦, 20◦, 30◦,
and 35◦. Similarly, six different values of cohesion have been
inspected, respectively equal to 0.01, 0.063, 0.125, 0.25, 0.375,
and 0.5 N/mm2.

In Fig. 15, the failure load of the structure is reported,
varying the mortar cohesion and the friction angle. It is worth
noting that points A, B, D, and E correspond to the lower
and upper bound assumptions for cohesion and friction angle,
whereas point C is located as corresponding to the middle of
the range inspected. For each of these points, the corresponding
deformed shapes at collapse are reported in Fig. 16. As it is
possible to note, the different values of the mortar friction angle
and cohesion determine four different failure mechanisms for
the whole structure. For mechanisms B and C little differences
occurred; therefore they are considered equivalent for the sake
of simplicity. In particular, mechanisms B and C present a pure
façade failure in out-of-plane bending with a vertical yield line
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Fig. 15. De Benedictis et al. [13] house. Sensitivity analysis varying the mortar cohesion and the mortar friction angle.

Fig. 16. De Benedictis et al. [13] house. Different failure mechanisms for the structure varying mortar cohesion and friction angle. a: failure mechanism A. b: failure
mechanisms B and C. c: failure mechanism D. d: failure mechanism E. PN is the in-plane plastic dissipation evaluated at node N , and N is the node of maximum
dissipation.
at the center of the wall and keeping the edges restrained;
mechanism A is a combination of a partial shear failure of walls
AB–DC and overturning of BD façade; whereas mechanism
D involves both walls AB and DC, which present a typical
sliding failure and walls AC and BD which overturn with rigid
motion around a horizontal hinge at the base of the building.
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Fig. 17. De Benedictis et al. [13] house. Sensitivity analysis. a: failure mechanisms patch. b: C + E failure mechanism.
Finally, mechanism E involves both walls AB and DC with
a clear in-plane shear failure and walls AC and BD with an
overturning failure. Differently from mechanism D, mechanism
E provides significant damage nearing the vicinity of the first
story openings in walls AB and DC. A further difference
between mechanisms D and E relies on the presence of a small
zone for mechanism D which fails out-of-plane (see details in
Fig. 16c).

Where mechanism A is concerned, failure is mainly
concentrated at the second story and involves walls AB–DC in a
limited region near the corner and corresponding to the opening
for wall AB.

It is interesting to note from Fig. 16a and b that partial
out-of-plane collapses of the façades (wall BC) are possible
at different values of mortar cohesion and friction angle. In
fact, horizontal actions are applied both in correspondence of
the floors (with a proportionality coefficient depending of the
weight of the floors multiplied by their height) and at the
centroids of each element. As a consequence, wall BC can
exhibit large out-of-plane deformations at the middle span,
since almost all the vertical weight of the building is represented
by masonry self weight, and wood floors are considered
deformable in their plane.

Finally, in Fig. 17a the intervals in which the four different
mechanisms occur are indicated. As it is possible to note,
corresponding to the boundary of each zone, mixed failure
mechanisms are present, as for instance the C + E failure
mechanism reported in Fig. 17b.

5. Conclusions

In the present paper, a kinematic FE limit analysis approach
for the 3D analysis of masonry buildings subjected to horizontal
actions has been presented. Both in- and out-of-plane failures
are taken into account in the evaluation of the total internal
power dissipated.

Meaningful examples have been treated with the model at
hand, and comparisons with standard incremental elastic–plastic
procedures have been reported, in order to test the reliability of
the homogenized model developed in terms of both collapse
mechanism and ultimate shear at the base. The main conclu-
sions are that: (a) the proposed approach allows us to obtain
failure mechanisms and collapse loads, provides similar results
to more complex approaches based on nonlinear increments and
iterative finite element simulations. The results are obtained for
a very small fraction of the effort when compared to nonlinear
simulations. The maximum processing time of the proposed ap-
proach for the examples shown in the present paper does not
exceed 150 s; (b) the sensitivity analysis carried out indicates
that different predominant failure mechanisms can be obtained
in the analysis after a moderate change in the material param-
eters. Therefore, significant caution is recommended when try-
ing to reproduce existing damage patterns in existing masonry
buildings using advanced nonlinear simulations.
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