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Abstract—Let Xn, n ∈ N, be a strictly stationary sequence
of centered and associated real random variables. Sufficient
conditions for the strong law of large numbers to hold are known,
but no rates of convergence where given. We derive an upper
bound for this convergence rate. This rate is made explicit for
geometrically decreasing covariances.
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I. INTRODUCTION

LET Xn, n ∈ N, be a strictly stationary sequence of
centered random variables and define, for each n ∈ N,

Sn = X1 + · · ·+ Xn.
If the variables are independent it is well known that

1
n

Sn → 0 a.s.

and the optimal rate of this convergence is characterized by
the law of iterated logarithm.
Extensions of these characterizations to dependent sequences
have been considered in the literature.
In this note we will be interested in the case where the
sequence Xn, n ∈ N, is associated, that is,

Definition 1.1: The sequence Xn, n ∈ N is such that, given
any real-valued cordinatewise increasing functions g and h
defined on RI , where I is any finite subset of N,

Cov (g(Xi, i ∈ I), h(Xj , j ∈ I)) ≥ 0,

whenever this covariance exists.
A strong law of large numbers for strictly stationary asso-

ciated random variables has been proved by
Newman [9] under the assumption

1
n

n∑

j=1

Cov (X1, Xj) −→ 0.

An extension of this result to nonstationary sequences has been
proved by Birkel [5]. The results referred give no indication
about convergence rates. The usual approach to the treatment
of such characterizations requires the use of exponential
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inequalities, in order to optimize the rates. Such type of
inequalities have became available for associated sequences
only quite recently, proved by Ioannides, Roussas [8], thus
providing the tools to take some steps in identifying rates of
convergence.

The literature on association is extensive.
Positive association has found applications in reliability, sta-
tistical mechanics, probability, stochastic processes, and statis-
tics. So has negative association but to a lesser degree. Many
more applications are to be anticipated in a host of areas,
and, in particular, those areas where spatial statistics play
an important role. Such areas are, for example, analysis of
agricultural field experiments, geostatistical analysis, image
analysis, oceanographic applications, and signal processing.

Positive association, called just association, was introduced by
Esary et al.[7], who also derived an abundance of properties,
discussed equivalent characterizations, and presented several
applications in probability and statistics. Their motivation
stemmed from the usefulness of Positive association in the
context of systems reliability.

The main result in this note proves an upper bound for
the convergence rate for the strong law of large numbers
under positive association. The identification of the exact
convergence rate seems out of reach of the method of proof
used.
In fact, the proof presented in next section uses the first
Borel-Cantelli Lemma to prove the almost sure convergence
of the various sequences treated. For the identification of a
lower bound for the convergence rate it would be necessary
to use some sort of version of the second Borel-Cantelli
Lemma which, as far as the author knows, is not available
for associated sequences.

II. RESULTS

In order to present our results we need to introduce some
notation required by the use of the exponential inequality by
Ioannides, Roussas [8], upon which our approach is based.

For each n ∈ N let pn ≤ n be an integer, such that pn → +∞,
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and let rn be the largest integer less or equal to n
2pn

.
It is also required that rn → +∞.

Theorem 2.1: Let Xn, n ∈ N be strictly stationary centered
and associated random variables with finite variances. Suppose
that
• there exists a constant M > 0 such that

|Xn| ≤ M, n ∈ N
• the covariances Cov (X1, Xn) are decreasing
• IE(S2

n) = O(n)
• the variables satisfy, for some constant c > 0,

Cov (X1, Xpn+1) ≤ exp (−crnεn) ,

with

ε2
n = O

(
log logn

rn

)
. (1)

Then

IP
(

lim sup
Sn

nεn
> 1

)
= 0.

The assumptions on the variables and on the covariances used
in this theorem are inherited from the conditions for the use
of the exponential inequality by Ioannides, Roussas [8].
As a consequence of this theorem, we may identify an upper
bound for the convergence rate of the strong law of large
numbers when the covariances are geometrically decreasing.

