
  

 

  

Abstract— The challenge of addressing the critical public 

health issue of lower limb disability has led to the exploration of 

robotic assistive devices for rehabilitation, as a complement to 

conventional therapies. However, achieving optimal synergy 

between robotic activity and human effort remains a persistent 

challenge. Even the optimal control of Assist-as-Needed (AAN) 

remains to be solved. This study addresses this challenge by 

proposing an AAN electromyography (EMG)-based control 

strategy to automatically assist the walking motion throughout 

the entire gait cycle. The AAN EMG-based control strategy was 

integrated into an active orthosis to provide automatic ankle 

assistance. Preliminary results from a healthy male participant 

demonstrate that the ankle orthosis increased its plantar flexion 

assistance by 28% when the user’s ankle joint torque decreased 

by 6% and his EMG signals from Gastrocnemius Lateralis and 

Tibialis Anterior decreased by 41% and 29%, respectively. In 

addition, the results show that the ankle orthosis was able to 

perform the gait pattern when there was no user participation, 

demonstrating the system's AAN capacity. 

I. INTRODUCTION 

Restoring the walking ability of people with lower limb 
impairments is crucial, as it empowers them to regain 
independence in performing their daily tasks. Current 
directions in rehabilitation point to the incorporation of robotic 
assistive devices, such as active orthoses and exoskeletons, 
alongside conventional physiotherapy. These devices are 
designed to work hand-in-hand with traditional methods, 
aiming to enhance the coordination of movements and muscle 
function in individuals facing challenges with motor abilities 
[1]. Therefore, trajectory tracking controls, such as position 
control strategies, have been extensively employed [2], [3]. 
However, as indicated in [2], despite the repetitive nature of 
gait training imposed by these control strategies, they tend to 
ignore the human-robot interaction and, consequently, the 
needs of each user. As a result, these strategies may limit motor 
relearning and end up being abandoned [3], [4]. 

In the last years, electromyography (EMG)-based torque 
control strategies have been suggested to promote a smoother 
use of robotic assistive devices [5]. At this level, various 
EMG-based torque control strategies, typically based on a 
threshold [6], proportional [7], or Hill-type muscle model 
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approaches [8], were proposed to foster the patient’s 
participation while wearing robotic assistive devices. In EMG-
based torque controls based on threshold methods, also known 
as EMG-triggered controllers, the assistance of the assistive 
device is triggered when EMG signals achieve certain 
threshold values. Apart from the intra- and inter-subject 
threshold dependence, this method does not allow continuous 
control to be achieved, as it only provides assistance when the 
threshold values are reached [9]. To solve that, both 
proportional controls and those based on Hill-type models 
have been proposed by building linear and non-linear models, 
respectively, by correlating EMG signals with joint torques 
[7], [8], [10]. While in the proportional control, the amount of 
gain required is found by trial-and-error experiments, which 
may result in an inaccurate control, the Hill-type models (i) 
depend on muscle-specific parameters that are difficult to 
measure; (ii) present numerical instability issues; and (iii) are 
time-consuming, which may hinder their real-time application 
[8], [11]. Additionally, despite being a valuable contribution 
to muscle strengthening, these EMG-based torque controls do 
not consider different levels of motor disabilities, not assisting 
the user when and as much as needed [12]. 

Assist-As-Needed (AAN) EMG-based control strategies 
have been proposed to provide the robotic assistance required 
for users to complete a motion while considering their motor 
disabilities and invoking their participation [4], [9], [12]–[18]. 
For that, torque control loops are adopted, in which the user’s 
joint torque is commonly estimated based on EMG signals, 
while reference joint torques are set according to assistance 
ratios [4], [9], [12]–[18]. Nonetheless, most of the already 
proposed AAN EMG-based control strategies (i) were 
developed for upper limbs [12]–[14]; (ii) depend on Hill-type 
models to estimate the user’s joint torque, which may result in 
complex, user-dependent calibration, and time-consuming 
methods [4], [15]–[18]; (iii) are not adaptable since they rely 
on fixed assistance ratios to define the desired joint torque 
trajectories [4], [15], [16]; and (iv) were not developed to assist 
the walking motion, but rather focus on flexion and extension 
movements of the lower limb joints [4], [9], [16]–[18]. 

