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Abstract The performance of an activated sludge reactor
can be significantly enhanced through use of continuous
and real-time process-state monitoring, which avoids the
need to sample for off-line analysis and to use chemicals.
Despite the complexity associated with wastewater treat-
ment systems, spectroscopic methods coupled with chemo-
metric tools have been shown to be powerful tools for
bioprocess monitoring and control. Once implemented and
optimized, these methods are fast, nondestructive, user
friendly, and most importantly, they can be implemented in
situ, permitting rapid inference of the process state at any
moment. In this work, UV-visible and NIR spectroscopy
were used to monitor an activated sludge reactor using in
situ immersion probes connected to the respective analyzers
by optical fibers. During the monitoring period, disturbances
to the biological system were induced to test the ability of
each spectroscopic method to detect the changes in the
system. Calibration models based on partial least squares
(PLS) regression were developed for three key process
parameters, namely chemical oxygen demand (COD), nitrate
concentration (N-NO3

−), and total suspended solids (TSS).
For NIR, the best results were achieved for TSS, with a
relative error of 14.1% and a correlation coefficient of 0.91.

The UV-visible technique gave similar results for the three
parameters: an error of ~25% and correlation coefficients of
~0.82 for COD and TSS and 0.87 for N-NO3

−. The results
obtained demonstrate that both techniques are suitable for
consideration as alternative methods for monitoring and
controlling wastewater treatment processes, presenting clear
advantages when compared with the reference methods for
wastewater treatment process qualification.
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Introduction

The use of microorganisms to treat effluents by removing
contaminants from wastewater is a common and environ-
mentally friendly practice, since almost all wastewaters
contain biodegradable constituents that can be removed
biologically [1]. Activated sludge systems are among the
most widely used secondary biological treatment processes.
These systems involve inoculation with floc-forming
bacteria, which oxidize the organic matter, stabilizing the
wastewater under aerobic conditions. A settling tank is used
to separate the biomass consituents according to their
settling abilities.

Recent trends in environmental protection include a
move towards increasingly stringent demands on water and
wastewater treatment efficiency. The European directive
91-271 EEC contains a new set of recommendations for
efficient wastewater treatment [2]. The main focus of this
directive is the development of monitoring tools that will
allow greater knowledge of water treatment processes, with
the ultimate aim being to improve their efficiencies [3, 4].
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Additionally, the sensitivities of these biological systems to
sudden changes in feedstock composition or nutrient
removal means that such tools should be able to monitor
the characteristics of such systems in real time. This
enhances the operator’s ability to react rapidly to events
and thus avoid pollutant discharges or biological system
damage [2, 5].

Traditionally, such systems are monitored by manual
sampling with the off-line analysis of a number of key
process parameters, such as biological oxygen demand
(BOD), chemical oxygen demand (COD), total organic
carbon (TOC), total suspended solids (TSS), and nitrate
(N-NO3

−). Such analyses are time consuming (e.g., the
standard BOD5 test takes five days to generate a result, and
the COD test requires 2–4 h), expensive (e.g., a series of
techniques are needed) and hazardous to the environment
(toxic chemicals such as solvents and reactants are
required). Moreover, this approach provides only a snapshot
of the system, making it unsuitable for on-line monitoring,
where rapid feedback is necessary [6]. Therefore, simpler,
faster, and less expensive analytical tools are needed for
on-line monitoring and control.

