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ABSTRACT. The parabolic N-membranes problem for the p-Laplacian
and the complete order constraint on the components of the solution is
studied in what concerns the approximation, the regularity and the sta-
bility of the variational solutions. We extend to the evolutionary case the
characterization of the Lagrange multipliers associated with the ordering
constraint, in terms of the characteristic functions of the coincidence sets.
We give continuous dependence results, and study the asymptotic behav-
ior as t — oo of the solution and the coincidence sets, showing that they
converge to their stationary counterparts.
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on the occasion of his 75th birthday,
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1. INTRODUCTION

The aim of this work is to analyze the quasilinear parabolic N-system
associated with the scalar operator involving the p-Laplacian in the elliptic
part

Pu; = 0u; — V- (V[P ?V;), i=1,...,N, (1.1)

with 1 < p < o0, Oy = /0t and V = (8/0x1,...,0/0xy), in a space-
time cylinder Q7 = Q x (0,7), Q C R?, in the case in which the solution

u=u(z,t) = (ug,... ,un) has all its components completely ordered
up >ug > - >uy, a.e. (z,t) € Qrp, (1.2)
and subjected to a given nonhomogeneous term f = f(z,t) = (f1,..., fn)

and given boundary conditions. For simplicity, we assume
u=0 on p =900 x (0,7) and u=h on Qy=Qx{0}, (1.3)

for given Cauchy data h.
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The time independent case corresponds to the classical N-membranes
problem which can be formulated as an elliptic variational inequality. It
has been studied for different types of operators (see [20, 21, 8, 2, 3]) as-
sociated with a convex subset of a Sobolev space determined by the con-
straint (1.2). In the recent papers [2, 3], it has been shown, in particular,
that the N-membranes problem can be interpreted as a reaction-diffusion
system with additional discontinuous nonlinearities. In the evolutionary
case (1.1), it will be shown in this work that the solution u solves a
parabolic system of the form

Pu=f+R(z,t,u) in Qp, (1.4)

where Pu = (Puy,..., Puy) and each of the components of the nonlinear
reaction term R depends on (z,t) through linear combinations of the f;,
1 <i < N, and on u through the characteristic functions x;x = x;.x(2,t)
of the N(N — 1)/2 coincidence sets

Liw ={(z,1) € Qr : uj(z,t) = = up(x, )}, 1<j<k<N, (L5)

e, xjk(z,t) =1if (z,t) € I; and x;x(z,t) = 0 otherwise.
We can illustrate the general form of the system (1.4) for N = 3 (see [2])

Puy = fi+ (fa— fi)xi2 + 2(2f3 — f2 — f1)x1.3,
Puy = fo— 1(fa — fi)x1.2 + 5(f3 — f2)x2.3 + g(2f2 — f1 — f3)x1,3, (1.6)
Puz = f3 — 5(fs — fa)x2,3 + §(2f1 — f2 — f3)x1.3

which contains the simpler case N = 2, that corresponds to the first
two equations with x23 = 0 and x1,3 = 0, in which case the third
equation is independent of the first two. Note that, in general, x;; =
X i+1XG+1,j42 - - - Xk—1,k, for 1 < j < k < N, in (1.6) the last terms con-
taining x1,3 = X1,2X2,3 are in fact doubly nonlinear in u. This introduces
additional difficulties in analyzing the stability of the system with respect
to the perturbation of the data. In fact, in Sec. 3, we show that the suffi-
cient conditions on the averages of the components of f, obtained in [3] for
the stability of the coincidence sets I;  in the stationary problem, extend
to the parabolic case as well. In particular, for N = 3, they take the form

a.e.in Qrp.

fi#fe fo#f O #

fQ;fsa f37é

i+ fo
2
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We note that the stability result on the x; ; is not a direct consequence
of the stability of the solution u with respect to the data f and h, which
can, however, be obtained by direct variational methods, as we also show
in Sec. 2.4.

