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Abstract— The majority of occupational disorders result from
Work-Related Musculoskeletal Disorders (WRMSDs). Conse-
quently, through the years, a substantial level of effort has been
placed on developing new tools for ergonomic assessment, and
nowadays, three major methods can be identified: self-reports,
observational methods, and instrument-based. The present
paper presents a brief review of the current methodologies
for ergonomic-risk assessment, focusing on the instrument-
based tools already developed. Additionally, an analysis is
conducted on the potentials and future prospects of wearables
in the industry 4.0, where the symbiosis between humans and
machines is the heart of the concept.

I. INTRODUCTION

WRMSDs sometimes referred to as repetitive strain in-

juries (RSI) represent the major contribution for occupational

diseases, namely in Europe [1]. These disorders result from

working conditions that expose workers to risk factors like

high loads, repetitive motions, contact stress, static loading

(lifting), vibration and poor posture, among other reasons,

all of which are major risk factors [1]. In the last years,

more attention has been drawn to this issue as it is one of

the main concerns and research priorities of the European

Agency between the years 2013 and 2020, not only due to

the health effects on individual workers but also because of

the economic costs involved such as insurance, medical and

administrative costs, sick leave costs, early retirements and

the reduction of the productivity levels [2], [3]. In fact, it

is estimated that the costs derived from WRMSDs approach

about 0.5% to 2% of the Gross Domestic Product (GDP)

[4]. One of the main causes, besides heavy lifting and/or

carrying and whole-body vibration, is sustaining an awkward

body posture, namely excessive bending and twisting, which

increases spinal stress and could result in injuries in tendons

and muscles [5]. The present study aims at surveying the

current tools developed and used for ergonomic assessment,

highlighting their advantages and disadvantages, and a fore-

sight of future trends and wearables’ relevance in the Industry

4.0.
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II. METHODS FOR RISK ASSESSMENT

The literature presents several methods for risk exposure

assessment and to evaluate the need for ergonomic interven-

tion. These tools can be classified as self-reports, observa-

tional methods and direct methods [6], being that, while some

methods attempt to correlate the fatigue with the duration,

posture, and lifting range of each task, others only evaluate

muscular fatigue [7]. The self-reports collects risk exposure

data from the worker, both physical and psychological,

through interviews and questionnaires. However, even though

its application is direct and initially inexpensive, it is depen-

dent on the worker perception, which usually is imprecise

and unreliable. Also, in order to guarantee a representative

data, a large number of samples is needed, which ends

up raising the costs [6], [8]. Observational methods aim to

detect workplace risk exposure by observation on the field or

replaying videos, and can be subdivided into simpler and ad-

vanced. The simpler ones, also called pen and paper methods,

are performed on job site by an ergonomic expert. Common

used observational methods for upper body evaluation are

Rapid Upper Limb Assessment (RULA), Ovako Working

Posture Analysing System (OWAS), Occupational Repeti-

tive Actions (OCRA), Postural Ergonomic Risk Assessment

(PERA), Rapid Entire Body Assessment (REBA) and the

NIOSH lifting equation. These methods evaluate different

parameters, such as posture, frequency, duration, load/force,

recovery time, among others. Despite being affordable and

non-invasive, the simpler observational techniques are highly

dependent on the analyst expertise, diminishing repeatability,

precision and objectiveness [9]. In fact, the ergonomist hardly

will notice a difference of 10◦ in the worker posture, when

observed in real time. On the other hand, the advanced obser-

vational techniques are based on video recording, followed

by a dedicated software analysis. Hence, its results are more

precise. Yet, its costs are substantially higher, requires a

highly specialized staff for work posture characterization and

are time-consuming [6]. Finally, direct or instrument-based

methods can acquire, in real time, the ergonomic level risk.

Actually, the use of modern measuring devices, placed on the

user’s body, could lead to objective and more accurate results,

reducing the time needed for an ergonomic evaluation and

allow the assessment of dynamic tasks. However, instrument-

based tools are frequently expensive and complex, once the

data interpretation demands effort from the analyst and can

bring discomfort and alterations to the workers’ behaviour

[10]. Recently, researchers have been developing this type

of systems, aiming to provide an automatic and objective
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assessment of the ergonomic risk to which the worker is

exposed, during his task’s performance [11].

III. INSTRUMENT-BASED METHODS

The existing systems for direct assessment of the human

body posture can be categorized into: (1) Goniometric-based,

such as the Lumbar Motion Monitor, a tri-axial electronic

goniometer that measures of the displacement angle of the

thoracolumbar region in relation to the pelvis [12]. However,

its usage is uncomfortable and can modify the normal postu-

ral behavior. (2) sonic-based, which use ultrasonic waves and

are constituted by transmitters and receivers. Once the sound

propagation on body tissue is constant, the distance between

both sensors can be calculated and, therefore, measured the

spine flexion, emulating the Schobert’s test [13]. An example

is the system developed by [13], which integrated four pairs

of ultrasound emitters and receivers with an inclinometer,

a device that measures angles in relation to the gravity

line, for evaluation of trunk inclination and spine curvature.