Spectroscopic techniques such as UV-visible, near-
infrared (NIR), and fluorescence possess all of the
characteristics needed for effective on-line monitoring,
given that they are noninvasive, nondestructive, versatile,
and flexible measuring systems [7]. The main objective of
such techniques is to establish robust and predictive
relations between a given monitored parameter and one or
more variables, which in this case are the measured
absorbances at one or more wavelengths. Furthermore, the
development of miniaturized systems and progress in
telecommunications technology that has made inexpensive
high-quality polymer- or silica-based optical fibers avail-
able have made in situ measurements a feasible proposition
[7, 8]. UV-visible spectroscopy has been used for a long
time as an alternative method of monitoring and controlling
wastewater systems. Initially, selected wavelengths that
correlated with the process parameters were used. The
absorbance at 254 nm correlated with COD [9] and TOC
[10] parameters in municipal wastewaters. Due to the
sensitivity of such measurements to turbidity, a second
wavelength was also used to correct for scattering effects
[8]. COD and TOC were thus determined using a
combination of the absorbance at 254 nm and that at
350 nm (for turbidity correction) [11]. More recently, the
absorbance at 254 nm was used in synchronous fluores-
cence spectroscopy to estimate the dissolved chemical
oxygen demand (DCOD), COD, ammonia and the turbidity
in municipal wastewaters for fingerprinting purposes [8].
The main drawback associated with the use of a single
wavelength, even corrected for turbidity, is that frequent
calibration is required to guarantee good results [12].

Moreover, this univariate approach is based on the fact
that the pollution present in the effluent has a defined peak
of maximum absorbance that always occurs at the same
wavelength. However, this value can vary significantly
depending on the matrix composition [6]. However, fast
computational processing tools have become available in
the last few decades in association with the development of
more robust and precise spectrophotometers, allowing a
shift towards a multiple-wavelength approach [6, 13, 14].
The multi-wavelength approach can give better results than
single wavelength procedures, especially when monitoring
effluents that are characterized by a constant variation in
composition [13, 14]. However, when this approach is used,
it is necessary to reduce the number of wavelengths that are
used in the correlation in order to reduce the amount of
superfluous information, and thus rapidly and clearly
identify relevant patterns among the data and identify the
status of the system at any time. Different mathematical
procedures have been reported in the literature to be
efficient methods for reducing data in the multivariate
approach. Deconvolution methods, for instance, have been
used to determine DCOD COD, TOC, BOD, TSS, and
nitrate [12, 15, 16]. Escalas et al. [17] used a modified UV
deconvolution method to estimate the dissolved organic
carbon (DOC) in wastewaters. Chemometric methods such
as artificial neural networks (ANN) and partial least squares
(PLS) have also been used to determine COD, nitrate, and
TSS [6, 18–21]. Despite the advantages mentioned above,
some disadvantages of the method have also been reported,
such as its sensitivity to turbidity [8], its inability to detect
saturated bonds [7, 22], and fouling of the probe tip [3]
when performing on-line measurements.

Similar to the UV-visible technique, NIR is increasingly
being applied to qualitatively and quantitatively monitor
processes and to process diagnostics [23]. The food and
pharmaceutical industries were the first to use NIR in a
systematic approach [24]. The application of NIR to
wastewater treatment processes is less common, and only
a few works have been reported in this field. Stephens et al.
[25] tested a NIR-visible method of evaluating BOD5 and
Sousa et al. [26] used NIR to determine COD, both in
wastewater processes. In situ NIR spectroscopy was also
used to monitor a lab-scale activated sludge system, and
promising results for the application of NIR to biological
processes were obtained [5]. More recently, a NIR trans-
flectance probe was used to monitor an on-line sequential
batch reactor for the aerobic treatment of dairy residues,
with PLS regression used to calibrate parameters such as
total solids (TS), TSS, and COD [27].

Some of the advantages of using NIR are shared with
UV-visible spectroscopy, while others are intrinsic to
NIR, such as the ability to use it in highly scattering and
strongly absorbing media [5], as well as the possibility of
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simultaneous determining chemical and physical properties
[28, 29]. One of the main disadvantages of using NIR
spectroscopy in aqueous systems is the high absorbance of
water, which leads to a broad peak that can limit the
detection of other compounds that are present in smaller
quantities [30].

In this work, UV-visible and NIR spectrometers
connected to immersion probes were used to estimate key
parameters that characterize an activated sludge reactor:
COD, TSS, and nitrate (N-NO3

−). Partial least squares
(PLS) was used as the regression model, with the root mean
square error of cross-validation (RMSECV) used as an
indicator of the model’s accuracy.

