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“The progress of science is marked by the continual suc-
cess of attempts to unify greater and greater range of
phenomena in more and more comprehensive theoreti-
cal schemes.”

L. Sklar, in Physics and Chance: Philosophical issues
in the foundations of statistical mechanics.





Abstract

This thesis is devoted to the use of statistical physics concepts to study the growth of

films, under nonequilibrium conditions. Specifically, we consider the influence of the par-

ticle/particle and particle/substrate interacting rules on the morphology of the obtained

film.

We report how interesting structures can emerge from interacting rules as simple as

the ones from the random sequential adsorption process. In the presence of a patterned

substrate, made up of well defined regions (cells) where particles can irreversibly stick, a

rich set of morphologies are obtained at the jammed state. Such structures reveal, not

only the order of the pattern, but also the stochastic nature of the adsorption process

and the competition during adsorption. Besides, we show that such pattern changes also

the kinetics toward the asymptotic limit and report, for the first time, a transition from

power law to exponential, in the functional dependence of the coverage approach to the

jamming value.

The competitive adsorption of segments with different sizes on a line is also consid-

ered. The influence of the size ratio on the jammed state structure is analyzed with the

cumulants of the distance between segments, up-to the fourth order. Yet, a probability

distribution function of distances is proposed, based on heuristic arguments. The obtained

results with the proposed function are in agreement with the ones from simulation.

For the growth regime where diffusion of particles on the substrate cannot be neglected,

the influence of the flux of impinging particles on the nucleation and growth of islands is

studied. A model based on the kinetic Monte Carlo method is then proposed to study the
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homoepitaxial growth of Ag/Ag(100). Based on symmetry considerations, for both the

substrate geometry and the interaction potential, the list of possible processes is reduced

from 1024 to 241 elements. The model is able to reproduce previously reported results as

well as gain new insights into the nucleation process, specially, for cases where the shape

of the island and its local environment, play an important role on the overall kinetics.



Resumo

Nesta tese, aplicam-se conceitos de f́ısica estat́ıstica ao estudo de crescimento de filmes

em condições de não equiĺıbrio. Considera-se o efeito da interacção part́ıcula/part́ıcula e

part́ıcula/substrato na morfologia do filme.

Através de simulações de Monte Carlo, mostra-se que estruturas interessantes podem

emergir de processos tão simples como a deposição sequencial aleatória. Uma grande var-

iedade de estruturas pode ser obtida na presença de um padrão, constitúıdo por regiões

bem definidas (células) onde as part́ıculas podem adsorver irreversivelmente. Estas es-

truturas devem-se ao efeito conjugado das restrições introduzidas pelo padrão e do efeito

cooperativo entre as part́ıculas durante a adsorção. Mostra-se ainda que, na presença do

padrão, há uma transição de lei de potência para exponencial, na dependência funcional

da aproximação da cobertura ao estado limite.

É também estudada a adsorção competitiva de segmentos de dois tamanhos diferentes,

numa linha. A influência da relação de tamanhos na estrutura final é caracterizada com

base nos momentos (de elevada ordem) da distância entre segmentos. Propõe-se uma

função de densidade de probabilidade para as distâncias, estando os resultados obtidos

com essa função em concordância com os obtidos computacionalmente.

Finalmente, estuda-se a deposição e a relaxação de átomos numa superf́ıce cristalina,

desenvolvendo-se um modelo com base no método de Monte Carlo cinético, para estudar

o crescimento de Ag/Ag(100). Com considerações de simetria baseadas no substrato e

no potencial de interacção, a lista de posśıveis processos é reduzida de 1024 para 241

elementos. O modelo considerado é capaz de reproduzir resultados anteriores, bem como
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permitir obter mais informação sobre o processo de nucleação, em especial nas situações

em que tanto a forma da ilha como o meio em que se encontra desempenham um papel

fundamental na cinética do sistema.
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Chapter 1

Statistical physics and

out-of-equilibrium systems

“Probability is no longer a state of mind due to our ig-
norance, but the result of the laws of nature.”

I. Prigogine, in The end of Certainty: Time, Chaos,
and the New Laws of Nature.

Systems made up of many interacting particles have drawn the attention of physicists.

Phenomena not predicted from the microscopic interactions emerge, from the collective

behavior, at the macroscopic level. Besides, for certain systems, due to the stochastic

nature of the phenomena, fluctuations play a relevant role and, therefore, the evolution

cannot be predicted solely from the fundamental laws, i.e., randomness needs to be consid-

ered. Thus, a statistical description of the possible outcomes is the meaningful approach

to the problem in opposition to the deterministic one.

By the end of the nineteenth century, Physics has evolved through two, apparently,

unrelated fields of knowledge: the mechanics (classical and, more recently, quantum),

characterized by the deterministic description of particles motion, and the thermodynam-

ics, devoted to the study of systems with large degrees of freedom. On one side, the

3
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classical and quantum mechanics are connected with the equations of motion, Hamilton

and Schrödinger equation respectively, both characterized by time reversibility [1]. On the

other side, thermodynamics is distinguished by irreversibility in the context of its second

law [2].

Among the seminal works by James Clerk Maxwell (1831-1879) [3], Josiah Gibbs

(1839-1903) [4], Ludwig Boltzmann (1844-1906) [5], and Albert Einstein (1879-1955) [6],

among others [7], the field of Statistical Physics emerges. Though the initial main goal

was filling the hiatus between the two perspectives referred above, nowadays, the object

of study goes much further and, in fact, the description of systems with interacting large

degrees of freedom cannot avoid it.

Physically relevant (macroscopic) parameters like pressure, entropy, and temperature,

are not due to single atoms but due to an ensemble of atoms [8], therefore it is important

to study the collective behavior of such ensemble. In most cases (if not all), the study

of the time evolution of all degrees of freedom is either useless or impossible (or even

both). Besides, most systems are not deterministic, they can evolve from a given initial

state through multiple ways out. Consequently, a deterministic description has revealed

unable to track most multiparticles systems and, consequently, statistical descriptions

have become a reliable approach [1, 7].

Despite the extensive work, in the literature, about equilibrium systems, such systems

are more an exception than a rule. Observing nature we realize that systems are constantly

affected by external factors that keep the system away from equilibrium, yielding out

of equilibrium. Thus, structures are kinetically trapped and equilibrium configurations

are not achieved. The study of the time evolution of a system is fundamental to the

understanding of its structure. The first remarkable results are due to L. Onsager1 [9, 10],

which focus on systems close to stable configurations. In the follow up, a lot of work has

been done in the fast growing field of out-of-equilibrium systems, with special focus on

the far-from-equilibrium ones where the linear relations proposed by Onsager do not any

1Lars Onsager have received the Nobel Prize in Chemistry, in 1968, due to this striking work.
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longer apply2.

Another contribution to this field came from the observation that, different systems

with different types of interaction, share similar phenomena, leading to the concept of

universality classes. This means that, for certain emerging properties, the detailed de-

scription of local interactions is not relevant. Such observation thrust physicists in an

interesting and interdisciplinary journey through distinct fields [12, 13, 14, 15], not only

dealing with lifeless components like, e.g., materials science [16] and geology [12], but also

biology [17], neurology [18], sociology [19, 20, 21], and economy [22, 23, 24, 25]. Despite

the huge number of variables involved in such systems, simple models have been developed

to explain global behaviors.

In this work, we address the formation of films on top of substrates. The advance of

experimental techniques has improved our ability to observe, as well as control, processes

at a smaller length scale. Since the desirable structures are small and usually difficult to

prepare in a fully controlled manner, it is necessary to understand how to achieve them

through self-organization. Therefore, interest has shifted toward the control of the system

properties through growth parameters like, e.g., temperature, flux of incoming particles,

and reactivity of the substrate. On that ground, identification of the relevant mechanisms

which affect the system morphology is essential. Yet, how each identified mechanism

affects the evolution of the system is also pertinent.