Corollary 2.2: Let Xn, n ∈ N, be strictly stationary cen-
tered and associated random variables with finite variances.
Suppose there exists a constant M > 0 such that |Xn| ≤
M, n ∈ N, and there exists some ρ0 > 0 and ρ ∈ (0, 1) such
that
Cov (X1, Xn) = ρ0ρ

n. Then,

IP
(

lim sup
n1/3

(log logn)2/3

1
n

Sn > 1
)

= 0.

III. AUXILIARY RESULTS

In this section we quote the inequalities that are used in
course of proof of our results.

First the exponential inequality.

Theorem 3.1: (Ioannides, Roussas [8])
Let Xn, n ∈ N, be a strictly stationary sequence of centered
and associated variables for which there exists a constant M >
0 such that

|Xn| ≤ M.

Suppose further that the sequence of covariances
Cov (X1, Xn) is decreasing and satisfy, for some α > 1 and
some sequence εn → 0,

Cov (X1, Xpn+1) ≤ exp
(
−4(M + 1)

3M

α1/2

2
rnεn

)
.

Then, for n sufficiently large, there exists a constant c0 > 0
such that

IP
(

1
n
|Sn| ≥ εn

)
≤ c0 exp

(
−2M2

9
rnε2

n

)
. (2)

In order to deduce the almost sure convergence we must
choose the sequence εn such that

rnε2
n =

9
2M2

α logn,

with α > 1 to derive that
∑

n

IP
(

1
n
|Sn| > εn

)
< ∞

and use the Borel-Cantelli Lemma to conclude the conver-
gence.

For the optimization of the rate of convergence we shall use
the following Kolmogorov type inequality.

Theorem 3.2: (Newman, Wright [10])
Let Xn, n ∈ N, be centered random variables with finite
variances. Define

S∗m = max (0, S1, . . . , Sm)

and
s2

m = IE
(
S2

m

)
.

Then,
IE

(
(S∗m)2

)≤ Var (Sm)

and

P
(
max (|S1|, . . . , |Sm|) ≥ λsm

)
≤ (3)

≤ 2P
(
|Sm| ≥ (λ−√2)sm

)
.

IV. PROOFS

Proof of Theorem 2.1: Take tn =
√

n εn.
According to Theorem 3.1,

P (Sn ≥ nεn) ≤ C0 exp(−crnε2
n),

where c =
2 M2

9
.

Taking account of (1), there exist some constant c′ > 0, such
that,

P (Sn ≥ nεn) = P (Sn ≥
√

n tn) ≤ C0(logn)−c′ .

To prove this theorem it is enough that to verify that, for
every δ > 0, we have

P
(
lim sup{Sn ≥ (1 + δ)

√
n tn}

)
= 0. (4)

From the assumptions of the theorem it follows that there exist
two positive constants c1, c2 such that

c1n ≤ IE(S2
n) ≤ c2n.

Next we are more precise about the choice of the sequence
εn.
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Choose this sequence as

ε2
n =

(
c2

c1

)2 1
c

log logn

rn
.

Now, using (2)

P (Sn ≥ (1 + δ)
√

n tn) ≤ (5)

≤ C0 exp
(
−

(
c2
c1

)2

(1 + δ)2log logn

)
∼

∼ C0(logn)−
(

c2
c1

)2
(1+δ)2

.

If we choose nk = [θk], for some θ > 1, where [x] represents
the largest integer that is less ou equal than x, we find

(lognk)−
(

c2
c1

)2
(1+δ)2 ∼ k

−
(

c2
c1

)2
(1+δ)2

,

so that the left hand side of (5), along the subsequence
indicated, defines a convergent series and it follows that, again
along the same subsequence, (4) is verified.

Next we need to control the remaining terms in the sequence.

For each k ∈ N, define S∗nk
= max n≤nk

Sn, and suppose that
nk−1 < n ≤ nk.
Then, we have that

P (Sn > (1 + δ)
√

n tn) ≤ P (S∗nk
> (1 + δ)

√
nk−1 tnk−1).