Materials and methods

Activated sludge system

A complete-mixed lab-scale activated sludge reactor was
inoculated with both heterotrophic microorganisms and
nitrifying bacteria recovered from a municipal wastewater
treatment plant. The system consisted of a tank with a
total volume of 25 L and 17 L of suspended biomass
followed by a 2.5 L cylindrical settler. It was fed with a
synthetic influent based on peptone and meat extract as
carbon sources, as prepared according to Marquéz et al.
[31]. The pH of the system was controlled with a pH meter
and a control pump (Model BL 7916–BL 7917, Hanna
Instruments, Woonsocket, RI, USA). Complete mixing
inside the reactor was guaranteed by supplying a continuous
inflow of air bubbles through an air diffuser placed at the
bottom of the reactor. An oxygen probe (TriOmatic 690,
WTW, Weilheim, Germany) was used to measure the
amount of dissolved oxygen. The concentration of
dissolved oxygen was maintained at above 7 mg O2 L−1.
Sludge recirculation from the settler to the reactor was
guaranteed by an air pump.

In situ process monitoring

In situ monitoring of the lab-scale reactor was achieved using
two immersion probes that measured in the UV-visible and
NIR spectroscopic ranges. The UV-visible spectra were
acquired using a portable dispersive UV-visible spectrometer
(model USB4000, Ocean Optics, Dunedin, FL, USA) with a
3648-element linear CCD array detector that provided
measurements in the wavelength range between 230 and
700 nm and a spectral resolution of ~0.3 full width at
half-maximum (FWHM). A DH-2000 (Ocean Optics)
deuterium tungsten halogen bulb was used as the light
source. This light source combines the continuous
spectra of the deuterium and tungsten halogen light

sources, producing powerful and stable output from 215
to 2000 nm. The sampling accessory was an immersion
probe with an optical path length of 1 cm, which was
connected to the light source and the spectrometer by two
optical fibers (model TP300-UV-Visible, Ocean Optics).

The NIR spectra were acquired using a portable
dispersive spectrometer (model NIR-512, Ocean Optics).
It featured a temperature-regulated 512-element indium–
gallium–arsenide (InGaAs) array detector that was effective
in the 900–1700 nm wavelength range and had a spectral
resolution of 3.0 FWHM. The detector temperature was
kept constant at -4.0 °C. Spectra were acquired using a
transflectance probe (model T300RT, Ocean Optics) with
an optical path length of 1 cm. The probe was connected
through optical fibers (QP400-2-VISNIR, Ocean Optics) to
a tungsten halogen lamp filled with krypton gas and
possessing a spectral range of between 350 nm and
2200 nm (SL1 light source, Stellarnet, Tampa, FL, USA)
as well as to the NIR spectrometer. The operating mode was
the same in both techniques: ten scans were made and then
averaged, the boxcar width was 5, and dark correction was
used when acquiring spectra. The integration time was
adjusted until the peaks at 550–600 nm for UV-visible and
1100–1200 nm for NIR were close to 60,000 intensity
units. OIBase32 software (Ocean Optics) was used for
spectrometer configuration, control, and data acquisition.

For in situ monitoring, the probes were immersed in the
settler at the same time, acquiring spectra simultaneously.
Spectra were acquired every monitoring day (2–3 times a
week) for no more than 45 min to avoid fouling the optical
path. Probe tips and sample windows were rinsed with
distilled water and cleaned with smooth paper. The NIR
probe sample window was dried before spectral acquisition
was initiated. The UV-visible probe was immersed in tap
water and the NIR probe was positioned in contact with the
air in a stable position when acquiring the reference spectra.

Off-line process monitoring

The system was regularly monitored for parameters as
COD, TSS, and nitrate concentration. The samples were
collected from the settler COD and nitrates were quantified
after centrifugation and filtration. COD determination was
based on a colorimetric method, in closed reflux, according
to the method 5220D from the Standard Methods for the
Examination of Water and Wastewater [32]. The samples
from the activated sludge process were analyzed immedi-
ately after being collected. The TSS was determined
according to the method 2540D from the Standard Methods
for the Examination of Water and Wastewater [32]. The
nitrate (N-NO3

−) was determined by HPLC (JASCO,
Tokyo,Japan) with automatic injection, using a UV detector
(210 nm). The column used was a Varian (Palo Alto, CA,
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USA) Metacarb 87H operating at a temperature of 60 °C.
The eluent was a solution of sulfuric acid (0.005 mol L−1)
with a flow rate of 0.70 mL min−1 and a pressure of
between 70–80 kg cm−2. The software for the HPLC
(Varian Star Workstation) was used to integrate the peaks.

