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Abstract - The present work describes a set of algorithms for the 
milling of sculpted surfaces acquired from laser scanning 
systems. The milling operations cover three operations: 
roughing, semi-finishing and finishing. The developed 
algorithms use techniques ranging from computer vision to 
computer graphics following a different approach when 
compared with the usual milling techniques, usually feature 
based. The implementation of 3D path simulator was also 
described and testing of the different milling trajectories 
presented. 

Keywords: sculpted surfaces, machining, spline interpolation, 
image processing 

I. INTRODUCTION 

Milling sculpted surfaces (free form surface) has a very 
important role in the invention of new products in the market. 
This kind of surface is usually used, for example, in the 
invention of work pieces for the automobile, furniture and 
aerospace industry [1-4].  

However, moulding this type of surfaces with a CAD 
software is done differently, where moulding most of the 
times implies the invention of physical models (sculpted) of 
clay or wood, as well as its posterior digitalization. One such 
example entails modules for data acquisition and processing 
[5]. 

Moreover, once these surfaces show curvilinear features, 
milling becomes harder for most of the controllers presently 
existing in the industry, meaning that they’re only prepared 
for linear and circular interpolations. For this reason, they 
need post processors that convert the produced trajectories 
into this type of surfaces (for example, spline and NURBS – 
“Non Uniform Rational Basis Spline”) in compatible 
trajectories with their interpolation systems. As a 
consequence there are broad and difficult programs to 
interpret and they are also sensitive to eventual loss of 
information, namely in the complex curvilinear geometry 

encodes, that most of the postprocessors convert in small 
straight line segments.  

Presently there are several CAM programs that allow the 
invention of trajectories for rapid and efficient milling 
(MasterCam, Catia, PowerMill, Pró-Engineer, and others). 
The function of these programs is essentially based on the 
identification of geometric features on the work piece to mill 
and on the application of the milling strategy most suitable 
for each type of geometry, according to the identified 
geometric features [6, 7].  However, this functioning rule isn’t 
applicable for milling sculpted surface, since it’s not possible 
to proceed to the common geometric feature identification 
(cubes, spheres, pyramids) as well as to link strategies for 
standard milling. Defining a machining trajectory with the 
most suitable trajectories for each sculpted surface turns out 
to be a real challenge. 

The developed module will be introduced in this paper 
with the objective of creating necessary trajectories to mill 
the sculpted surfaces, obtained from the laser scanning 
systems. The created trajectories include the roughing, 
semifinishing and finishing operations. Yet, these created 
trajectories, in the different operations, only introduce the 
geometric information and the type of tool used. It is 
suggested that other parameters should be considered in 
future work, such as rotation and feeding rates.  

A specific strategy was associated to each one of the 
milling operations. Each one of them was established 
according to the controller features of the testing machine 
(enables a spline interpolation) and seeks to remove the 
greatest amount of material in the smallest time possible, 
maintaining the demanded superficial finishing.    

The paper is divided in the following sections: section 2 
describes the developed the main function of the developed 
module; section 3 explains the developed algorithm for 
rouging operation; section 4 presents an algorithm semi-
finishing and finishing operations based on spline 
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After the z-map and the trajectories main orientation is 
defined the cutting plan stage begins. The objective of this 
stage is to define a set of parallel and even plans (Zpc୩), 
achieved after the successive increases along the z axis, 
defined by the selected value for the depth of cut (1). Each 
one of these cutting plans crosses the surface, defining iso-
value lines (same value as z). 

Zpc୩ ൌ Zpc଴  ൅ k ൈ S        to   ሼZpc୩: ݇ א ሾ0, ݈ሿሽ (1) 

The next stage is creating a 2D binary image with the 
same resolution and dimensions as the z-map, related to each 
one of the cutting plans. In this case, the value for each point 
of the image is ܫሺݔ௜,  :௜ሻ it’s defined by (2)ݕ

,௜ݔሺܫ ௜ሻݕ ൌ ൜0,              ݖሾݔ௜, ௜ሿݕ ൏ ௞ܿ݌ܼ
255, ,௜ݔሾݖ ௜ሿݕ ൒ ௞ܿ݌ܼ

 (2) 

In the created images it is possible to observe black and 
white points. The first ones represent material removal areas 
where the milling should be defined. The second ones 
represent the areas of the object where such operation should 
not take place. When applying the Freeman chain code 
algorithm [9, 10] to the image it is possible to obtain the 
contours of those areas (required surface intersection points 
with a cutting plan), which will be used as reference points 
for the next stage (fig. 2a and fig. 2c).  

The next algorithm stage is denominated of offset curves, 
where it’s defined an offset curve for each contour 
determined previously by the last stage [11]. The need to use 
this type of curves is because the trajectories are applied 
considering the centre of the tool. As in this case, the selected 
tool for this milling strategy was a FEM, it is only necessary 
to establish a value of offset for each one of the trajectories, 
with the same tool radius, to avoid that the tool moves 
forward to the inside of the required surface.     

 
a 

 
b 

 
c 

 
d 

Fig. 2. 2D binary images with the representations of the contours and created 
trajectories for the respective cutting plan (S=20 mm, FEM(diameter)=15 mm, 
߱=6 mm ): a - image with Zpc2; b - trajectories with Zpc2; c - image with 
Zpc4; d - trajectories with Zpc4. 

The offset curves can be defined inside or outside, 
depending on the type of contour. In this case it was used red 
for the outside points and green for the inside points 
(subcontour).  