Classical monotonicity methods (see [15], for example) or the theory of
accretive operators and evolution inclusions in Banach spaces (see [12, 18,
22] or [1] and their bibliography) are directly applicable and yield general
results on the existence of solutions to our problem, when formulated as
a variational inequality in the convex set associated with the constraints
(1.2). In Sec. 2, we introduce an approximation of the variational inequal-
ity formulation and we obtain directly useful a priori estimates for the
existence of solutions. We remark that we assume the p’-integrability of f
and rely on the p-integrability of a compatible h and its derivatives, but
we do not require the boundedness of h nor of the variational solution
globally in Q7.

Considering the relation of the upper and lower membranes (in partic-
ular, the two-membrane problem) with the obstacle problem and of the
inner membranes of the N-problem, with N > 3, with the two-obstacles
problem, we apply the dual estimates for unilateral parabolic problems
(see [6], [12] or [11]) to obtain Lewy—Stampacchia type inequalities

i N
Nfi<Pui<\/fj aein Qp, i=1,...,N, (1.7)

j=1 j=i

for the parabolic operator (1.1). Here we use the notation

k
Vé&=av... v =sup{s,... &}
i=1

and \
N&G=&A . ANG=inf{&,... &)
i=1

and we also denote £ = £V 0 and £ = —(£A0).

We also show how the estimates on Pu; imply that the variational
solution to the N-membranes problem solves a.e. a system of the type
(1.4), for an explicit R with the same p’-integrability as f, extending the
analogous result obtained in [3] for the stationary problem. This implies, in
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particular when f is bounded, the Holder continuity of the solution and of
its gradient. In fact, this is an immediate consequence of known estimates
for the parabolic operator (1.1), even without knowing the explicit form
of R, as we observe in Sec. 2. Even for the linear case p = 2, for which
we can apply Solonnikov’s estimates in Wg’l (Q21), the regularity obtained
here for the solution of the evolutionary N-membranes problem is new.

In Sec. 3, we study the asymptotic convergence, when ¢t — oo, of the
solution u(t) to the corresponding solution of the stationary problem of
[3] in L2(Qr) (here we denote L2(Qr) = [LQ(QT)]N), in the case p > 2.
We show how a modest convergence of the solution, obtained as in [19],
also implies the asymptotic stabilization of the evolution coincidence sets
towards the stationary ones, under a natural nondegeneracy assumption
identified in [3].

Finally, we observe that most results still hold, with suitable adapta-
tions, for more general quasilinear parabolic scalar operators

Pu= 6tu_v : (a(x,t,Vu)),

in particular, for strongly monotone vector fields a(-, &), with p-structure
as in [3], as well as more general data f in L7(0,T;L"(Q2)) (see [4]).

For simplicity of presentation, we limit ourselves here to the case of
the p-Laplacian with homogeneous Dirichlet data, i.e., we consider only

N
variational solutions in the usual Sobolev space Wy () = [W(;l P (Q)}

for 1 < p < co. The case of a time-dependent Dirichlet boundary condition
is more delicate and will be considered in [17].

2. APPROXIMATION AND REGULARITY OF VARIATIONAL SOLUTIONS

Let Q € R? be a bounded domain with a Lipschitz boundary, let T' >
0, and define the space-time domain Qr := Q x (0,T), with parabolic
boundary 0,7 := X7 U . We use N-vectorial notation for vector fields

w = (wi,... ,wy) € RY

and function spaces F := [F]™. For 1 < p < oo, define the differential
operator

Vow = (Vpws, ..., Vywn), Vyw; = |Vwi|p_2 Vuw;,

and
Apw =V - Vyw.
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We assume the data satisfy
feL” (Qr) and heKnL*Q), (2.1)

where p’ = p/(p—1) and K is the closed convex subset of W (Q) defined
by

K= {v eEWP(Q) : vy >--- >y, ae in Q}. (2.2)
2.1. Variational formulation of the problem. The evolutive N-

membranes problem for the p-Laplacian operator consists in finding a
vector field u = u(z, t) such that

ueLr (O,T;Wé*’(ﬂ)) nc ([0, T L)), (2.3)
du e LP (0,T; W17 (1)), (2.4)
ut) €K, ae. tc(0,7), u(0)=hecL*Q), (2.5)

and, for a.e. t € (0,7) and all v € K|

(Bpu(t), v —u(t)) + / Vou(t) : V(v —u(t)) > / £(t) - (v —u(t). (2.6)
o

o)

Here, (-,-) denotes the sum of the N duality pairings in W17 (Q) x
W, P(Q) of the components of the vector fields, and A : B denotes the
scalar product of the matrices A and B.