We attempt to answer some rising questions about such systems like, e.g., the effect

of both the substrate morphology and mobility on the film structure. We develop a set

of theoretical models to mimic the growth of films under different conditions. Using

theoretical oriented methodologies, it is possible to control the considered conditions to

characterize, in an effective way, the influence of each process on the overall dynamics.

Film growth can occur in a close or an open system. In a close system, the total

amount of deposited material is preserved and it, eventually, achieves the thermodynamic

equilibrium. In an open system, the most common, deposition is present. Competition

2It is beyond the scope of this work to review the historical evolution of the field. For such, see, e.g.,
[11, 7].
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between deposition and relaxation mechanisms keeps the system out of equilibrium. Thus,

the obtained structures, even when a steady state is attained, do not correspond to the

equilibrium ones but are, instead, determined by the growth kinetics. This thesis is

devoted to the latter systems yielding out-of-equilibrium conditions.

Based on the system at hand, as well as on the properties we intend to address, different

levels of detail, are required. For example, when particles attempting adsorption are much

larger than the atoms of the substrate, the periodic-lattice structure of the substrate

becomes irrelevant. On the other hand, for other type of problems, the periodicity of the

lattice is fundamental. For those cases, an atomistic description of the system accounts

for the necessary length scale to understand the relevant phenomena. Notwithstanding,

as discussed within the present chapter and in Chapter 5, even for such systems a detailed

description of thermal vibrations of each atom is superfluous.

We consider two different growth limits. In the first one, landing particles, interacting

solely through excluded volume, stick irreversibly, yielding the random sequential adsorp-

tion process (Part II). On the second case, an atomistic description of the film growth

is considered (Part III). Atoms are deposited on a crystalline substrate and are able to

diffuse on top of it. The thesis is, then, divided in three different parts: Introduction and

Theoretical Considerations, Micro- to Nano-scale, and Down to the Atomic Scale. The

first part is devoted to the scientific background of this work and includes the first two

chapters. In the present one we start with a brief review of statistical physics, followed by

a discussion, in Chapter 2, of the computational methods applied in the field. It is not our

intention to provide a full review of the subject but to summarize the main definitions,

theories, and methods used throughout the document. In Part II, adsorption is considered

in the limit where adsorbing particles are much larger than the ones from the substrate,

therefore a decoupling of length scales between the adsorption process and atomic bonds

can be done (Chapters 3 and 4). Chapter 3 is devoted to the adsorption of segments on a

line, while Chapter 4 is devoted to the effect of a patterned substrate on the adsorption

of disks on a surface. The Part III is dedicated to the study of thin-films growth, where
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an atomistic description of the deposition process is required. Specifically, we study the

effect of the deposition rate on the morphology of the film.

The goal of the present chapter is to give a brief introduction to the field of statistical

physics and build a scientific scaffold of concepts and methods to support the remaining

chapters. We start by introducing the concept of phase space to represent the system

configurations, followed by a brief description of the Hamilton’s dynamics as well as the

way to Liouville’s equation, in order to describe the time evolution of a set of possible

initial configurations. Through the analysis of the typical time scales in a system consisting

of an adatom on a crystalline substrate, the concept of infrequent events is introduced. We

discuss, as well, how the employment of decoupling time scales can lead to a simplification

of the problem being addressed. Since the deterministic description is not suitable to

study the majority of systems with large degrees of freedom, the concept of stochastic

processes is presented and the phenomenological description of physical systems discussed,

with special focus to the Langevin dynamics and a general formulation using the Master

equation. To finalize, the concept of scaling and universality is also presented, opening the

door to the use of simplified models, where only the main features are included, to mimic

more complex systems. Using two deposition models, random and ballistic deposition, we

show that, despite the degree of simplification, relevant properties can be caught.

1.1 Phase space, state vector, phase functions

In the field of Statistical Physics, as stated previously, we deal with an ensemble of

particles (e.g., atoms or molecules) and how some properties emerge from the microscopic

dynamics. With that aim, it is important to bridge from the microstate to the corre-

spondent macrostate. In this section, concepts like phase space, state vector, and phase

functions are defined and considered to differ these two types of states (micro and macro).

A mechanical system is defined by the set of generalized coordinates (qi) of each par-

ticle and the corresponding generalized momenta (pi) [26, 27]. For sake of simplicity and
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convenience, from now on, q and p represent, respectively, the set of all generalized coor-

dinates and momenta. A system with f degrees of freedom has f generalized coordinates

and f generalized momenta, i.e., the 2f parameters, {q, p}, completely define the system

configuration. Therefore, a 2f -dimensional Euclidean system [4, 28], named phase space,

can be used to define the set of all possible system configurations. A particular state can

then be represented, in the phase space, by a 2f -dimensional state vector [29], ~X, defined

as

~X = ~X(q, p) . (1.1)

The experimentally measured physical parameters, such as temperature, pressure, and

entropy, are due to the ensemble of particles, being a function of the state [8], therefore

we can also define each physical parameter as a function F over the phase space, named

space function [30], where

F = F ( ~X) . (1.2)

At this point, it is relevant to differ microstate from macrostate. A microstate is com-

pletely defined by the corresponding state vector and a macrostate is defined by a set of

phase functions. Therefore, is straightforward to conclude that each microscopic config-

uration corresponds to a single macroscopic parameter (value of the space function) but,

the same macroscopic parameter can be related with multiple microscopic states (state

vectors). These concepts are fundamental in Statistical Physics since it is the map from

the microstates to macrostates that allows us to understand large scale behaviors from the

microscale dynamics. For example, according to a fundamental principle in equilibrium

statistical physics, named ergodic principle (see, e.g., [28, 30]), for an isolated ergodic

system, in equilibrium, all the accessible microstates (with the same energy) are equally

probable. But, at the same time, when we look into nature we conclude that, even for sys-

tems in equilibrium, different macrostates occur with different probabilities. Why? Since

the phase functions are additive functions of large degrees of freedom [30], the number

of microstates related to a given macrostate differ from state to state (macro). There-
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fore, different macrostates occur with different probabilities. Looking to the microstate

dynamics, systems are always changing from state to state and, consequently, moving in

the phase space. However, on the macrostate level, the physical parameters (state func-

tions) are not, necessarily, time dependent. In the next section we discuss the concepts

of equilibrium and out-of-equilibrium systems. For the latter one, two different types are

presented, namely, non- and far-from-equilibrium systems.

1.2 Equilibrium vs out of equilibrium

Thermodynamics was the first field of knowledge dedicated to the study of large en-

sembles of particles. Such discipline is mainly devoted to those systems whose the full

set of macroscopic parameters (phase functions) does not change in time or, for finite

systems, each parameter is characterized by small fluctuations around the mean value

(thermodynamic value). Those systems are said to be in equilibrium.

Looking into nature we rarely observe equilibrium. Year after year, global growth

of population is reported. Weather is changing (temperature, pressure, ...) and differs

from place to place. Flux of energy, from the Sun to the Earth, leads to irreversible

chemical reactions with fundamental relevance in biological activity. Life is itself a proof

of a system out of equilibrium. Therefore, equilibrium is more an exception than a rule

[1, 31]. Nature is, undeniably, out of equilibrium. It is beyond the scope of this thesis

to discuss why nature is out of equilibrium. Such philosophical question is discussed in

several different places (see, e.g., [11]). For our purpose, we just recognize that nature is

out of equilibrium and, once in a while (rarely), some local equilibrium is found.

Out-of-equilibrium systems can be of two main types: nonequilibrium or far from

equilibrium [32]. Nonequilibrium occurs when an external parameter acts over the system

keeping it away from equilibrium [33]. A gradient is obtained and, even if we wait“infinite”

time, the system does not fall into the equilibrium state. In fact, it converges to a steady

state, the one with lowest rate of entropy production, which is characterized by a stability
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similar to the equilibrium one. When the system is slightly perturbed from such state,

it returns to the steady state and the perturbation smears out. Onsager made several

contributions to the study of this type of systems [9, 10]. He proposed a linear relation

between the driving force and the thermodynamic flux to equilibrium. Following such

consideration it was possible to study properties like correlations and the kinetic approach

to the steady state.