The off-line UV-visible technique is used in most routine
analysis, since almost all laboratories have the equipment
needed for this. Therefore, it is necessary to compare the
performances of the in situ and off-line UV-visible
techniques in order to assess the real impact of using
immersion probes to monitor the systems of interest here.
For this reason, unfiltered samples taken from the settler
were analyzed in a UV-visible spectrometer (model V560,
JASCO) using a quartz cell with a path length of 1 cm. The
results were then compared with those obtained with the in
situ UV-visible technique.

All measurements were performed in triplicate, and the
average values obtained were used to achieve the desired
correlations.

Theory

All calculations were performed using MATLAB (version
6.5, Mathworks, Inc., Natick, MA, USA).

The models used for COD, TSS, and nitrate prediction,
based on the collected UV-visible and NIR spectra, were
developed using the PLS1 algorithm [33]. An internal full
cross-validation (leave-one-out) was performed to optimize
the model, with the number of model components (latent
variables) chosen by the lowest root mean square error of
cross-validation, RMSECV.

RMSECV ¼ YC � bYC

� �t
YC � bYC

� �

NC
�1

� �0:5

ð1Þ

In Eq. 1, bYC and YC are the estimated PLS cross-
validation and the measured reference value for the ith
sample, respectively. NC is the number of calibration
samples. Further details on PLS can be found elsewhere
[33]. Spectral preprocessing methods were applied to the
raw spectra to remove undesirable spectral variations, like
baseline drift, light-scattering effects, and temperature
variations. The methods used were Savitzky–Golay (SG),
multiplicative scatter correction (MSC), and standard
normal variate (SNV) [34]. Mean centering (MNCN) was
always applied after spectral preprocessing. Different
combinations of these methods were tested using different
parameters such as the filter window and derivative order
for the SG method. An algorithm for wavelength selection
was used in order to optimize the PLS model. This
algorithm, known as bootstrapping, is a statistical method
that generates new datasets by sampling with replacement
from the original data set. Different models are obtained
with these datasets. The statistical significance of each

Fig. 1 Raw spectra obtained in situ with the NIR analyzer (a), in situ
with the UV-visible analyzer (b), and off-line with the UV-visible
analyzer (c). The spectra were collected between 900 and 1400 nm for
NIR and between 250 and 500 nm for UV-visible
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regression coefficient is assessed by determining the
confidence interval at the 95% level by iterating the
standard deviation. If the interval includes the zero value
then the corresponding wavenumber is discarded [35]. The
statistically significant wavenumbers were then used in a
PLS1 model optimized as described above.

Results and discussion

Typical spectra acquired during the monitoring period, for
both the NIR and UV-visible ranges, are presented in Fig. 1.
The NIR spectra depicted in Fig. 1a show a broad band
between 1400 and 1700 nm corresponding to the vibration
of the first overtone of the O–H bond of water. This band,
which is typical of the NIR spectrum of an aqueous
solution, makes the technique difficult to use for some
other species, since it masks any other bands present in this
spectral range, such as that for the first overtone of the C–H
stretching vibration. Figures 1b and c represent typical
spectra measured in the UV-visible range and obtained with
the on-line immersion probe and the off-line method using
quartz cuvettes, respectively. As expected, the spectra
observed for both methods are similar, with the majority
of the information present in the spectral region between
250 and 400 nm. The number of samples used to establish
the correlations as well as the concentration ranges for each
of the studied parameters and the average experimental
errors associated with the reference methods are presented
in Table 1. The determination of the nitrate concentration
has the lowest experimental error (1.72%), while COD and
TSS were measured with average errors of 4.79% and
4.27%, respectively.