However, these systems present some drawback such as

sampling rate, since distance measuring depends on the

velocity of the sound in the body tissue. Also, the thickness

of the subcutaneous fat and air noise and properties (e.g.

temperature, air density) can influence the results, which

limits the usage to laboratory conditions and to subjects

with low body fat percentage [9], [13]. (3) Accelerometer-

based, a sensor that measures acceleration variations for

further angle computation. An inclinometer constituted by

four tri-axial accelerometers was developed by [14], aiming

the assessment of posture and movement of upper limbs,

trunk, and neck, with the line of gravity as reference and

two degrees of freedom. The system was able to measure

the degree of arm elevation, although it was relative to the

vertical line of gravity and not to the trunk. It also could

not measure rotation or distinguish arm adduction from arm

flexion. (4) Motion capture (MoCap) technologies, which in-

cludes optical marker-based, optical marker-less, and inertial.

These technologies provide a digitalization of the subjects’

motion, a promising technique for posture evaluation that

has been exploited by researchers in the last years [11].

Regarding posture strain and muscular fatigue evaluation, the

most used method is electromyography (EMG), a technique

based on the measurement of the skin’s electrical potential

through the use of electrodes. There are two types available:

intramuscular and surface EMG. Due to the fact that the first

one is invasive, sEMG sensors are preferred for ergonomic

assessment experiments [9]. These last two methods, the

MoCap technology and the sEMG, have been very popular

among the researchers for ergonomic risk assessment and,

therefore, worthy of a deeper analysis.

A. MoCap technologies

The marker-based motion tracking systems have been

extensively used due to its precision, reproducibility and

possibility to analyze the whole body at the same time.

However, these systems require the use of markers, which are

reflective (passive markers) or light-emitting (active markers)

surfaces, by the subject. One example is the Mac Reflex,

a system composed of video cameras with infra-red over-

laid and reflex markers, that can measure the Euler angles

of the rigid body [14]. Commercially available OptiTrack,

CODA and VICON are also frequently used [15]. These

systems are very precise and accurate, enable the capture of

multiple subjects movements and allow a high acquisition

rate. Marker-less MoCap is based on depth cameras and

computer vision algorithms to estimate body position and

assess its kinematics. A popular choice for research projects

is the Kinect, developed by Microsoft Corp in 2009, due

to its low cost [16]. The first generation of this sensor has

been used for ergonomic risk assessment, acquiring data for

implementation of methods such as OWAS [17]. However,

this generation was not capable of measuring joint rotations,

which was improved in the second generation of Kinect,

and, therefore, allowing the computation of scoring risks

through RULA, NIOSH, REBA and EAWS criteria [11],

[16]. Another approach for the use of this sensor was the

development of a smart workplace that could adjust the

table height to the worker when an awkward position was

identified. However, the system presented a low efficiency as

the height chosen by the system only matched the one that

was suitable for the worker in 15% of the cases [18]. As

for the Inertial MoCap, they use inertial measurement units

(IMU) attached to the human body. These sensors combine

accelerometers, gyroscopes and, in some cases, magnetome-

ters. They can measure acceleration, angular velocity and

magnetic field when the magnetometer is present. However,

the magnetic field is influenced by metal objects, which

are very common in industrial context. IMUs can obtain

orientation on the transverse plane, which was not possible

with accelerometer-based systems. Commercial systems like

the MVN from Xsense and the IGS-180i from the Animazoo

have been used for inertia data acquisition and computation

of 17 body joint’s, allowing ergonomic assessment based on

RULA, OWAS, LI, and OCRA methods [19] or quantifi-

cation and evaluation of the trunk postures for workspace

redesign purposes [20]. Notwithstanding, these systems are

expensive, which constitutes a barrier to its implementation.

Consequently, researchers developed low-cost systems, on

a DIY approach, like the arm motion tracking developed

by [15], that used one IMU on the upper arm and one

potentiometer aligned with the elbow joint axis, or by using

the built-in sensors from the smartphones [8]. Additionally,

the knowledge of the potential of posture feedback to the

user led the developers to incorporate warnings when the

predefined angle thresholds were exceeded [10], [21]. In [22],

IMUs were embedded on the personal protective equipment

with the same aim. In fact, the experiments’ results showed

that the subjects did improve their posture in the following

days. Posture recognition has also been addressed, based

on a state machine algorithm [23]. Seeking to overcome

each sensor limitation, [24] proposed a coupled system that

synchronizes a Kinect camera with an IMU, with the first

acquiring the initial position and building a reference for the

IMUs recorded information.
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B. sEMG

Small-sized and wireless surface electromyography sen-

sors have been exploited for ergonomic assessment. These

sensors are non-invasive and provide a direct and objective

measurement of physical load exerted on muscles without

intruding in the worker’s normal activities. Consequently, it

has been exploited for assessment of the muscular efforts

required by the performed task and for computation of

NIOSH lifting equation with the EMG information [25].

Moreover, a combination of sEMG sensors with IMUs net-

works have been proposed, aiming to complement kinematics

data with force exertion for evaluation of the ergonomic risks

associated with manual rebar tying typical positions [26] and

the biomechanical overload study in a car assembly line [27].