Far-from-equilibrium systems are in an unstable state and, once released, they “flow”

to the equilibrium one. In a more general way, such systems can be constantly kept out

of equilibrium due to exchange of matter and energy with the surrounding and, therefore,

yielding nonequilibrium conditions. However, it is important to stress that a far-from-

equilibrium system is not, necessarily, a nonequilibrium one. Thermodynamic param-

eters, like pressure and temperature, can only be defined locally. The linear relations

proposed by Onsager are not valid for far-from-equilibrium systems [7]. Therefore, it is

difficult/impossible to attempt a deterministic description of the system evolution.

In the next section, we discuss how to describe the time evolution of a multicomponent

system, with special focus on the deterministic description and its limitations.

1.3 From Hamilton’s dynamics to Liouville’s equa-

tion

A state vector, ~X, defines a particular microstate of a system and geometrically localize

it in the phase space. The system can also be visualized as a point in the phase space,

defined by the state vector. If the Hamiltonian of the system is known, H( ~X, t), the

system time evolution can be described with the Hamilton equations [26, 27, 34],

ṗi = −∂H
∂qi

(1.3)
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and

q̇i =
∂H
∂pi

, (1.4)

where the dot stands for the time derivative.

The solution of the equations written above leads to a deterministic description of

the particles motion and, consequently, to a well defined trajectory of the system state

in the phase space. To be successful it is important to know the Hamiltonian of the

system and to be able to identify its initial state (with infinite precision). So far, let us

consider that the former condition is attained and focus on the latter one. In the quantum

limit, it is well known that, according to Heisenberg theory (see, e.g. [35]), uncertainty

is intrinsic to the system, being not just related to the complex nature of it, occurring

also for the simplest one [36]. But even for classical systems, it is impractical to measure

the dynamical state of all particles in the system [37] and, if we could do it, there is no

experimental setup with which it is possible to obtain such states with infinite precision.

However, such limitation in classical systems is not only due to the lack of knowledge

from the observer [31]. Two different factors are related to such limitation: the stability

of the system and its integrability. If two trajectories, initial close to each other, diverge,

the system is classified of unstable (e.g., chaotic systems), otherwise, it is stable [1].

Besides, Poincaré classified physical systems into integrable and non-integrable, where

the non-integrable systems are characterized by resonance between degrees of freedom.

These systems cannot be described deterministically and the concept of trajectory has

no meaning. The non-integrable case is the typical one for systems with many-particles

characterized by non-linear interactions [7].

When an experimental setup is prepared, the initial configuration (set of phase func-

tions) is compatible with multiple microstates. Therefore, instead of describing the evolu-

tion of a point in the phase space it is preferable to study the evolution of a set of points.

The concept of trajectory in the phase space gives place to a time evolution description of

the “cloud” of possible states [11]. To that end, we define a phase-space density ρ( ~X, t),

such that ρ( ~X, t)d ~X is the probability of finding the system, at time t, in the hyper-cube
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[ ~X, ~X + d ~X[ of the phase space [2, 38].

To describe the evolution of the phase-space density, in a deterministic way, it is

important to analyze its time evolution. Since the phase-space density is related with a

probability3 (where a conservation law applies to the total probability), let us consider

the continuity equation
∂ρ

∂t
+ ~∇ ·

(
~̇Xρ
)

= 0 . (1.5)

Expanding the equation we have

∂ρ

∂t
= −

f∑
i=1

[
ρ

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
+

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)]
. (1.6)

According to Hamilton theory (from eqs. (1.3) and (1.4)),

∂q̇i
∂qi

= −∂ṗi
∂pi

, (1.7)

so, considering eqs. (1.6) and (1.7),

(
∂ρ

∂t

)
q,p

= −
∑
i

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
, (1.8)

which is the so called Liouville’s equation [2, 26, 28, 29, 30, 34, 37, 38]. It corresponds to

a deterministic description of the “cloud” of the most probable states. The same equation

can be re-written, for sake of simplicity, as a function of the Poisson brackets of the

phase-space density and the Hamiltonian (see, e.g., [34]),

(
∂ρ

∂t

)
q,p

= −{ρ,H} . (1.9)

Note that, even with such equation (Liouville’s equation), to study a certain physical

system we need to be able to write the Hamiltonian of the system or, at least, know how

3A large number of points in the phase space are considered such that the continuum approach is
valid.
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to relate the space density with q and p. As it is discussed below, the concept of stochastic

systems will lead to a more appropriated description.

1.4 Energy landscape

As discussed above, it is unfeasible to study certain multicomponent systems in a

deterministic way. In the case of thin films, by picturing the energy landscape, we realize

that different phenomena occur at different time scales and, therefore, decoupling of such

scales can be employed to simplify the problem solving. Therefore, it is important to pick

the relevant parameters to consider in order to attempt a probabilistic description of the

system.

Consider the diffusion of atoms on a crystalline substrate. The substrate, typically,

consists on a periodic arrangement of atoms distributed in an array according to the

geometry of the lattice. The potential energy landscape for the diffusing atom consists

on multiple basins separated by barriers, which are much higher than the typical thermal

energy (kBT ). The energy difference between the top of the barrier and the basin is the

activation energy (Ea). Once in a basin, the adatom vibrates to and fro in all directions

and exchanges energy with the substrate. Eventually, due to thermal fluctuations, the

vibrating atom acquires enough energy to climb across the barrier and hops to another

basin. Since the energy barrier is much larger than the typical thermal energy (kBT ), it

is reasonable to assume that the adatom stays at a given basin, enough time to attain

local equilibrium with the substrate. If such is true, since the substrate can be seen as

a thermal bath, the energy distribution is in agreement with the canonical distribution

(Boltzmann distribution). Due to the thermalization process, memory of the previous

states is lost, and the transition to the next one only depends on the actual state (Markov

process). Consequently, Transition State Theory (TST) can be applied.

According to the harmonic Transition State Theory, the rate of a given transition is
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given by Arrhenius equation

ν = ν0 exp

(
− Ea
kBT

)
, (1.10)

where ν0 is the attempt frequency (related with the vibration of the adatom in the basin).

As an example, consider the diffusion of an adatom of silver in a (100) silver surface4. To

make a single hop, an isolated atom, needs to cross an activation barrier of 0.48 eV [39].

The typical attempt frequency is 1013 s−1 [40]. At room temperature, T = 298 K, the

typical resting time of an atom in the basin is then τdiff ≈ 10−5 s, according to eq. (1.10).

However, the vibration time is τvibration ≈ 10−13 s. This way, the system is characterized

by vibrating atoms that, once in a while, hop between different neighboring basins. For

each trial (vibration event), the probability of a successful transition is low, therefore, the

event of transition is named infrequent event5, being a Poisson process in time [2].

The time scale of vibration and hopping can be decoupled. Such decoupling can be

used to simplify the problem solving, instead of fully trace the vibration, the probabil-

ity of each transition between basins can be computed and the possible directions of the

hop considered6. This example is a potential application of the stochastic idea discussed

forward. Instead of mimicking all the dynamics (vibration), a stochastic model is consid-

ered where processes (transitions) occur accordingly to a probability distribution function.

Note that, the choice of the main details to take account for in the system description,

is always related with the properties under study. For example, in Chapter 5, we apply

the time scale decoupling to study the island size distribution for submonolayer growth

of Ag/Ag(100), where the detailed description of the vibration is irrelevant.