This study tackles the above-mentioned limitations by 
proposing an AAN EMG-based control strategy to 
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automatically assist the walking motion throughout the entire 
gait cycle. The system implements an outer loop torque control 
and an inner loop position control, which adapts the level of 
assistance to be provided to the user in real-time and 
automatically. To do this, the system compares the user's 
participation (through the ankle torque trajectory estimated by 
a Deep Learning (DL) regressor fed by a fusion of kinematic, 
EMG, anthropometric, and demographic data [19]) with the 
user-oriented torque reference trajectory (generated by a DL 
regressor based on the user's body height and gait speed [20]). 
The control strategy was designed and implemented into a 
robotic assistive device (SmartOs - Smart Active Orthotic 
System [21]) to assist the ankle joint. We present a proof-of-
concept to show how the system automatically adapts its 
assistance in real-time while considering the user's 
engagement.  

II. MATERIALS AND METHODS 

A. SmartOs Description 

The SmartOs system, depicted in Fig. 1, employs a non-
centralized architecture, structured as a modular and 
hierarchical framework, being organized into high-, mid-, and 
low-levels, as proposed in [22]. The main blocks of the 
framework consist of (i) an Android application; (ii) a Central 
Control Unit (CCU); (iii) two development boards; (iv) an 
ankle orthosis; and (v) a power supply. To enhance user 
comfort and practicality, all these hardware components are 
combined within a backpack housing the system. 

The system is configured through the Android application, 
defining the user’s parameters, assistive control strategies, 
walking speed, gait analysis tools, and sensor systems to use. 
The CCU, running the high-level controls at 100 Hz, is 
implemented using a UDOO X86 computer (2.24 GHz and a 
Random Access Memory with 4.0 GB). The two boards 
correspond to STM32F4-Discovery boards 
(STMicroelectronics, Switzerland). They communicate with 
the CCU through a UART interface. These development 
boards comprehend (i) a Wearable Motion LAB, which 
facilitates real-time data acquisition from sensor systems 
developed by the team [23], [24] and from external sensors 
[25]; and (ii) a Low-Level Orthotic System, handling mid- and 
low-level controllers and interfacing with the right ankle 
orthosis (Exo-H2, by Technaid, Madrid, Spain [26]), through 
the Control Area Network (CAN) protocol. The ankle orthosis 
comprises an electric actuator (EC60 100W Flat Brushless, 
Maxon, Germany) coupled to a gearbox (CSD-20-160-2A-
GR, Harmonic Drive, Japan) with a ratio of 160:1. This setup 
can deliver an average torque of 35 N.m and a peak torque of 
180 N.m [26]. The power supply system is equipped with a 
lithium iron phosphate battery (LifePO4) of 22.4 V and a 
hardware interface to power the CCU at 12 V and all 
development boards at 5 V. 

B. EMG Delsys System Integration 

For developing an AAN EMG-based control strategy, we 
integrated the 8-channel Delsys Trigno wireless EMG system 
(Delsys, MA, USA) into the SmartOs framework (Fig. 1) to 
measure and record muscle activity during gait. The 
integration was achieved using the Trigno SDK, enabling real-
time acquisition of rectified EMG signals during orthosis use 
[20]. 

 
Fig. 1. Description of the SmartOs modular framework. 

Further, we developed an algorithm capable of 
determining, in real-time, the value of maximum voluntary 
contraction (MVC) per muscle. This MVC value represents 
the maximum strength production capacity of a muscle and it 
is used in the AAN EMG-based control to normalize all EMG 
signals of a muscle by the corresponding maximum [27]. This 
algorithm should be robust to peaks created due to external 
perturbations or a momentary displacement of the EMG sensor 
on the skin. In both cases, momentary peaks with high 
magnitude and short duration are generated. To avoid this, 
following the completion of an MVC trial for each muscle, we 
implemented the following algorithm. First, it identified the 
maximum value within that trial. Subsequently, two windows 
are established around that maximum: a vertical window and 
a horizontal window. The horizontal window spans a 
maximum of 300 samples. This window includes 150 EMG 
samples before and after the position of the maximum and 
between the maximum EMG value recorded and this 
maximum value subtracted by a threshold value. The threshold 
value used was 0.0001 V and it was found empirically. Then, 
for each window, the average of its values is computed. If the 
average of the horizontal window exceeds the one of the 
vertical window, this indicates the presence of a disturbance. 
Thus, the initially identified maximum value is deemed 
unreliable and discarded. Conversely, if the average of the 
horizontal window is less than or equal to the average of the 
vertical window, the MVC value is considered valid and 
retained. Once the entire MVC trial has been analyzed, the 
MVC algorithm retains the highest value corresponding to the 
average value of the horizontal window. 