IV. DISCUSSION

Optical Motion caption systems suffer a few drawbacks

such as the need of a large, dedicated and light controlled en-

vironment, the cameras’ limited field of view, the possibility

of occlusion by the surrounding objects that can result in an

inaccurate 3D representation of posture, and the fact that data

processing is time-consuming [28], [29]. Additionally, even

though the marker-based optical MoCap is often seen as the

gold standard for human motion analysis, it has a high initial

cost and imposes the use of a special suit with embedded

markers [30]. On the other hand, Marker-less optical MoCap

like the Kinect, dismiss markers and, therefore, the use of

special suits and calibration is not needed. Also, they are less

expensive than the other MOCAP options [31]. However,

due to the restrictions imposed on the workspace area and

conditions, the use of camera-based technology is often

limited to laboratory condition. In turn, marker-based MoCap

is commonly used as ground truth for the validation of new

projects. Unlike the abovementioned systems, IMUs do not

suffer from occlusion, light conditions or misrepresentation

of real motion conditions [31]. In terms of comparison,

IMUs are more reliable and robust than the Kinect. In

addition, its small size and lightweight allows its integration

on wearables that can be used for ergonomic assessment on

the actual workplace with no mobility restrictions, contrary

to the optical MoCap technologies. sEMG can also be used

in wearables and allow the study of the muscles involved

in the task execution. However, IMUs and sEMG present

limitations. Regarding the first ones, it lacks reference and

surrounding environment data, an information often helpful

for better identification and analysis of endangering tasks

[31]. sEMG sensor’ shortcomings are related to electrode-

skin impedance, noise, crosstalk between muscles signals,

along with the knowledge requirement about anatomy and

electrophysiology [32]. In terms of academic work, a trend

for wearable and inertial-based systems was identified.

V. PERSPECTIVE ON FUTURE TRENDS

Currently, observational-based methods remain the most

used ergonomic assessment tool. Notwithstanding, as revised

above, through the years, researchers have been putting

effort into testing existing devices, initially developed for

other purposes (e.g. MVN Xsense), and developing their

own system for posture recognition and quantification of

the ergonomic risk associated with the workplace or task,

aiming the workplace redesign or posture improvement,

through the feedback integration on the device. The industry

is marching to its 4th revolution, searching for the smart and

skilled operator 4.0, that uses the interaction between humans

and machines to potentialize his productivity. However, a

productive worker must be healthy, and the use of wearables

in an industrial context is a step-further to this vision [33].

The possibility of acquiring the operator’s kinematics and

continuously monitoring his posture on-site offers many

possibilities. Besides the already implemented strategies of

providing warnings to empower the worker with posture self-

awareness, namely, the related risk level and the possibility to

correct it, other approaches are possible. Such include record-

ing the operator’s posture during the work shift and keeping

a historical track, which can be used for pattern recognition

through the use of artificial intelligence algorithms. As a

result, the identification of tired workers would be possible

and, therefore, plan rest-pauses and work-shifts or send a

warning to switch tasks, according to the identified patterns.

Furthermore, based on the industry 4.0 perspective, the work-

place could adjust itself, like the table height, to the worker

in a concept similar to the one implemented with the Kinect

camera [18]. Also, the acquisition of the operator kinematics

could help human-robot collaborations by live streaming

the workers biomechanical information to the robot, which

would adjust its assistive behavior to reduce the operators

joint overload, when detected [34]. Moreover, the addition of

sEMG sensors to the IMUs network in the wearable would

provide important data regarding the muscular strain. For

example, sEMG data can be a leverage for the identification

of lifting intents [35]. The intention prediction could also

be fed to the collaborative robot, which would aid the

operator to lift the object. In addition, feature extraction from

kinematics for gesture recognition and posture classification,

which has already been subject of study [36], could be an

asset towards the human cyber-physical production system, a

concept that aims a dynamic interaction between humans and

machines [33]. Nevertheless, such proposition is still difficult

to accomplish. First of all, in order to the worker accept

to use the wearable daily, its design must be comfortable,

lightweight, non intrusive, and grant a friendly user interface.

Secondly, a stable network connectivity shall be guaranteed,

assuring that data is not lost, and the usual process is not

stopped. Additionally, the battery life must last the work shift

and the decision making shall be performed in real time and

on-site [37]. Also, IMUs acquires lots of data. When many

sensors are used, both the large amount of data transfer

and storage, as the high computational resources required

for its processing, pose as a barrier. The issue of reducing

data storage has been addressed, with the use of supervised

motion tensor decomposition for inertial data processing and

posture prediction. The stored data presented a reduction of

90%, but further work must be developed to improve the

system’s accuracy, especially when predicting transitional
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postures [38]. In conclusion, wearables present a massive

potential and certainly will take a major role in the upcoming

industry. However, hardware and software developments are

still required to achieve this end, constituting a relevant

research opportunity for the scientific community.
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[3] E. Rial-González, S. Copsey, and P. Paoli, “Priorities for occupational
safety and health research in Europe:2013-2020,” tech. rep., 2013.
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