We observe that, by a simple comparison argument, there exists at
most one solution of (2.3)—(2.6), the variational inequality formulation of
the evolutionary N-membranes problem.

2.2. The approximating problem. We approximate the variational
inequality (2.6) using a bounded penalization. For that purpose, for each
€ > 0, let 6. be the real function defined in [—o0, +00] by

-1 if < —¢,
6:(0)=4¢ /e if —e<6<0,
0 if 8>0.
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The approximating penalized problem is the system of boundary value
problems defined as follows:

(P68 (= i) -l oy ) =S
u; =0 on Y7 and u$ = h; on Qg )
with s =1,..., N, and the convention uy = +o00 and uy4+; = —00, where
fori=1,...,N,
it +fi .
ESEESELY RN
b0 max{ i T (2.8)

&=i& —(fr+---+ fi),

(see [3]). Note that, for i = 1,... , N, we have & > 0 and & € L? ().

Lemma 2.1. Using the convention vg = 400 and vyi; = —oo, the
operator

(Bv,w) = Z / (&i0e (Vi — vig1) — &i—10: (Vim1 — V) wy,
i=1 Q

v, w € WP(Q),
is T-monotone, i.e.,

(Bv — Bw,(v—w)t) >0, Vv,we W,?(Q).

Proof. Since we can rewrite

i=1

N-1
(Bv,w) = /&95 (vi = vig1) (wi — wita),
=l g

it is enough to observe that

(Bv — Bw, (v —w)T)
N-1 ,
= Z / & (ee(vi —vig1) — O (w; — wi+1)) ((vi —wi)t = (Wig1 —wit1)T).
i=1 ¢

Q

As & > 0, for 4 = 1,... ;N and 6. is monotone nondecreasing, the
conclusion follows. O
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Proposition 2.2. Under assumption (2.1), the approximating problem
(2.7) has a unique solution

(ui,- .. ,ufy) € LP(0,T; WP () N C ([0, T]; L*(9))

such that
ui <ui_,+e i=2,...,N. (2.9)

Proof. The existence and uniqueness follow, respectively, from standard
results concerning monotone operators and comparison (see [15] or [22]),
for instance, using the Faedo—Galerkin approximation. We note that, since
fe LV (Qr) C L (0,T; W17 (Q)), we obtain, in particular, that d;u® €
LY (0,T; W=12'(12)).

To prove inequality (2.9), multiply both the ith and the (i — 1)th equa-
tions by (u$ —u$_, — &)™, subtract and integrate over ), obtaining

1d c ¢ 2 . A B .
2dt / |(uf = uiy — )" +/ (Vpui - vpui—1> V(U —us_, —e)t
Q Q

= / [(fi = &0 (uf —ufyy) + &1 (ui_y —ui —e))(uf —ui_y)*
Q
—(fz‘—l —&i10:(ui_y —uf) + &0 (uj_y — Uf—1))(uf - U§—1)+}

< / ((fi = fim) + (& — &im1) — (i1 — &i2)) (uf —uf_; —e)T <0.
Q
Integrating between 0 and ¢, using the fact that h; > --- > hxy and the
inequality

[ (Vs = Ty} - Vluf — iy =)t >0

we get

3 [ w0 -u0-97 <o (2:10)

and so u; < ui_; +¢ a.e. in Qr. O
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2.3. Existence of variational solutions. The proof of the existence
of solution for the variational inequality (2.6) will be done passing to the
limit in ¢ — 0 on the sequence of approximating solutions u®, by using
the following a priori estimates that can be rigorously obtained through
the respective Faedo—Galerkin approximations.