1.5 Stochastic processes

For most cases, if not all of them, the treatment of all variables returns much more

information than the one needed to solve a specific problem. Moreover, as discussed

4The homoepitaxial growth of Ag/Ag(100) is discussed in the context of the Chapter 5.
5Also known as rare events [16].
6The probability for each direction only depends on the activation energy of each process.



Chapter 1. Statistical physics and out-of-equilibrium systems 15

above, such treatment can easily become impracticable. To overshoot such obstacle it is

important to reduce the number of considered degrees of freedom. That can be achieved

by selecting the variables which, instead of being fully treated, can be averaged and only

consider their distributions. Such treatment is known as coarse grain approximation.

After picking the variables that can be integrated it is necessary to compute their dis-

tribution, which can be done from the output of an experiment or from phenomenological

considerations. Therefore, due to the nature of these variables, they are named stochastic

variables. A process written in terms of stochastic variables is, consequently, denoted

stochastic process [36, 38, 41, 42].

In the present section we discuss the stochastic processes in the context of the Langevin

dynamics and of the general Master equation.

1.5.1 Langevin equation

To introduce stochastic systems and understand their relevance, focus on the Brownian

motion problem. In 1827, the botanist Robert Brown, observed that large particles (pollen

particles) in a fluid (e.g., water), make a characteristic random motion. This have called

the attention of many scientists, who attempt to explain it as well as use such motion to

argue in favor of the atomistic theory of matter [43].

Consider a large particle inside a fluid. To fully describe the system we need to be

able to write the Hamiltonian of the system and the initial configuration of all particles:

the Brownian particle and the ones from the fluid. Since our purpose is the description

of the large particle, let us consider its velocity, v(t), and attempt a phenomenological

description of the collisions with the particles from the medium. The forces exerted by

the medium can be represented by two components. A slowly varying force that drags

the system to the equilibrium configuration, represented by a damping term linear in the

velocity, −γv(t), and a fast varying force, mimicking the thermal noise, represented by

the noise term, η(t).

Regarding the noise term, since there is no preferential direction during collisions, as
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well as no spatial dependence

< η(t) >= 0 , (1.11)

where < ... > represents the average over an ensemble of particles. Besides, η(t) is rapidly

varying in time [2, 36] so the correlation function can be written as

< η(t)η(t′) >= Γδ(t− t′) , (1.12)

where Γ is a constant to be computed later on and δ(t−t′) is the Dirac delta function. Such

correlation function means that the collisions correlation time is zero7 so, two consecutive

collisions, are uncorrelated. For those cases, the noise is classified as white noise.

The equation of motion for the Brownian particle is the following Langevin equation,

mv̇(t) = −γv(t) + η(t) . (1.13)

For simplicity we define γ′ = γ/m and η′(t) = η(t)/m, so the equation of motion becomes

v̇(t) = −γ′v(t) + η′(t) . (1.14)

Solving the previous equation and averaging over an ensemble of particles the following

result is obtained for the mean velocity,

< v(t) >=< v(0) exp (−γ′t) > , (1.15)

where v(0) is the initial velocity, and for the mean square velocity,

< v2(t) >=< v2(0) exp (−2γ′t) > +
Γ

2γ′
(1− exp (−2γ′t)) . (1.16)

For large values of time, equilibrium is attained and the canonical ensemble needs to

7Stochastic processes without memory are also known as Markovian processes.
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be recovered [4], i.e., according to equipartition theorem [2],

< v2(∞) >=
kBT

m
, (1.17)

where kB is the Boltzmann constant. On that ground,

Γ =
kBT

m
2γ′ . (1.18)

This relation is called fluctuation-dissipation since it relates the strength of the noise (Γ )

with the friction coefficient (γ) [44].

The previous example shows that, the Langevin equation can be used to describe a

system where certain variables are averaged. Specifically, the description of the collision

process is reduced to the use of the mean value and correlation function of the noise term.

For certain systems, either the noise term is position dependent or the damping term is

non-linear (or both), leading to a problem with much higher complexity [36].

1.5.2 Master equation

The study of stochastic systems implies some phenomenological approaches. When the

detail of the full system dynamics is not important and attention is focused on transitions

between accessible states, the Master equation plays a relevant role [44].

A Master equation describes the population, Ps(t), of a given state s. The system is

considered to be Markovian, i.e., transition only depends on the actual configuration and

not on its entire history [29]. The time evolution contains gain contributions (transitions

from other states, r, to the considered state) and loss contributions due to transitions

from the state to other states. Generically,

d

dt
Ps(t) =

∑
r

WrsPr(t)−
∑
r

WsrPs(t) , (1.19)

where Wrs is the transition rate from state r to state s. Under equilibrium conditions,
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the population of each state is time independent,

d

dt
Ps(t) = 0 . (1.20)

The trivial solution is then

PrWrs = PsWsr , (1.21)

known as detailed balance. Note that, other solutions can also exist but, for equilibrium

problems, only the properties at the equilibrium state are important, and the detailed

balance condition leads to the proper distribution.

The detailed balance condition allows to compute relations between transitions in

order to guarantee a certain distribution at the equilibrium state. Let us consider two

typical equilibrium ensembles: the microcanonical and the canonical. The microcanonical

ensemble is an isolated system. As referred before, according to the fundamental postulate

of statistical mechanics [2, 34], for an isolated system, with energy E+δE, all microstates

are equally probable, Ps = Pr. Therefore, from the detailed balance, eq. (1.21),

Wrs = Wsr . (1.22)

The canonical ensemble is a closed system in contact with a heat reservoir. In equilibrium,

the probability distribution of each state shall follow the Boltzmann distribution, meaning

that it is related with the energy of the state, such that,

Pi ∝ exp

(
− Ei
kBT

)
. (1.23)

On that ground,
Wrs

Wsr

= exp

(
−Es − Er

kBT

)
. (1.24)

The conditions discussed above are only valid when the system is in thermodynamic

equilibrium. When the system is out of equilibrium, for certain conditions, detailed bal-
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ance can be broken [32]. For example, consider the adsorption of colloidal particles on

a substrate8. For such system, after particles adsorption, the time scale for desorption

is much larger than the typical experimental time scale. Therefore, the detailed balance

condition can be broken, by neglecting the desorption process, without leading to any

bias in the study.

The analytical solution of the Master equation is not a straightforward process. Two

type of obstacles are common, the definition of the proper transition probabilities, specially

for out-of-equilibrium systems, and solving the set of equations. In the next chapter we

discuss the use of Monte Carlo methods to computationally solve such equations.

1.6 Statistical-physics growth models

As stated previously, solving the deterministic equations is, usually, more than a hard

task. In fact, in most cases, it is an impossible one. Therefore, instead of following

a detailed treatment it is preferable to make coarse grain approximations leading to a

significant reduction of the number of degrees of freedom. As it is discussed in the next

section, different systems share some kind of universality [45], i.e., not all the details are

important to grasp the most relevant phenomena in the system.

The main idea in physics is to build models [46, 47, 48], as simple as possible, to

describe the physical system. Models are sets of phenomenological rules that try to grab

the fundamental properties of a system (or class of systems). Such models shall be simpler

to solve, either analytically or numerically, than the deterministic one. Despite simple,

models should not loose the relevant features. As discussed in the next chapter as well as

in the remaining of the thesis, computational approaches have a fundamental role in the

study of such models.

To develop a model for a certain system, two different points of view can be followed.

It is possible to build a model where all features, considered relevant, are included and

8The adsorption process is discussed in the context of the Part II.
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study what emerges from this set of rules, or create models through a sequence of steps.

At each step, one feature is included and the effect of such feature studied carefully. With

such methodology, it is possible to understand the relevance of each added rule.