The offset curve definitions are set according to the 
parallel and even trajectory segments (with an increasing on 
the ሺ߱ሻ value, along the secondary axis (fig. 3)). The 
segments can be established the following way: 
• Connects two different contour points of the roughing 

object; 
• Connects a border point of the roughing object and a border 

point of the offset curve; 
• Connects two different points of the outside offset curve 

points; 
• Connects the same two points of inside points of the offset 

curve. 

 
Fig. 3. Design of the created trajectory segments. 

 
The next algorithm stage is grouping the segments in lists 

of subsegments. Each list is related to the segments formed 
along the main axis and the information of the previous and 
following lists. For example, the third list is related to the 
SG31, SG32 and SG33 segments, according to fig. 3. 

To connect the segments of the lists it was chosen to use a 
zig-zag strategy. This strategy establishes connections 
between the segments of consecutive lines. The result is a set 
of sub-trajectories that have to be attached before. Yet, the 
segment connections have to follow some rules:  
• They can only segments that can be joint are the ones that 

have points belonging to the same contour; 
• If one segment goes from left to right then the next segment 

must go the opposite direction; 
• The creation of a new subtrajectory must begin from the 

segment with the least index that hasn’t yet been connected; 
• Two temporary sub trajectories must be created in order to 

create a new sub trajectory. One of them starting from left 
to right and the other one starting from the opposite side. 
The chosen sub trajectory must be the one that has the 
larger number of connected segments. 
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After the sub trajectories are defined, the algorithm 
proceeds with its bond, defining trajectory connections. The 
sub trajectory connection begins at the ending point of the 
first sub trajectory, where the distance of this point is 
calculated for the starting and ending point of the remaining 
sub trajectories. The sub trajectory with smaller distance is 
selected. If the smaller distance corresponds to the starting 
point, the sub trajectory must be changed. The process repeats 
until all the sub trajectories are connected. 

 
Fig. 4 – Achieved trajectories for the roughing operation with a maximum 
dimensions surface 170x600x150 mm3 (roughing block’s dimensions), using: 
z-paralle/zig-zag strategies, FEM(diameter)=15 mm, ߱=6 mm e S=20 mm. 

 
All connection trajectories start from the sub trajectory’s 

ending point, raises to z with the same value as the roughing 
block’s height, moves to the next sub trajectory with a z 
constant value and lowers to z until the cutting plan’s height 
that it started with (fig. 2b and fig. 2d). 

The final stage of this algorithm is connecting the defined 
trajectories of each cutting plan to the next cutting plan (fig. 
4). The process starts on the further outside cutting plan, 
following the same connection rules as the sub trajectories. 
 

IV. SEMI-FINISHING AND FINISHING 

Semi-finishing and finishing operations share the same 
functioning rule, using splines to define the surface contour. 
When the contour is defined by a spline, the trajectory is 
defined by a mathematical module that incorporates the 
points that form it, instead of being defined by a set of 
straight lines and/or arches. This means that a spline is treated 
like a unique entity, which allows smaller programs.  

In this specific case, it was possible to use this 
mathematical module because the controller used on the 
testing machine allows the definition of spline interpolation to 
define the trajectories.  

We aware that even though the referred operations share 
the same functioning rule their finalities are very different. 
For example, the semi-finishing operation has to be after the 
roughing operation, which normally involves tools from the 
BEM type and whose diameter depends on the cutting 
depth(s) used in the roughing operation.   

Therefore, its last objective is removing the material, in 
order to approximate the resulting surface to the required one, 
leaving the same layer of material in excess. 

The finishing operation must be applied after the semi-
finishing operation or immediately after the roughing 
operation, as long as it has been realized with the small 
diameter tool and with inside cutting depth (S) with the radius 
of the used tool for the finishing operation. Similar to what 
happens in the semi-finishing operation, here it is also used 
the BEM type of tools, however, the tool’s radius must be 
inferior. The objective of the finishing operation is to create a 
final soft surface the closest possible to the required surface.  

A good approximation may depend on the radius of the 
chosen tools and on the complexity of the surface to mill. The 
surfaces softness may be because of the type of trajectory and 
spacing between the trajectories (߱), the smaller the spacing 
between the trajectories the better it is. 

The developed algorithm for the semi-finishing and 
finishing trajectory definitions has the following stages: 
creation of an offset surface, definition of a parallel set of 
intersection plans with an offset surface, determination of the 
intersection points for each plan and treatment of the 
intersection points.  

The offset surface (fig. 5b) is created based on the points 
of the required surface moved along a vector (fig. 5a), with 
the same direction as the normal vectors (n) and the same 
dimension as the cutting tools radius (RBEM) selected for the 
operation (3). 

ቐ
௢௙௙௦௘௧ሺ݅ሻݔ ൌ ሺ݅ሻݔ ൅ ݊௫ሺ݅ሻܴ஻ாெ

௢௙௙௦௘௧ሺ݅ሻݕ ൌ ሺ݅ሻݕ ൅ ݊௬ሺ݅ሻܴ஻ாெ

௢௙௙௦௘௧ሺ݅ሻݖ ൌ ሺ݅ሻݖ ൅ ݊௭ሺ݅ሻܴ஻ாெ

0 :ݎ݋݂     ൑ ݅ ൏  (3) ݏݐ݊݅݋݌_݊

After the offset surface is created, the algorithm defines a 
set of parallel plans for the plan produced between the main 
and z axis. Each one of these plans is defined along the 
secondary axis by the same increases as the ߱  value (fig. 5c). 
Each one of the plans is intersected with the offset surface. 
The intersection result is a set of profile points of the offset 
surface (fig. 5d).  
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