Proposition 2.3. Under assumption (2.1), the solution of the approxi-
mating problem (2.7) satisfies the following estimates, for a nonnegative
constant C', independent of ¢:

45| 0,7;22(0)) + [ VU§ | Lr(@r) < C, (2.11)
[10eus | Lo (0, 13w 1.0 () < C (2.12)
i <Pui <fit&

fio & <P <fit& (i=2...,N-1) (2.13)

In — &< Puy < fn a.e.in Qp.

Proof. Foreachi=1,...,N, we easily conclude (2.13) from (2.7) in the
form
Pui=fi+g; in Qr,
where
95 =&i—10- (uf_l — uf) — &0, (uf — ufH) (2.14)

is uniformly bounded in L (Q7).

Then, multiplying each equation in (2.7) by u$ and integrating on ; =
Q x (0,t), we get

1 ; 1 .
3 [P+ [1vuip < [ (it g+ [l
Q Q4 Q

Q4
Using the Poincaré inequality, we find

[z + [1vaie <. (2.15)
Q @

where the constant Cy only depends on [|h[|r2(q) and ||f[|y. (g, Hence,
from (2.15), we immediately obtain (2.11). So

A, is bounded in L” (0,T; W% (Q)) independently of &, (2.16)
and we conclude (2.12) by recalling (2.13). O
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Theorem 2.4. Under assumption (2.1), problem (2.5)—(2.6) has a unique
variational solution u in the class (2.3)—(2.4).
In addition, u® — u strongly in L?(0,T; W4?(Q)) and

Pu° =~ Pu in L” (Qr) — weak. (2.17)

Proof. If {u®}. is a sequence of solutions of the approximating prob-
lems (2.7), by the a priori estimates (2.11) and (2.12), we can extract a
subsequence such that, as € — 0,
u —u in LP(0,T; WyP(Q)) - weak,
i = du in LP(0,T; W17 (Q)) - weak,

and, by compactness, also u® — u strongly in L?(Q).

Let v € LP(0,T; W,P(Q)) be such that 8;v € L (0,T; W17 (Q)),
v(t) € K, for a.e. t € (0,T), and v(0) = h. As (Bv(¢),v(t) —u(t)) = 0,

we have
(Opu®, v —u®) + /VpuE :V(v—u’) > /f- (v —u°).
QT QT

Using integration by parts,

DN | =

(Opu®, v —u®) = (v, v —u®) —

[ @) vy

Q
Using the monotonicity, we get

<8tv,v—u5>+/vpv :V(v—u®) > /f-(v—u€)+;

QT QT

|
—
g,
5
|
=
3

and letting ¢ — 0,

(Opv,v —u) /va V(v—-u /f (v—u (2.18)
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Let w = u+6(v—u), 8 € (0,1]. The verification that w can be chosen
as test function in (2.18) is immediate. So,

(Opa + 004 (v —u),0(v —u)) + / Vp(u+6(v—u)):6V(v—u)

Qr
> /Hf'(v—u).
Qr

Dividing both members by 6 and letting § — 0, we see that u solves
the problem

Oy —u+ [ Vv -w s [ -w,
Qr Qr

for all v such that v € L?(0,T; W P(Q)), v(t) € K for a.e. t € (0,T) and
v(0) = h. Using standard arguments (see [15]), also

(Opu(t), v(t) —u(t)) + /Vpu(t) V(v(t) —u(t) = /f(t) -(v(t) —u(?)),
Q Q

for a.e. t € (0,T), for all v such that v € LP(0,T; Wg*(Q)) and v(t) € K.