C. AAN EMG-based Control Strategy 

The AAN EMG-based control proposed in this work 
follows a hierarchical control organized into high-, mid-, and 
low-levels, as depicted in Fig. 2. It combines a torque outer 
loop and a position inner loop control. In this approach, the 
outer loop introduces a "softening" effect in the behavior of 
human-robot interaction, while the inner loop enhances joint 
stiffness. This helps suppress undesirable disturbances, 
eliminating the necessity for compensation based on 
anticipatory control models [3]. 

 
Fig. 2. AAN EMG-based torque control, combining a torque outer loop with a 
position inner loop. Ԏref.h and Ԏmeas.h are the human ankle joint reference and 



  

measured torques, respectively. eԎ.h is the human torque error between Ԏref.h 

and Ԏmeas.h. eϴ.h is the human position error corresponding to eԎ.h. ϴref.h and ϴref.o 
are the human and orthosis ankle joint reference angles, respectively. ϴmeas.o is 
the orthosis ankle joint measured angle. eԎ-ϴ.o is the orthosis position error 
corresponding to the eϴ.h. u is the PID command. EMGTA and EMGGAL are the 
EMG measured from the Tibialis Anterior and Gastrocnemius Lateralis 
muscles, respectively.  ϴmeas.h is the human hip joint measured angle. WS is the 
walking speed. BH and BM are the human body height and mass, respectively. 
SL and FL are the shank and foot lengths, respectively. K is a fixed factor equal 
to 20. SS is a speed scaling block achieved by (1). PID is a Proportional-
Integral-Derivative (PID) controller. HTE is a Human-Torque Estimation 
(HTE) block.  

The high-level controller, implemented at 100 Hz, is 
responsible for (i) defining the Human ankle joint reference 
angle (ϴref.h) and torque trajectories (Ԏref.h); and (ii) estimating 
the Human ankle joint torque trajectory (Ԏmeas.h), in real-time, 
through the Human-Torque Estimation (HTE) block. The ϴref.h 
is generated by a regression model proposed in [28], 
considering the user’s body height and walking speed. The 
Convolutional Neural Network (CNN) explored in [19] sets 
the Ԏref.h, according to the ϴref.h and its derivatives (angular 
velocity and angular acceleration), walking speed, 
anthropometric (body height and mass, shank, and foot 
lengths), and demographic (gender and age) data. The HTE 
block is implemented through another CNN detailed in [20]. It 
estimates the Ԏmeas.h in less than 2 ms, considering the EMG 
signals from the Tibialis Anterior and Gastrocnemius 
Lateralis muscles (normalized by the corresponding MVCs), 
hip joint kinematics, walking speed, anthropometric (body 
height and mass, shank, and foot lengths), and demographic 
(gender, age) data.  

 In the mid-level controller, which operates at 100 Hz, the 
Ԏref.h and Ԏmeas.h are compared, generating the Human torque 
error (eԎ.h). The eԎ.h is converted into a human position error 
(eϴ.h) through a fixed scaling value K set at 20. This value was 
empirically found for the used ankle orthosis. Moreover, the 
mid-level controller defines the (i) orthosis ankle joint 
reference angle (ϴref.o) based on the ϴref.h; and (ii) orthosis 
position error (eԎ-ϴ.h) that corresponds to the eϴ.h. Both 
definitions will enable to scale the ϴref.o and eԎ-ϴ.h to the low-
level control frequency given the current walking speed, 
through the empirical equation (1) found in [29].  