Throughout this thesis different models are referred. Not all the models are consid-

ered with the same level of deepness. In this section we discuss two different models

related with growth phenomena: Eden and Diffusion-limited aggregation. They have his-

torical relevance in statistical physics, since are among the first ones to deal with kinetic

structures. When out-of-equilibrium aggregation is considered, the history of the system

(memory) is relevant, because the obtained structures are the kinetic ones. On the other

hand, in the thermodynamic equilibrium growth, the obtained structures are not history

dependent. These models show that out-of-equilibrium growth conditions lead to differ-

ent morphologies when compared with the ones obtained under equilibrium conditions9

[50, 51, 52, 53]. In the next section, two deposition models, Random Deposition and Bal-

listic Deposition, are introduced to discuss the concepts of Universality and Scaling. In

the next chapter, two different models are discussed: percolation model and Ising model.

The former one is a static model dealing with critical concentrations of active material

leading to connected paths that spread all over the system. The latter is related with the

interaction between magnetic spins. This is an equilibrium model, but it is important in

the field of statistical physics since it is characterized by a phase transition in 2D, has

an analytical solution presented by Onsager [54], and different systems, magnetic and

non-magnetic ones, can be mapped to such model [55, 56]. In the next part of the the-

sis, a generalized version of the random sequential adsorption model is presented. Such

model have been proved to mimic fundamental properties characterizing the irreversible

adsorption of particles on surfaces. And, in the last part, we introduce our own model to

study homoepitaxial growth of Ag/Ag(100).

9With Renormalization-Group theory, H. Gould, F. Family and H. E. Stanley, proved that equilibrium
growth and kinetic growth have different growth statistics [49].
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(a) (b)

Figure 1.1: Snapshots of Eden model. (a) Aggregate with 12 000 particles (the red sites
are the active ones). (b) Aggregate with 1 200 000 particles.

1.6.1 Eden growth model

In 1960, M. Eden has presented a model to study growth phenomena [57]. Such model,

now known as Eden growth model, is characterized by random accumulation of matter

in the interface of a cluster. It can be used to study different growth phenomena like:

growth of bacteria colony, fire propagation, and aggregation with relaxation.

In the Eden Growth model the system is initialized with an occupied site in the center.

At each iteration, one empty site in the neighborhood of an occupied one, is randomly

chosen. The state of the chosen site is converted from empty to occupied. The process

is repeated till a limiting number of iterations. Such model leads to compact clusters. In

Fig. 1.1(a) is an aggregate with 12 000 particles. The red sites are the reactive ones. By

reactive we mean that are the sites where the next particle can aggregate. In Fig. 1.1(b)

is an aggregate with 1 200 000 particles. As we can observe, the obtained structure is

compact and invariant under rotation.

Different variants of this model can be presented. For example, if the system under

study is a fire propagation, it is more accurate to select an active site with neighboring
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empty ones instead of a reactive one. This approach favors (higher probability of becoming

active) sites with more than one active neighbor.

Despite being a geometrical growth model, since the kinetics only depends on the

structure [53], the strong dependence on the history of growth, make it difficult to study

with analytical methods. Notwithstanding, its computational implementation is simple.

1.6.2 Diffusion-limited aggregation

Under out-of-equilibrium conditions, since the system does not have enough time to

relax between two different deposition events, the history becomes relevant. We now

consider the Diffusion-limited aggregation model (DLA). We intend to emphasize that

different deposition conditions lead to morphologically different structures.

According to the Diffusion-limited aggregation model, the system is initialized with

an occupied site in the center (seed). For each iteration, a particle is injected far from the

aggregate and diffuses (random walk). When the diffusing particle touch the aggregate it

sticks, irreversibly, to it and become immobile. Another particle is then injected.

In Fig. 1.2(a) is a typical aggregate obtained with this model, with 500 particles. In

Fig. 1.2(b) is an aggregate with 50 000 particles. In opposition with the Eden model, where

a compact aggregate is obtained, with DLA screening effect is observed. The aggregate is

characterized by a set of branches where screening effect is observed. The density of the

aggregate decreases with the increasing size (number of particles) [58].

With Figs. 1.1 and 1.2 it is possible to conclude that the obtained structures, with

these two different models, are fundamentally different. Once again, we stress a strong

dependence on the deposition conditions.

1.7 Scaling and universality

One of the main goals in physics is to find how to relate the variables of the system

(at least some) to obtain general rules [45]. In 1945, Guggenheim [59] showed that, when
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(a) (b)

Figure 1.2: Snapshots of Diffusion-limited aggregation (DLA) model. (a) Aggregate with
500 particles. (b) Aggregate with 50 000 particles.

T/Tc is plotted as a function of ρ/ρc, where T and ρ are, respectively, the temperature and

the density, for eight different fluids, the obtained curve is the same10. Despite different

interactions between the particles, when T and ρ are rescaled according to the respective

critical values, such differences become irrelevant [46], revealing a kind of universality

between systems with different interactions. Near the critical point, the correlation length

diverges being much larger than the interaction length scale. For such regime, the weight

of short interactions on the global behavior decreases [12, 29] and some properties become

not dependent on the interaction detail.

According to the scaling idea, thermodynamic functions, in the asymptotic limit, are

homogeneous functions of their distance to the critical point (ε) [29, 60]. If F (ε) is an

homogeneous function, then

F (µε) = g(µ)F (ε) , (1.25)

10The index c stands for the critical values, which are obtained at the critical point, where the transition
from liquid to gas occurs.
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i.e.,

F (ε) = Aεζ . (1.26)

In his paper, Guggenheim, showed that, if we make

ε = |ρ− ρc|/ρc (1.27)

and

F (ε) = |T (ε)− Tc|/Tc , (1.28)

then ζ = 1/3, i.e., different liquids have the same exponent ζ [29].

Many different systems, apparently unrelated, have shown to have similar behaviors.

The concept of universality was then introduced [61]. The group of systems sharing the

same set of exponents are members of the same universality class [32]. Studies reveal that

only few factors are relevant to the exponent [16] and that relations between exponents can

be obtained from heuristic arguments or Renormalization Group calculations [33, 62, 63].

The advantage of universality concept is that not all the systems need to be fully studied.

Instead, some conclusions obtained with a given system can be extended to other systems

from the same universality class. Therefore, complex systems can be mapped to less

complex ones, from the same class, without loss of relevant information [32, 64]. In fact,

statistical physics models, make use of universality to describe complex phenomena of the

real world, based on simplified models [46].

The first results have been obtained for equilibrium conditions, but the concept of

universality can be extended to out-of-equilibrium systems [16, 32]. To discuss the concept

of universality classes out of equilibrium we consider two different growth models: Random

Deposition (RD) and Ballistic Deposition (BD). Interesting problems related with growth

have been address by physicists [16, 32, 64, 65]. A relevant subject to account for during

the study of such systems is the use of scaling theory to study finite-size effects [63, 66].

When the system size is much larger than the correlation length, no finite-size effects

are expected to occur (no dependence on the system size). But, on the other hand, if
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Figure 1.3: Rules for the Random Deposition model.

the correlation length is much larger than the system size, as expected at the criticality

of a continuum phase transition (correlation length diverges), strong dependence on the

system size is observed [66]. Scaling functions to consider the finite-size effect are discussed

below, in the context of the Ballistic Deposition model.

1.7.1 Scaling law for the Random Deposition model

The Random Deposition (RD) model is the simplest growth model [16, 32]. Consists in

a (1+1)-dimensional model where a discrete lattice is considered as a substrate. Particles

are randomly deposited all over the lattice without any kind of lateral interaction.

Consider a linear lattice with size L, in units of the lattice parameter. For each time

step, L particles are randomly deposited. In Fig. 1.3 are summarized the deposition rules.

A snapshot of a system with L = 500 after the deposition of 500 particle layers is in

Fig. 1.4(a). Color changes for each 100 layers. It is possible to observe that the interface

roughness (noise) grows with the number of layers.