In order to conclude (2.17) it is sufficient to recall estimates (2.13) for

Pui and that Vyu; — V,u; in an appropriate sense. In fact, recalling
(2.14) and using Eq. (2.7), we conclude that

lim sup / Vou® - V(u® —u)
e—0
Qr

=0.

e—0

< lim sup L/(f +g°) - (u®* —u) — (Gyu®,u—u®)

By well-known results (see, for instance, [5]) this is sufficient to show
that u® — u strongly in L?(0,T; Wg?(Q)) (note that g° — g in L*' (Q7)
- weak, for some g). O
Remark 2.5. If we assume also that f € L?(Qr), which is a consequence
of (2.1) if 1 < p < 2, the Faedo—Galerkin approach yields directly the
regularity

ue HY(0,T; L2(Q7)) N L®(0,T; WP (Q)) (2.19)

through multiplication of (2.7) by Jyus.
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2.4. Strong continuous dependence

Theorem 2.6. Let u* be the variational solution to (2.5)—(2.6) corre-
sponding to data £* and h* satisfying also (2.1) and denote

e = £ — fll{4 (o, + 0" = hllf2q)

withq=p A2 (i.e., q=p' if p>2 and q =2 if p < 2). Then there exists
a positive constant ¢ = ¢(T, p) such that

sup /|u*(t)—u(t)|2+/|V(u*—u)|p <ee* if p=2, (2.20)

o<t<T
Q

sup /|u*(t)—u(t)|2+ </|V(u*—u)|p>; <ee
O<t<TQ o

if 1<p<2 (2.21)

Proof. Let v = u*(¢) in (2.6) with data f and h, and v = u(¢) in (2.6)
with data f* and h*. In the latter case, we have

(G (1), u(t) —u* (1)) + / Vou'(t) : V(u(t) - u* (1))
Q
> / £(t) - (u(t) —u*(1). (2.22)
Q

From (2.6) and (2.22), integrating between 0 and ¢, we obtain

/|u )~ (D) + // 0~ Vu) s V(' u)

< /(f*—f)-(u —u)+%/|h*—h|2. (2.23)
0 Q

In the case p > 2, since

// S0 V) V(' - w) /Cp//|Vu W
0 Q

0
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the conclusion follows easily by using Holder and Poincaré inequalities.
In the case 1 < p < 2 from (2.23), we find

t

[rwew-uop<e [ [u-u
Q Q

0

which, by Gronwall inequality yields, first

sup /|u*(t) - u(t)|2 <ele*
O<t<TQ

and, afterwards

(1+TeT)ex. (2.24)

N =

T
0/ Q/ (Vyu’ — Vyu) s V(u' —u) <

Next we consider the following reverse Holder inequality: given 0 < r < 1
and r' = L= if F € L"(Q), FG € L'(Q2) and /|G(x)|’"/dx < oo in Qp,

r—1’
Q
one has

(!'F(fwdﬁ)% < <S[|F($)G(x)|dx> <Q/|G(x)|"’dx>_"1_',

Letting r = & and, for i = 1,... ,N, F = |V(u} — u;)|* we get

* N2
J i =90 = > [ e
Qf Qf
2 p—2
> (/W(uz —ui>|P)" (/(Wuﬂ ¥ |Vuz~|)’”) "

where Q0 = {(z,t) € Q; : [Vu| + |Vug| > 0}. Thus, if we denote

2-p

o> ( / (|Vu:|+|wz~|)”) "

Qr
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by (2.23), we conclude (2.21) from

i( [ v —uiw’)%

Qr

2.5. The Holder continuity and further regularity of the so-
lution. The regularity of the variational solutions of the evolution N-
membranes problem does not, in general, yield their boundedness for
1 < p < d; but, by Sobolev imbedding, the solutions are bounded for p > d
and even Holder continuous in the space variables for each ¢ € (0,T).

However, estimates (2.13) and (2.17) imply that, in fact, Pu has the
same regularity in Q7 as the data f. Then, if f € L°°({27), local and global
Holder estimates for the evolution p-Laplace equation may be directly
applied to bounded solutions of the N-membranes problem (see [9, 14]
or [10]). In order to illustrate these results, we assume in addition that
h € L*(Q), which also implies that u € L*° (), and consequently
that u and Vu are locally Hélder continuous. Referring to [7] and [14]
for the boundary and initial regularity in the space of Holder continuous
functions C%, 0 < a < 1, with the standard parabolic norms, we may
state the following result.