As explained in the previous section, variable selection
was performed using a bootstrapping technique, which was
employed to select the wavelength ranges that would best
enhance the results of the PLS correlation models by
eliminating superfluous and correlated information. The
spectral ranges, the preprocessing techniques used in each
case, and the results obtained with the PLS calibration are

compiled in Table 2. The number of PLS components was
chosen based on the minimum RMSECV. The dependence
of the RMSECV on the number of latent variables can be
seen in Figure 2. For all methods and parameters, the
minimum RMSECV value is well defined, thus providing a
good indication of the appropriate number of components
for each model.

All of the models were improved through the use of the
variable selection technique, with the exception of the
model for TSS determination using the spectra measured
off-line. However, a poor correlation was obtained between
the experimental and predicted COD data when using the
NIR range. One of the main reasons for this is that, as
mentioned above, NIR spectroscopy is very sensitive to the
presence of water, as bands from water mask the majority
of the bands corresponding to the first overtone of C–H
stretching vibrations, which results in a loss of sensitivity to
the presence of organic matter. Also, information from the
middle and far infrared regions is lost because the detector
used in this work only detects up to 1700 nm. Nevertheless,
the narrow range of the COD experimental data measured
here (between 17.24 and 99.53 mg O2 L

−1) is believed to be
the major contributor to this poor correlation, as a wide
calibration range is one of the crucial factors needed to
generate a robust calibration model [27, 36].

NIR spectroscopy does not detect the presence of
inorganic compounds, and so the correlation obtained for
nitrate is only an indirect measure, as now explained. In
order to achieve improved nitrification process efficiency in
an activated sludge system, the reproductive rate of the
nitrifying bacteria must be greater than their removal rate
from sludge wasting [37]. To increase the number of
bacteria in the reactor, the biomass content was increased
by limiting the sludge purge frequency. When the nitrifica-
tion process was occurring at a satisfactory rate, operational
problems related to an increase in the TSS in the effluent
were identified. These were possibly related to a low food-
to-microorganism ratio [1]. Hence, it is probably the
variation in TSS in the effluent that is effectively detected
by the NIR spectra. Therefore, the value of 0.61 for the

Table 1 Dataset used to develop the PLS models for COD, N-NO3
− and TSS

Technique NIR In situ UV-visible Off-line UV-visible Reference methods

Number of samples Concentrationa

(mgL−1)
Number of samples Concentrationa

(mgL−1)
Number of samples Concentrationa

(mgL−1)
Average error %

Parameter Min Max Min Max Min Max

COD 14 17.2 99.5 39 0.0 163.5 24 17.2 163.5 4.79

N-NO3
− 14 85.0 164.4 30 0.0 164.4 19 0.0 164.4 1.72

TSS 13 41.0 165.0 30 16.7 184.2 21 16.7 184.2 4.27

a The COD concentration is expressed in mg O2 L
−1
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correlation coefficient only reflects a tendency; it does not
reflect the true correlation between the NIR spectra and the
nitrate concentration.

The best results obtained in the NIR range were those for
the TSS, with a relative error (RMSECV divided by the
nominal value of the parameter) of 14.1%, corresponding to
a correlation coefficient of 0.91. This result indicates the
high sensitivity of NIR spectroscopy to physical changes in
the system.

The UV-visible in situ technique yielded better results,
with similar relative errors for the three parameters of
23.1%, 26.6%, and 28.9%, for the COD, N-NO3

−, and TSS,
respectively. The off-line UV-visible technique gave similar

results to the in situ technique for COD and TSS. However,
the relative error for nitrate prediction was almost 10%
higher for the off-line technique.

The relative standard deviation (RSD) was calculated
using the same bootstrap technique as used for variable
selection [35]. The value was calculated by finding the
average of the results of 500 different models obtained by
bootstrapping. The RSD for the NIR model is comparable
with the RSDs for the other two techniques, indicating that,
even with a lower number of calibration samples, the NIR
results have the same level of precision as the results
obtained using the UV-visible techniques. Upon comparing
the RSDs of the three parameters for the NIR technique, is

Fig. 2 Root mean square error
of cross-validation (RMSECV)
as a function of the number of
PLS latent variables