When we deal with interface properties is important to characterize the surface. Let
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Figure 1.4: (a) Snapshot for Random Deposition model on a linear lattice with size 500
after the deposition of 500 layers. Color changes for each 100 layers. (b) For Random De-
position model on a linear lattice with size 103, roughness as a function of time (measured
in terms of deposited layers). Results sampled over 103 samples.

us define h(i, t) as the height of the column i at time t. The mean height is then given by,

< h(t, L) >=

L∑
i=1

h(i, t)

L
, (1.29)

and the interface width (roughness), w, given by

w2(t, L) =< (h(i, t)− < h(t, L) >)2 >=

L∑
i=1

(h(i, t)− < h(t, L) >)2

L
. (1.30)

For the RD model the surface roughness grows with time according to a power law,

w(L, t) ∼ tβ̃ , (1.31)
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where the exponent β̃ is the growth exponent [32]. In Fig. 1.4(b) is the interface roughness

(eq. (1.30)) as a function of time for a system with L = 103. Results have been sampled

over 103 samples. The value of β̃ computed with such results is 0.500. Since the deposition

is completely random, without any local interaction, such exponent can also be analytically

obtained (see, e.g., [16]). In the lack of lateral correlations, the roughness is expected

to grow indefinitely without any saturation limit. Contrarily, in the case of the BD

model (discussed in the next section), due to the lateral interaction, finite systems are

characterized by a saturation roughness.

1.7.2 Ballistic deposition

To go ahead with the discussion of the scaling idea we use the Ballistic Deposition

model. This model is also for (1+1)-dimensional growth and have been initial proposed

to study the properties of colloidal aggregates with porous. The interest in it comes from

the lateral correlations developed during the growth process.

As in the RD, the substrate is considered to be a linear lattice with size L in units

of lattice constants. At each step, L iterations are performed. An iteration consists in

randomly chose a column and release a particle at the top of the chosen column (far from

the substrate). The released particle falls straight into the surface and aggregates as soon

as it finds a neighboring occupied site. In Fig. 1.5 are summarized the deposition rules.

In Fig. 1.6(a) is a snapshot of a system with L = 500 after the deposition of 500 layers.

Color changes for each 100 layers. When compared with the RD model (see Fig. 1.4(a)),

we observe that, due to the lateral interactions, for BD model, porous are obtained during

film growth. Therefore, the density of the film is expected to be lower. With the color

scheme is also possible to observe that, the growth of the roughness with the number of

deposited layers is weaker in BD model than in RD model. In the Ballistic Deposition

model, any contribution to the roughness due to a fluctuation in the height of a given

column, can be smoothed out by particles deposited on neighboring columns.

In Fig. 1.6(b) is the roughness as a function of time for a system size of 4096 lattice sites.
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Figure 1.5: Rules for the Ballistic Deposition model.

Such function is characterized by three different regimes. A first regime, characterized

by uncorrelated deposition of particles in the substrate, where the growth exponent, β̃,

is 1/2, as expected for the Random Deposition (see previous section). A second regime,

where a competition occurs between the noise (deposition) and the relaxation. If, due to

fluctuations, a column grows more than the neighboring ones, the increase in the roughness

is smeared by particles aggregation at neighboring sites. Such regime is characterized

by β̃ = 1/3. The third regime is characterized by a saturation value of the interface

roughness. The system “gets to know” that is inside a box and, due to the system finite

size, a saturation roughness, wsat, is attained. The latter regime is a finite size effect,

therefore, for the infinite system, such regime is not present.

For the purpose of this section we focus on the second and the third regime. The

transition between this two regimes occur for t = t×, where t× is the crossover time. If

the third regime occurs due to the finite size of the system, both the saturation roughness,

wsat, and the crossover time, t×, are expected to scale with the system size. In Fig. 1.6(c)

the saturation roughness scales as,

wsat(L) ∼ Lα̃ (1.32)

where α̃ is the roughness exponent, equal to 1/2. In Fig. 1.6(d) the crossover time scales
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Figure 1.6: (a) Snapshot for Ballistic Deposition model on a linear lattice with size 500 af-
ter the deposition of 500 layers. Color changes for each 100 layers. (b) Interface roughness
as a function of time for a system size of 4096. (c) Saturation roughness as a function of
system size. (d) Crossover time as a function of system size. All the results were averaged
over 104 samples.
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as,

t×(L) ∼ Lz (1.33)

where z is the dynamic exponent, equal to 2/3. The dependence of such exponents on

the system size was studied recently (see e.g., [67]).

It is also interesting to find scaling laws between exponents. According to eq. (1.31),

at the crossover time, w(L, t×) ∼ tβ̃×. However, according to eq. (1.32), wsat(L) ∼ Lα̃.

Since, w(L, t×) = wsat(L), we conclude that,

z =
α̃

β̃
. (1.34)

Back again to the roughness as a function of time (see Fig. 1.6(b)), the obtained curve,

for different system sizes, are qualitative similar, but the transition between different

regimes occurs for different values of crossover time and, therefore, for different values of

saturation roughness. A scaling function f can, then, be defined such that

w(L, t)

wsat(L)
∼ f

(
t

t×

)
. (1.35)

On that ground, according to eqs. 1.32 and 1.33,

w(L, t) ∼ Lα̃f

(
t

Lz

)
. (1.36)

The scaling function obtained for different system sizes is in Fig. 1.7.

The Ballistic Deposition model belongs to the Kardar-Parisi-Zhang (KPZ) universality

class [68]. It is interesting to note that, despite apparently different, the Eden model

belongs to the same universality class. The KPZ class is characterized by the following

set of exponents,

α̃ = 1/2 , β̃ = 1/3 , and z = 2/3 . (1.37)

The bottom line of the present chapter is that, for most systems, with many degrees of
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Figure 1.7: Plot of the scaling function for different values of system size.

freedom, the statistical description is the meaningful one. Therefore, stochastic variables

need to be defined to reduce the number of degrees of freedom in the problem. Recall

also that, it is possible to build simplified models to mimic the behavior of more complex

systems from the same universality class. In the next chapter, we discuss the use of

computational methods to study such systems.





Chapter 2

Computational methods in statistical

physics

“The basic theorem of interdisciplinary research states:
physicists not only know everything, they know every-
thing better. This theorem is wrong, it is valid only for
computational statistical physicists like me.”

D. Stauffer, in Introduction to statistical physics
outside physics.

As discussed in the previous chapter, the study of systems with many particles inter-

acting with each other is a far-from-easy task. To understand a system, it is important

to analyze how each factor, or set of factors, affects the global behavior. Therefore, it is

necessary to fix all the variables in the system (named controlled variables) and change

only the one that we intend to characterize the relevance.

For centuries, physicists follow two different approaches to study Nature: experiments

and theory. The experimental approach consists in the observation of phenomena in

the field or under controlled experimental conditions. The main obstacle is related with

the control of all the parameters that affect the system behavior. On the other hand,

when theoretical approaches are considered, simple models are developed to study a given

33
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system (see previous chapter). Such methodology allows, in principle, to control all system

parameters.

Only a small fraction of theoretical models have been solved analytically [69], the

Achilles’ heel of analytical methods is their limitation to oversimplified models. With the

electronic computer, came the possibility of making more instruction per unit of time

than the human, pencil and paper, capability. Therefore new doors have been opened

for the scientific research, not only being able to bridge between theory and experiment,

through the resolution of equations obtained with analytical techniques, but also giving

the opportunity to study Nature through more complex models where oversimplification

is avoided. In fact, simulation has become a source of interesting problems in science

[16, 56].

David P. Landau and Kurt Binder [56] summarize the role of simulation in research

with the triangle schematized in Fig. 2.1. In the vertices of the triangle are the three

methodologies: theory, experiment, and simulations, and in the center the object of study,

Nature. Simulation can be used to test models, previously developed by theory, and

to compare the obtained results with the experimental ones, paving the way between

theory and experiment. Through it, it is also possible to directly analyze Nature and give

information to guide experiments and theoretical models. It plays also a relevant role in

the development of such models, since parameters can be tuned like, e.g., the interaction

energy or the rate of each process, to fit experimental results1 [70].