Theorem 2.7. Suppose f € L>(Q) and the initial datah € C*(Q) N K,
0 < a < 1. Then the solution u € C¥(Qr), 0 < o/ < a < 1, and
Vu € Cﬁ)c(ﬁgp), for some 0 < B < 1. If, in addition, 80 € C'# and Vh €

CA(Q), 0 < B < 1, then also Vu € CP' (Qr), for some 0 < ' < 8 < 1.

In case of a linear operator (p = 2), we can apply directly Solonnikov’s
parabolic estimates (see [13, Theorem 9.1 of page 341]).

Theorem 2.8. Let p = 2. Then, for any f € L1(Qr), ¢ > 2, the solu-
tion u to (2.5)—(2.6) satisfies u € W?:IIOC(QT), which implies, by Sobolev
imbeddings, that u and Vu are locally Hélder continuous for ¢ > ‘HTZ
and q > d + 2, respectively. If, in addition, h € KN WQ_%”](Q), those
results can be extended up to the boundary 0Q € C? and up tot =0,
ie,ue W2 (Qr) and u, Vu are Holder continuous on Qr.
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3. THE N-SYSTEM AND ITS STABILITY

The N-membranes problem can, a posteriori, be regarded as a lower ob-
stacle problem for u;, a double obstacle problem for u;, 2 < 7 < N—1,and
an upper obstacle problem for uy. This fact has interesting consequences
and, similarly to the theory of the obstacle problem that we recall briefly
for completeness, allows us to characterize the N-membranes problem as
a nonlinear parabolic system with known discontinuous nonlinearities on
the right hand side as in (1.4).

3.1. Dual estimates for obstacle type problems. We consider the
scalar two-obstacles problem for the nonlinear operator P defined in (1.1),
with compatible Cauchy-Dirichlet data on 0,d. Let

pe LV (Qr), neWPQ)nL*Q), (3.1)
Y1,y € LP(0,T; WHP(Q)), (3.2)
Y12 in Qp, Y1 202> on I, '
and, for j = 1,2,
dupj € L7 (0, T; WP(Q)), Py € LP (), 33)

¥1(0) = n > 12(0) on Q.

Using the Lipschitz continuous function 6. defined in Sec. 2.2 for each
e > 0, we may easily show that the problem

Pw® + Czag(’we — ’(/12) — (;1(95(’(/11 — U)E) = in QT, (34)

w®=0 on Y7 and w® =7 on Qo, (3.5)

where (; = (P — @)~ and (o = (Pty — )T, has a unique solution
w® e LP(0,T; Wy P (Q))NC([0,T]; L*(Q)), with Pw® € LP' (Qr), uniformly
in € < 1. Similarly to Proposition 2.2, it is easy to show that

Py —e <w® <Yy +e aein Qp,

and, when ¢ — 0, as in Theorem 2.4, that w® — w strongly in
LP(0,T; WyP(€2)), where w is the unique solution of the double obsta-
cle problem

weKY ={ve LP(0,T; Wy P(Q) 19 >v =4 in Qr},  (3.6)



THE NONLINEAR N-MEMBRANES PROBLEM 15

(Pw—¢)(v—w) >0, YoeKY, ae te(0,7), (3.7
P2
Qr

such that w(0) = n on Q. The solution w satisfies also
w e LP(0,T; WlP(Q) nC([0,T; L*(Q)) and Pw € L* (Qr)

and, arguing as in Proposition 4.1 of [6], we can state the following im-
portant property.

Proposition 3.1. The solution w to (3.6)—(3.7), under assumptions
(3.1)—(3.3), satisfies the parabolic nonlinear equation

Pw = o+ (Ppa—0) X puw=y) — (PY1=0) X{w=y,} a-ein Q7. (3.8)
In addition, we have the Lewy—Stampacchia inequalities
o~ (P —¢)” =9 APY1 < Pw <V Py
=@+ (PYy— )T ae in Qr (3.9)

and the a.e. in Qp necessary conditions for contact with the obstacles

{w=191} C{Py1 <9} and {w =12} C{Py2 = ¢} (3.10)
being the inclusions valid up to subsets of Q¢ with zero measure.