Table 2 Spectroscopy-based COD, N-NO3
− and TSS PLS modeling results

Technique NIR In situ UV-visible Off-line UV-visible

COD N-NO3
− TSS COD N-NO3

− TSS COD N-NO3
− TSS

Range (nm) 900–1400 900–1400 900–1400 250–500 250–380 250–380 250–500 250–380 250–380

Preprocessing SNV and
MNCN

SNV and
MNCN

SNV and
MNCN

SNV and
MNCN

SGc and
MNCN

SGc and
MNCN

SGc and
MNCN

SGc and
MNCN

SGd and
MNCN

Number of wavelengths 136 26 142 145 206 10 25 9 b

PLS latent variables 8 2 4 6 3 4 9 3 9

RMSECV (mg L−1)a 27.8 33.7 12.5 15.4 19.0 19.8 18.2 23.8 24.1

Relative standard deviation (%) 70.3 24.0 19.7 19.9 6.8 13.9 45.5 11.1 81.1

Relative error (%) 52.4 37.8 14.1 23.1 26.6 28.9 24.2 35.3 29.0

Correlation coefficient 0.23 0.61 0.91 0.82 0.87 0.82 0.77 0.79 0.81

a For COD the units are mg O2 L
−1 .

b Results are not shown because variable selection did not improve the results in this case.
c Fifteen-point Savitzky–Golay filter with a second-order polynomial fit and first derivative.
d Five-point Savitzky–Golay filter with a second-order polynomial fit and second derivative
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becomes clear that the main problem with the COD result is
not the number of calibration samples, since the other two
parameters have more or less the same number of
calibration samples, but the lower sensitivity of this
technique in aqueous environments and the small concen-
tration range used for this parameter. Figures 3, 4, 5 show
plots of reference versus predicted values for the parameters
studied, and for each of the spectral ranges and/or
techniques used (in situ and off-line). Clear, linear relations
are obtained in all cases. Even though, considering actual
current legislation, the obtained results still exhibit signif-
icant and limiting errors in relation to quantitative measure-
ments, they still represent promising input data for on-line
artificial intelligence monitoring and control systems, such
as fuzzy logic or neural network-based control systems
[38]. A comparison of UV-visible off-line and in situ
measurements allows us to conclude that the in situ
technique is clearly advantageous, since, aside from its
better predictive capabilities, the method avoids the need
for sampling and pretreatment, which would be needed to
improve the results obtained with the data acquired off-line.

Conclusions

This work assessed the abilities of in situ spectroscopic
techniques to monitor an activated sludge reactor by
estimating the key parameters of COD, N-NO3

−, and TSS.
Characteristic spectra were collected in both the NIR and
UV-visible spectroscopic ranges through the use of immer-
sion probes on the settler. PLS was used as the regression
technique to correlate the acquired spectra with the
monitored parameters, and a variable selection methods
was employed to remove superfluous data.

The NIR modeling results were not as accurate as the
results obtained with UV-Vis, particularly when modeling
the COD. The presence of water has a large effect on NIR
spectra, masking spectral features that could be important
for estimating the COD. Despite this issue, the results
presented here show that both spectroscopic ranges can be
used in practice to predict key process parameters (with
different accuracies) on-line/in situ, thus avoiding the need
for time-consuming off-line analyses, which are currently
usually used to infer the status of a biological system at any
given moment. A comparison between the off-line and in
situ UV-visible methodologies showed that the in situ
technique yielded the most accurate results. Moreover, this
technique enables the the biological system to be continu-
ously monitored, removing the need for sampling and off-
line analysis. Future work will focus on enlarging the

Fig. 5 Reference versus predicted TSS for NIR (gray squares), in situ
UV-visible (black circles), and off-line UV-visible (white diamonds)

Fig. 4 Reference versus predicted N-NO3
− for NIR (gray squares), in

situ UV-visible (black circles), and off-line UV-visible (white diamonds)

Fig. 3 Reference versus predicted COD for NIR (gray squares), in
situ UV-visible (black circles), and off-line UV-visible (white
diamonds)
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number and range of samples measured, in order to test the
transferability and robustness of the correlations presented
in this work for predicting COD, N-NO3

− and TSS values
under different operating conditions.
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