Speed Scaling = - 34.62 × Walking Speed + 107.32  (1) 

At the low-level controller (working at 1 kHz), we 
empirically verified that was required to apply a feedforward 
position control to prevent the ankle orthosis from moving to 
positions that could cause injury to the user. This feedforward 
position control was also proposed in a study [3] to improve 
trajectory tracking. To this end, a feedforward position control 
was applied to the inner loop, adding the ϴref.o that the orthosis 
should move to while taking into account the Ԏref.h of the outer 
loop. The eԎ-ϴ.h, ϴref.o, and the orthosis ankle joint measured 
angle (ϴmeas.o) are compared, generating the orthosis position 
error (eϴ), fed to the Proportional-Integral-Derivative (PID) 
controller. The PID controller was implemented using 
proportional, integral, and derivative gains of 95, 1.5, and 1.5, 
respectively. Considering the eϴ, the PID controller computes 
a PID command (u) that is limited to maximum and minimum 
values of 2500 and -2500, through a saturator. This command 
is interpreted by the ankle orthosis, generating the 
corresponding motor torque. With this control architecture, it 
is intended that if the user performs (i) an ankle joint angle and 

torque trajectories closer to the references, the assistance of the 
ankle orthosis should be minimal; (ii) an ankle joint angle 
and/or torque trajectories different from the references, the 
ankle orthosis should provide assistance in order to 
compensate for these differences. 

D.  Experimental Procedures 

 Two experimental procedures were conducted to analyze 

(i) the robustness of the MVC computation; and (ii) the 

feasibility of the proposed AAN EMG-based control strategy. 

Participant: One healthy participant (age: 27 years; body 

mass: 81.0 kg; body height: 1.70 m) without evidence of 

motor disorders accepted to participate in the study by signing 

a consent form according to the University of Minho Ethics 

Committee (CEICVS 006/2020). 

MVC Computation Protocol: We carried out an 

experimental test to infer the robustness of the MVC 

computation algorithm in the presence of different 

perturbations. For that, a single EMG sensor was placed 

above the right Tibialis Anterior muscle of the participant. 

The participant lay on a stretcher, in a dorsal decubitus. The 

foot was manually immobilized while instructing the 

participant to execute two MVCs of the ankle dorsiflexion for 

3 seconds each. During the first MVC, the EMG sensor was 

externally disturbed with a small hit. Between the first and the 

second MVCs, the EMG sensor was externally disturbed with 

various small hits with different magnitudes. The main goal 

of these hits is to generate external noise (generally, high 

peaks) in the EMG sensor acquisition, in order to see if the 

MVC algorithm is able to reject the high values associated 

with external hits. 

Control Validation Protocol: To evaluate the effectiveness 

of the proposed AAN EMG-based control strategy, we started 

by collecting the participant’s gender, age, body height and 

mass, and foot and shank lengths. Then,  we instrumented the 

participant with (i) two EMG sensors placed on the right 

Tibialis Anterior and the right Gastrocnemius Lateralis 

muscles, following the SENIAM recommendations [30]; and 

(ii) 2 inertial measurement units (IMUs) from the InertialLab 

system (Fig. 1) [23], positioned in the pelvis and in the right 

thigh, to collect hip joint angles. Once instrumented with the 

sensor systems, the participant performed two MVCs per 

muscle. After that, the participant was instrumented with the 

SmartOs system (Fig. 3).  

 
Fig. 3. Male participant equipped with the InertialLab, Delsys, and SmartOs 
systems (a) without the foot-up and with the right leg suspended; (b) without 

the foot-up and walking; (c) with the foot-up and with the right leg suspended; 

(d) with the foot-up and walking. 



  

The experimental data acquisition was divided into two 

sessions, including three trials per session. For each trial of 

both sessions, the participant remained in the standing 

position with the right leg raised (without making any 

movement) for 30 s, followed by the walking motion on a 

treadmill at 1.0 km/h for 2 minutes. In the first session, the 

participant stood with the right leg raised (Fig. 3 – a)) and 

then, walked without any constraint at the right ankle joint 

(Fig. 3 – b). In the second session, this joint was conditioned, 

limiting the plantar flexion movement that the participant 

would be able to perform. This motion restriction was 

imposed by a foot-up, as illustrated in Fig. 3 – c) and Fig. 3 – 

d). Due to the inelastic characteristic of the foot-up, at the 

push-off phase of the gait cycle where the Tibialis Anterior is 

relaxed, the participant performed a small plantar flexion 

movement (around 0º) (Fig. 3 – d)), when compared to the 

condition without wearing a foot-up (Fig. 3 – b)).  