Since the advent of the electronic computer, many techniques have been developed to

study natural phenomena. Based on the type of problem under study, it is important

to define what are the time and length scales where the relevant processes occur. It is

such definition which determines the necessary level of detail and, consequently, the most

tailored technique to carry out the analysis. Therefore, models and techniques shall be

optimized according to the problem at hand.

Since different physical phenomena occur at different time and length scales, Bris-

1The use of simulation to test and redefine a theoretical model can become a tricky task since, in
principle, it is always possible to fit the model to a given experimental result.
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Figure 2.1: Relationship between theory, experiment, and computer simulations. From
David P. Landau and Kurt Binder. [56]

towe and Hasnip [47, 71], hierarchize the modeling methods into four different regimes:

electronic, atomic, microstructural, and continuum. Such regimes are addressed in the

following paragraphs.

The electronic regime methods [72] are typically devoted to the resolution of the quan-

tum equation, i.e., Schrödinger equation. With such methods, it is possible to study

properties like, e.g., the atomic equilibrium positions, the configuration energy, the band

structure, the density of states, and the charge distribution. Inside the electronic regime,

the most well known techniques are the Density-Functional Theory (DFT) and the Quan-

tum Monte Carlo (QMC). Another relevant technique is related with the coupling of

electronic description, obtained through DFT, with the classical description of atomic

motion characteristic of the Molecular Dynamics method. Such approach is named Car-

Parrinello Molecular Dynamics, after the authors who first worked on it, R. Car and M.

Parrinello [73]. The level of detail needed to study the electronic regime limits the feasible

system sizes to several hundred atoms.

Methods classified in the atomic regime [70, 74, 75, 76, 77], are related with the analysis

of phenomena like atomic motion, formation of defects, diffusion, and phase transitions.

Therefore, properties like diffusion paths and correlation functions need to be measured,
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which requires time scales larger than the ones allowed by electronic description. To reduce

the computational effort, instead of explicitly consider all the quantum phenomena, it is

preferable to neglect them and use semi-empirical interatomic potentials to account for

the interaction between particles. Such potentials can be parametrized to fit previously

measured experimental results. Once defined the interatomic potential, the description

of atomic motion can be done through the resolution of the Newton equations of motion,

through a technique known as Molecular Dynamics [70, 76]. Another possible approach

is to build models with phenomenological rules where the effect of quantum interactions

is considered. Doing so, a stochastic description of the system is attempted. The method

tailored for such description is the Monte Carlo method [55]. Since the expensive task of

electronic properties calculation is avoided, it is possible to consider up-to a billion atoms.

For certain problems instead of attempting an atomistic description is preferable to

consider the behavior of sets of atoms. The regime where a set of atoms is considered is

denoted as microstructural regime. The system is divided into domains where physical

quantities assume the same value inside each one and are limited to a set of possible val-

ues/states (based on“cellular automata”). The evolution of each one follows an interaction

dynamics or rule. The Ising Monte Carlo model [56], considered later in this chapter is

an example of such regime. With such coarse grain approach thousands of domains can

be considered.

Phenomena like elastic properties and heat conduction, within certain limits, can be

studied through a continuum approximation. In the continuum regime, instead of account

for a description of the individual elements of the system, all the system is considered as a

continuum. Differential equations are solved to describe the system behavior. Typically,

to solve such equations, the system is discretized with a mesh cell and the equations are

solved for each one (with boundary conditions). The mesh cell is created in such a way

that, the density of cells can increase around areas of particular importance. Examples of

this set of methods are the finite elements and the finite difference methods.

More recently [47], multiscale modeling has been considered to describe systems where
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relevant phenomena occur at different time and length scales. The idea is to use different

methods to solve problems at different scales. For example, it is possible to use electronic

methods to compute forces at a certain region of a material and treat the remaining parts

with continuum methods. The big challenge of multiscale modeling is related with the

choice of the best way to proceed in the interface between different techniques.

Nonetheless, the algorithm to implement a given model is also relevant. It needs

to be as efficient as possible [48]. In the history of computer simulations, development

of algorithms has been playing a more relevant role than the computer power evolution

[56]. The strategy consists in diminish, as much as possible, the number of “irrelevant”

instructions leading to a significant reduction in the required computer effort.

In the present chapter we focus the discussion on the Monte Carlo method. Special

attention is devoted to this method since it is the one used intensively in the remaining

of the thesis. During the discussion we try to emphasize relevant aspects of simulation in

Statistical Physics like the influence of the system size and of the number of samples.

2.1 The Monte Carlo method

A probabilistic description of a system is, not only more practical, but also the most

accurate way to treat systems with interaction between different degrees of freedom. This

type of systems are stochastic in nature, meaning that the effect of certain degrees of

freedom shall be analyzed as stochastic variables whose the output follows a particular

probability distribution. Monte Carlo (MC) methods, related with the use of a random

number generator2, are the computational techniques fitted to make such probabilistic

description [55].

In 1945, close to the end of the World War II, at the Los Alamos National Labora-

tory, Nicholas Metropolis and co-workers [78], under the consulting of John von Neumann,

started to work on a method suitable to the, under development, first electronic computer,

2Formally, since a deterministic algorithm is used to generate “random” numbers, such generator is
denoted pseudo random.
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named ENIAC. Later, Stanislaw Ulam joined the group [78, 79], and proposed the devel-

opment of a technique based on statistical sampling. Such methodology was unpopular,

at that time, due to the boring task of its calculations. But, with the advent of electronic

computer, such long and tedious operations could be done, in a straight manner by it.

In 1949, Metropolis and Ulam [80], published a paper where the “new” method was

introduced and coined as Monte Carlo (MC) method. The method is named after the

Monte Carlo city in the Principality of Monaco. This connection is related with the

casino activity that makes such city famous. But even before that, under the name of

statistical sampling, the basic principles of MC method were known. Already in the

eighteenth century, a French mathematician, named Georges-Louis Leclerc, Comte de

Buffon, proposed that the value of π could be estimated by randomly throwing needles

to a ground with, equally separated, parallel lines [48].

Hammersley and Handscomb [81] split the applications of the MC techniques into

probabilistic and deterministic problems. The former are mainly devoted to the study of

stochastic processes, which are problems, intrinsically, random. In the latter case, when,

despite being deterministic, the theory is not able to solve the problem, MC can be used to

obtain a numerical approach. An example of such, is the use of MC to compute integrals.

The technique proved to have special relevance for high dimensional integrals [48, 55].

This set of techniques is, usually, named Monte Carlo Integration [74].

The use of MC techniques to study stochastic systems can be of two different types [48,

74]: direct or based on Markov-chain Monte Carlo. In the former, a direct implementation

of the model is performed with uncorrelated configurations. In the latter, configurations

are generated according to a Markov-chain, i.e., each new configuration is obtained from

the previous one. These two types of generating samples are discussed below.

In the present section, we focus on the use of MC method to study stochastic systems.

The main idea is to generate different configurations and compute the average of system

properties. The challenge of generating samples according to the proper distribution is

discussed in the context of the next subsection.
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2.1.1 Standard Monte Carlo

As stated previously, the main idea of MC is to generate different configurations aiming

to compute the mean value and distribution of certain properties (observables) on the

phase space. Consider a given observable (a phase function, see Chapter 1), O(t). If we

intend to analyze what is the mean value of such observable in the phase space, we need

to compute the following integral,

< O(t) >=

∫
O( ~X, t)ρ( ~X, t)d ~X∫

ρ( ~X, t)d ~X
. (2.1)

Since it is impossible to directly evaluate the integral, the idea of MC method is to

approach such integral by a summation [48],

< O(t) >≈ 1

N

N∑
i=1

Oi(t) , (2.2)

where N is the total number of analyzed configurations. For a large value of N the

summation (2.2) converges to the integral (2.1).