But given the choice of the subsequence of indexes and of the
sequence εn,

√
nk−1 tnk−1 = nk−1εnk−1 ∼
∼ nk

θ εnk

√
log log θk−1

r
θk−1

r
θk

log log θk

Suppose now that r
θk

r
θk−1

∼ c̃.
It follows then that

√
nk−1 tnk−1 ∼ nkεnk

c̃

θ
.

Now, it is always possible choose θ in such way that

1 <
c̃

θ
< 1 + δ.

Then,
1 + δ

θ/c̃
= 1 + δ′, for some δ′ < δ.

Finally, for all sufficiently large k,

P (Sn > (1 + δ)
√

n tn) ≤ (6)
≤ P (S∗nk

> (1 + δ′)
√

nk tnk
).

Using now (3)

P (S∗nk
> (1 + δ′)

√
nk tnk

) ≤
≤ 2P

(
Snk

> ( 1+δ
c2

−
√

2
tnk

)c1
√

nk tnk

)
.

If we use now (2) on this last expression, we find

P (Sn > (1 + δ)
√

n tn) ≤
≤ 2C0 exp

(
−

(
1+δ′
c2

−
√

2
tnk

)2

c2
1log lognk

)
≤

≤ 2C0(lognk)
−

(
1+δ′

c2
−
√

2
tnk

)2
c2
1 ∼

∼ k
−

(
1+δ′

c2
−
√

2
tnk

)2
c2
1 .

If tnk
→ +∞, that is,

√
n εn → +∞, the right side of the

above inequality defines a convergent series. ¥

The condition on the sequence εn translates into a condition
on the sequence rn introduced earlier:

nlog logn

rn
−→ +∞.

As we have used the exponential inequality stated in Theorem
3.1, the sequence pn must be such that

Cov (X1, Xpn+1) ≤
≤ exp

(
− 4(M+1)

3M
α1/2

2 rnεn

)
=

= exp
(
−M ′

2(rnlog logn)1/2
)
,

or, written in a more convenient way,

rn ≤ M3
log 2Cov (X1, Xpn+1)

log logn
. (7)

Proof of Corollary 2.2:
Suppose that Cov (X1, Xk+1) = ρ0ρ

k, for some ρ ∈ (0, 1).
In this case (7) may be written as

rn ≤ M3
p2

nlog 2ρ

log logn
+

log 2ρ0

log logn
. (8)

Of course, the second term of the sum is irrelevant for the
behavior of rn, as it converges to zero.

We are interested to choose the sequence rn as large as
possible, so the case of interest is when equality holds in (8).
Now, the way the sequences pn and rn were defined implies
that

pn =
1

2xn

n

rn
,

for some xn → 1.

Inserting this into (8) it follows that

rn = O
( n2/3

(log logn)1/3

)

and
pn = O(nlog logn)1/3 .

In these conditions, the rate of convergence to zero of
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1
n

Sn is given by
1
εn

,

that is
n1/3

(log logn)2/3
,

as announced.

It remains to check the assumption in Theorem 2.1 on IE(S2
n).

But, taking account of the nonnegativity of the covariances it
follows easily that

ρ0n ≤ IE(S2
n) ≤ ρ0

ρ

1− ρ
n. ¥

V. CONCLUSIONS

By taking {Xn}n∈N, a strictly stationary sequence of cen-
tered and associated real random variables, we know sufficient
conditions for the strong law of large numbers to hold but no
rates of convergence where given.

In this note we derived an upper bound for this convergence
rate. This rate was made explicit for geometrically decreasing
covariances.

In fact we proved, under certain conditions on the covariances
of the random variables and by using the exponential inequal-
ity by Ioannides, Roussas [8], that

IP
(

lim sup
Sn

nεn
> 1

)
= 0.

Also we proved that if there exists a constant M > 0 such
that |Xn| ≤ M, n ∈ N, and there exists some ρ0 > 0 and
ρ ∈ (0, 1) such that

Cov (X1, Xn) = ρ0ρ
n

then,

IP
(

lim sup
n1/3

(log logn)2/3

1
n

Sn > 1
)

= 0.
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