Consequently, it is expected a reduced Human ankle torque 

(Ԏmeas.h) that should be compensated by increasing the 

orthosis motor torque.  

III. RESULTS AND DISCUSSION 

A. MVC Algorithm 

 The complete trial with two MVCs is depicted in Fig. 4 – 

a). It shows (i) the first MVC with a disturbance (left) due to 

an external small hit performed; (ii) several disturbances due 

to various external small hits (middle) performed between 1st 

and 2nd MVCs; and (iii) the second MVC without 

disturbances, i.e., a valid MVC (right). As can be observed in 

Fig. 4 – b), every time that the average value of the horizontal 

window exceeds the average value of the vertical window, the 

peak is rejected, advancing to the next one. Fig. 4 – c) depicts 

the obtained MVC value. 

B. AAN EMG-based Control 

To analyze the contributions of the proposed AAN EMG-

based control strategy, we analyzed the EMG signals of the 

Tibialis Anterior and Gastrocnemius Lateralis, the Human 

hip joint angle, the Human ankle joint torque, the motor 

torque, and the Human ankle joint angle in both conditions, 

i.e., with and without foot-up. For each variable, the mean 

value of the three trials was performed, as illustrated in Fig. 

5. Fig. 5 – a) and Fig. 5 – b) present the variables' evolution 

during the standing position and walking motion, 

respectively, while the proposed AAN EMG-based control 

strategy was operating. 

Tibialis Anterior and Gastrocnemius Lateralis EMG 

Analysis: From the results, we verified that during the 

standing position (Fig. 5 – a)), the EMG signals were close to 

0%, representing that the user stayed with the right muscles 

relaxed during the standing. Contrarily, the EMG signals of 

both muscles increased when the participant performed the 

walking motion, even with and without foot-up (Fig. 5 – b)). 

During the walking motion, the foot-up use decreased on 

average (i) 41% of the Gastrocnemius Lateralis peak signals; 

and (ii) 29% of the Tibialis Anterior peak signals. These 

results are in line with what was expected. On one hand, the 

foot-up ensures by default a dorsiflexion movement; thus, the 

Human decreases the Tibialis Anterior muscle activation. On 

the other hand, the foot-up restricts the Human mobility to 

perform the plantar flexion movement; thus, the 

Gastrocnemius Lateralis muscle activation when using the 

foot-up is representatively lower.   

Human Hip Joint Angle Analysis: As expected, the Human 

hip joint angles were constant during the standing phase and 

varied during the walking motion. During the standing phase 

(Fig. 5 – a)), lower hip angle values were recorded when using 

the foot-up, indicating that the participant flexed the hip less 

compared to when not using the foot-up. During the walking 

motion (Fig. 5 – b)) with foot-up, the participant (i) flexed the 

hip 14% more; and (ii) extended the hip 3% less, than the 

walking motion without foot-up. 

Human Ankle Joint Torque Analysis: The Human ankle 

joint torque (Ԏmeas.h) was estimated by the HTE block. While 

the anthropometric, and demographic data remained with 

fixed values, the EMG signals and the Human hip joint 

kinematics were measured in real-time.  

Considering the results of Fig. 5 – a), the Human ankle joint 

torques were constant throughout the standing phase similar 

to the EMG signals and the Human hip joint angle. The low 

torque values estimated when using the foot-up are related to 

the lower Human hip joint angles when compared to not using 

the foot-up. 

Additionally, the results of the walking motion (Fig. 5 – b)) 

revealed a decrease of 6 % in the peak ankle plantar flexion 

torque, when using the foot-up. These results are within what 

would be expected since the foot-up does not allow the human 

to perform as much plantar flexion torque compared to the 

condition without the foot-up. These findings demonstrate the 

foot-up efficacy in mimicking a condition of decreased 

Human joint torque that needed to be compensated by the 

ankle orthosis, as demonstrated in the following topic. 

 
Fig. 4. MVC algorithm explanation. (a) trial with 2 MVCs; (b) an example of 

an unreliable maximum value; and (c) an example of a valid maximum value. 



  

Motor Torque and Ankle Joint Angle Analysis: The motor 

torque represents the contribution of the ankle orthosis to 

perform the desired motion (in this case, the walking motion). 