Remark 3.2. We note that for the case of only one-obstacle, we have
similar properties. In fact, if we formally take 11 = 400, we have a lower
obstacle problem

w>=1y and p < Pw <V Py ae in Qp, (3.11)
and, with 15 = —o0, an upper obstacle problem
w<Y; and p APy < Pw<yp ae in Q. (3.12)

Analogously, the semilinear equation holds in each case with the cor-
responding characteristic function, respectively.

Remark 3.3. As observed in [16], we have

Pw=¢ aein {1 <w <y} (3.13)
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and due to the fact that both Pw and Pi; are integrable, we have

Pw=Py; aein {w=1;} for j=1,2. (3.14)

Using the regularity of Theorem 2.4, we easily see that each component
u; of the N-membranes problem solves an obstacle type problem (3.6)—
(3.7) with ¢ = f;, 1 = u;—1 and 3 = u;y1 (with the conventions
g = +00 and uyy1 = —oo corresponding to the one-obstacle problems).
Hence, we have from (3.11), (3.9), and (3.12), respectively,

fi < Puy < fi V Pus
fiNPui—1 < Pu; < fiVPuiyr (1=2,...,N—1)

fNANPun_1< Pun< fn ae.in  Qr.

By simple iteration, we have shown the following Lewy—Stampacchia
type inequalities, that extend Theorem 3.5 of [3] to the evolution N-
membranes problem.

Theorem 3.4. The solution u of (2.5)—(2.6) satisfies

i N
Nfi<Pu<\/fj aein Qp, i=1,...N.
j=1

J=i

3.2. The nonlinear N-system. As a consequence of the equivalence of
the N-membranes inequality with two one-obstacle problems and N — 2
two-obstacles problems, we may prove the equivalence of this inequality
with a N-system of equations, strongly coupled by the w coincidence
sets I j defined in (1.5). Indeed, we can argue as in [3, Sec. 4], and since
we know that Pu; € LP (), for all i = 1,...,N, we have on each

coincidence set
Pu]' =..-=Pup ae.in I]‘,k = {u]' == uk}
and we conclude, for each j < i <k,

Pui = <f>j7k a.e. in Ij,k,



THE NONLINEAR N-MEMBRANES PROBLEM 17

where we introduce the averages of f by

_ S+t h

i T

;o I<j<k<N.
On the other hand, in the complementary sets Q7 \ I; ;, for each i >
k> jori<j<k, wehave
Pui = fz a.e. in QT\Ij’k,

and we conclude, as in [3], the following explicit form for (1.4).

Theorem 3.5. The variational solution of the N-membranes problem
(2.5)—(2.6) satisfies the system (i =1,... ,N)

Pui=fi+ > WMflxe aein Qr, (3.15)
1<j<k<N,
JSisk

where X, 1 denotes the characteristic function of each I, and

(E)jk — (E)jh—1 if i=j,
bZ7k[f] = <f>j’k — <f>j+1,k if 1= k,

For the particular case N = 3 (and N = 2), we can easily deduce (1.6)
from (3.15).

3.3. Convergence of coincidence sets. From Theorem 2.6, we know
that if for sequences

f”jf in L1(Qr), q=p A2, (3.16)
h” —h in L%(Qr), (3.17)
then, the corresponding solutions of (2.5)—(2.6) also converge
w —u in C[0,T]; L*(Q)n LP(0,T; WP (92)). (3.18)
Consequently, we have

Apu” = Apu in L’ (O,T;W_l’p,(ﬂ)) — weak
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and, by Theorem 3.4, also
Pu” = Pu in LY(Q7) — weak.