As previously analyzed, during the standing phase (Fig. 5 – 

a)), the participant did not actively participate in the execution 

of the walking motion. Consequently, his EMG signals were 

close to the minimum values, which resulted in a constant and 

lower human ankle torque. Thus, the ankle orthosis is 

expected to be responsible for the execution of the walking 

motion. This can be proven by the motor torque and Human 

ankle joint torque trajectories presented in Fig. 5 – a). Since 

the participant was not performing the walking motion, the 

ankle orthosis generated the required motor torque to follow 

the reference ankle joint angle (ϴref.o). 

 Moreover, considering that the foot-up decreased the 

plantar flexion (Human ankle plantar flexion torque decreased 

by 6 %) and supports the dorsiflexion movements of the ankle 

joint, it is expected that the ankle orthosis provides more 

assistance during plantar flexion phases and less assistance 

during dorsiflexion phases of the walking motion. According 

to the results obtained during the walking motion (Fig. 5 – b)), 

the foot-up usage resulted in (i) an increase of 28% in the 

plantar flexion motor torque; and (ii) a decrease of 18% in the 

dorsiflexion motor torque. These results show that the 

orthosis assisted as expected, indicating that it adapted its 

assistance in accordance with the user’s participation while 

following the reference ankle joint angle (ϴref.o).  

D. Overall Analysis of the AAN EMG-based Control 

Strategy 

This study was developed in the context of robotic gait 

rehabilitation, in which AAN EMG-based control strategies 

are needed to provide assistance training that invokes the 

user’s participation while simultaneously providing 

assistance only when and as much as needed.  

This study presents a proof-of-concept of an AAN EMG-

based control strategy targeting ankle joint assistance, 

providing three key advances upon the state of the art. It 

proposes an automatic and real-time control strategy that (i) 

estimates the user’s ankle joint torque in less than 2 ms 

without depending on complex, user-dependent calibration, 

and time-consuming methods [4], [15]–[18]; (ii) defines the 

desired user-oriented ankle joint torque trajectories, not 

relying on fixed assistance ratios [4], [15], [16]; and (iii) 

provides assistance during the entire gait cycle when and as 

much as required [4], [9], [16]–[18]. 

The achieved results indicate that the assistance of the 

ankle orthosis is automatically adjusted considering the user’s 

participation. From the results, it was inferred that when the 

user revealed fewer muscle contributions (Gastrocnemius 

Lateralis and Tibialis Anterior less activated about 41% and 

29%, respectively)), the Human ankle joint torque decreased 

by around 6% (foot-up condition). Consequently, the 

assistance of the ankle orthosis increased by 28%, which was 

demonstrated by the increase of the motor torque. In addition, 

the opposite was also verified, i.e., the ankle orthosis 

assistance decreased as the participant became more active 

(non-foot-up condition).   

 
Fig. 5. Average trials of the two tested conditions: with foot-up (blue color) 
and without foot-up (orange color). Representation of the Tibialis Anterior 
signals, Gastrocnemius Lateralis signals, Human hip joint angles, Human 
ankle joint torques, motor torque, and ankle joint angles during the (a) standing 
position with the right leg raised; and (b) walking motion. 

Despite the proposed AAN EMG-based control strategy 

offering promising results, there is still room for 



  

improvement. This work used an inelastic foot-up to visualize 

if the proposed control strategy can increase its contribution 

(motor torque) when the user does not perform the gait 

pattern. The use of an inelastic foot-up may affect the 

achieved results. Although the ankle orthosis increased its 

contribution, the plantar flexion movement could not be 

completely performed due to the inelastic nature of the foot-

up. Moreover, it is required to validate the proposed control 

strategy with more healthy participants and evaluate its 

impact on patients with lower limb impairments. 

IV. CONCLUSIONS 

This study addresses a gap in the current literature by 

proposing an AAN EMG-based control strategy to 

automatically assist the ankle joint throughout gait according 

to the user’s disability level evaluated by EMG signals. The 

experimental results showed that the assistance of the ankle 

orthosis was automatically adapted according to the 

participant's involvement during the entire gait cycle. The 

orthosis increased the motor torque under decreased muscle 

activation, and vice-versa. Further studies would also involve 

more subjects, both healthy and pathological ones, to evaluate 

potential applications in ankle rehabilitation. 
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