Since the characteristic functions x7 , = X{uy=...=uy} satisfy 0 < x7j;, <

1 a.e. in O, there are x7j; € L°(Qr) such that
Xik = Xjr in L%(Qr) - weak *.
Passing to the limit in

Puf = f{+ Y WX

1<j<k<N,
J<i<k
we obtain, for eachi=1,... ,N,
_ Jk *
Pu; = fi + E b7 (€] s
1<j<k<N,
J<i<k

which compared with (3.15) yields

Z bg7k[f](Xj7k - X;':k) =0 a.e.in QT.
1<j<k<N,
J<i<k

Arguing exactly as in the proof of Theorem 4.6 of [3], we conclude,
under the same nondegeneracy assumption for the limit data, namely

(£)ij # (£)jr1k, ae in Qr,
forall 4,j,ke{l,... ,N} with i <j<k, (3.19)

that xjx = xj and prove the following stability property for the respec-
tive coincidence sets I}, = {u} = -+ = uy}.

Theorem 3.6. Under the convergence assumptions (3.16) and (3.17),
the characteristic functions associated with the convergent variational so-
lutions (3.18) also converge

X{uy=-=ug} = X{uj==us} in L*(Qp),

for any 1 < s < oo, all 1 < j < k < N, provided the nondegeneracy
condition (3.19) holds.
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3.4. Asymptotic stabilization as ¢ — oco. In this section, we assume
p > 2 and we consider the unique solution u® to the stationary N-
membranes problem for a given £ € LP (2):

u® e K: /Vpuoo:V(V—uo")2/f°0-(v—uoo)7 Vv e K. (3.20)
o o

Supposing that the problem (2.5)—(2.6) is solvable for all T' < oo and
that £(¢) — £ in L?' (Q) as t — oo in the sense

//|f(t)—f°°|p’—>o as t — o0, (3.21)
T Q

by the results of [19], the evolutive solution u(¢) is such that

u(t) — u> in L%(Q), (3.22)
t+1
/ /|Vu(t) —Vu®P — 0 as t— oo. (3.23)
t O

By the results of [3], the stationary solution also solves the nonlinear
N-system

—Apu = f+ Y BPMEINSS, aein Q (3.24)
1<i<k<N,
Jj<isk
where x75, = X{use=-=u} denotes the characteristic function of the limit
coincidence set 199 = {z € Q:u°(x) = -+ = ug®()}.

Denoting by x;x(t) the characteristic functions of I, ;. (¢t) = {u;(t) =
- = ug(t)} at time ¢, we have the following asymptotic convergence
result as £ — oo.

Theorem 3.7. Under assumption (3.21), the variational solution of the
evolution N-membranes problem converges to the corresponding station-
ary solution in the sense (3.22) and (3.23). In addition, the characteristic
functions satisfy

Xik(t) — X5 as t — oo in L*(N), (3.25)
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forany 1 < s < oo, forall1 < j < k < N, provided we assume

(£°);; # (F°) 41 ae inQ, forall 1<i<j<k<N. (3.26)

Proof. We rewrite (3.23) for w(t) = u(t) — u™ as

t+1 1

//|Vw(r)|”d7'://|Vw(t+o)|pda—>0 as t — oo,
Q o)

t 0

and this convergence can be interpreted as
wy(t) — 0 as t — oo in LP(0,1; WgP(Q)), (3.27)
where we define wy € L>(0, 00; LP(0,1; WP (Q))) as
wi(t)(o,) = w(t+0,-) € WP(Q), o€ (0,1).
Consequently, from (3.27), we have
Apuy(t) = Apug® as t — oo in L” (0, 1;W_1’pl(ﬂ)) — weak

and, recalling the estimates of Theorem 3.4 and the assumption (3.21),
we may conclude

(Opuy — Apuy)(t) = —Apug® as t — oo in LY (0, 1;Lp/(Q)) — weak.

Since uy(t) solves (3.15), a.e. in Q and for a.e. ¢ > 0, we can pass to the
limit, as ¢ — oo, in L? (0,1; L? (Q)). As in the proof of Theorem 3.6 (and
Theorem 4.6 of [3]), we conclude that assumption (3.26) implies the con-
vergence Xk (t) — X33, as t — oo, first as functions of L>°(0,1; L>°(12))
with the weak-x topology and, afterwards, also in the sense of (3.25).
Indeed, since they are characteristic functions and any subsequence of
X;.k(t) has the same limit Xj- their weak convergence implies the strong
convergence in L*(Q) for all 1 < s < oo. O
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