To compute the average value of a given observable with the summation referred above,

it is important to generate samples with the proper weight. Therefore, the MC technique

consists in randomly generate configurations in the phase space, according to a given

distribution. A set of random numbers is obtained and used as inputs to further logical

operations [70], which makes the method suitable to study stochastic systems through

computer simulations.

The proposed sampling techniques can be divided into two different groups: the simple

sampling and the importance sampling. Below, both methodologies are discussed. Simple

sampling in the context of the percolation model and importance sampling in the context

of the Ising model.
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p < pc p ≈ pc p > pc

Figure 2.2: Snapshots of percolation model for a square lattice with 4 million lattice sites:
before, near, and above the percolation threshold.

Simple sampling: the percolation model

One interesting problem that have called the attention of physicists is the diffusion

of liquids in porous medium. Such problem can be addressed through the well known

percolation model [82]. Other systems can also be studied with this model like, e.g.,

the fraction of porous leading to connectivity or the critical concentration of conductive

material necessary for conduction. The interest in the percolation model [83] is related

with its critical behavior and long-range correlations near criticality.

Consider a square lattice with linear size L (L2 unit cells). Each lattice site is occupied

with probability p and, consequently, empty with probability 1 − p. What is the critical

value of such probability, p = pc, leading to a connected cluster which spans the entire

lattice? [56]

In Fig. 2.2 are snapshots of a square lattice with 4 million lattice sites, for three different

values of occupation probability: before, near, and above the percolation threshold. With

such set of snapshots it is possible to conclude that the percolation cluster, near criticality,

is a non-compact cluster.

The main goal of percolation theory is to identify the percolation threshold. Each

possible configuration of the lattice has exactly the same probability, therefore, the easiest
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Figure 2.3: Fraction of samples with percolation clusters (fp) as a function of occupation
probability, p, for different linear system sizes, L, namely, 1024, 2048, 4096, and 8192.
Results average over 104 samples.

way is to generate different samples (configurations) where each site is occupied with

probability p and compute the fraction of configurations with a percolation cluster3, fp.

Doing so, for different values of p, it is possible to estimate pc. Formally, the procedure

consists on computing the summation (2.2) where the observable can take two different

values. It is equal to one when a percolation cluster exist and zero otherwise.

In Fig. 2.3 are the fraction of configurations with a percolation cluster, fp, for different

system sizes. Results have been averaged over 104 samples. With these results we observe

that even a simple model like this develops a strong dependence on the system size. So,

it is always important to analyze how the system behaves with the size.

The described sampling technique, where different samples are generated in an un-

correlated way, is named simple sampling. As discussed below, for many systems, this is

not the proper way of sampling in an efficient manner like, e.g., when different samples

have not the same weight to the average, i.e., different configurations occur with different

probabilities.

3Clusters can be identified with the Hoshen-Kopelman algorithm [84].
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Importance sampling: the Ising model

Recall, from the previous chapter, that according to a fundamental principle of Sta-

tistical Physics, for an isolated system, in equilibrium, all the accessible states occur with

equal probability. For such systems, the simple sampling technique described above is

able to do the job. Samples are generated in an uncorrelated way, with equal probability

for each one. However, for certain problems, like a system in contact with a heat reser-

voir, the probability of each configuration depends on its total energy. Therefore, different

configurations occur with different probabilities. Another sampling technique is then re-

quired. To discuss further this topic consider the, well known, Ising model. Despite being

an equilibrium model, it is taken here as an example, to discuss importance sampling, due

to its relevance in the field of equilibrium statistical physics.

Consider a system with spins interacting according to the following Hamiltonian,

H = −
∑
i,j

Jijσiσj −H
∑
i

σi , (2.3)

where σi and σj are the spins and can take the values ±1. Jij is related with the strength

of the exchange interaction between spin i and spin j and H is the external field. Since

interaction between spins decreases with the distance let us consider the summation {i, j}

only over the first neighbors [2]. For the propose of this section, let us take, also, the

simplest case of zero field, i.e., H = 0.

Different values of Jij lead to different types of interactions [2]. For Jij > 0, the

interaction energy is lower when the spins are aligned (parallel). This interaction is

coined ferromagnetic interaction. On the other hand, for Jij < 0 the interaction energy

is lower when the spins are antiparallel, named antiferromagnetic interaction. In the

noninteracting case, Jij = 0.

If a ferromagnetic system is in equilibrium with a heat reservoir, at temperature T

(canonical system), according to the Hamiltonian (2.3), it is possible to predict that, for

values of the temperature such that, the thermal energy is much lower than the interaction
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T < Tc T ≈ Tc T > Tc

Figure 2.4: Snapshots of the equilibrium configuration for the Ising model: below, near,
and above the critical temperature. System with 250 thousand spins interacting according
to the Hamiltonian of eq. (2.3). Obtained after L2 Monte Carlo steps.

energy, the equilibrium configuration of this system is characterized by aligned spins.

However, as the temperature rises, the thermal energy becomes dominant and the strength

of the interaction insignificant. The system is then characterized by random spins. Such

transition occurs for a given critical temperature, Tc.

In Fig. 2.4 are snapshots of typical configurations obtained with the Ising model.

Three different temperatures are considered: below, near, and above the critical temper-

ature. Snapshots were obtained for a system size of 250 thousand spins, organized in a

square lattice, and after 250 thousand Monte Carlo steps. We remark that, below the

critical temperature spins are mainly aligned, since it corresponds to the configuration

with the minimal energy. Near the critical temperature, large domains of aligned spins

are obtained. Such domains span all over the system. Above the critical temperature, as

temperature increases, the thermal energy leads to noise in the system and cooperative

effects are not observed.

The Ising model, named after Ernst Ising, who has studied it, in 1924, in the context

of his PhD thesis, was first proposed by Wilhelm Lenz4, in 1920. The model called the

attention of physicists due to its phase transition, occurring at d = 2 (not observed at

4Wilhelm Lenz was professor of Ernst Ising at the University of Hamburg.
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d = 1), and played a relevant role in the development of statistical physics techniques. In

1944, L. Onsager [54] has proposed an analytical solution for this model, for d = 2, that

allows to identify the critical temperature at which the transition occurs.

In principle, the Ising model could be sampled with simple sampling technique. Since

different configurations have different weights for the summation (2.2), when simple sam-

pling is considered, each contribution needs to be weighted accordingly. For a system in

contact with a heat reservoir, such contribution is given by the Boltzmann factor,

ρ( ~X, t) ∼ exp

(
−H( ~X, t)

kBT

)
. (2.4)

However, an uniform random generation of configurations can imply a huge number of

samples to converge the summation (2.2) to the integral (2.1).

Consider a square lattice with 2 × 2 Ising spins with periodic boundary conditions.

The total number of possible configurations is 24 = 16. In Table 2.1 are summarized the

six different groups of configurations, the fraction of the total configurations belonging to

each group, and the Boltzmann factor. Configurations can be divided into six different

groups. In fact, due to the up-down symmetry the first group is equivalent to the last

one and the second group is equivalent to the fourth one. If samples are generated in

an uncorrelated way, like with the simple sampling technique, the configurations which

contribute most to the summation (greater Boltzmann factor) are the ones with lower

probability of being generated. Therefore, a different sampling technique is needed. Note

that, at high temperature, all the Boltzmann factors converge to 1, which means, almost,

equal probability for all configurations, and, consequently, the simple sampling can keep

doing a good job.

The idea is to randomly generate configurations according to a distribution that allows

to concentrate the evaluation of the function in the region where the contribution to the

integral is more important [70]. If we consider the system Markovian, i.e., without memory

from its past, as expected for an equilibrium model, the evolution of the system can be
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Table 2.1: Scheme of all possible configurations in a 2×2 square lattice of Ising spins. For
such system 24 = 16 different configurations are possible. For each scheme is the fraction of
configurations as well as the Boltzmann factor obtained by considering periodic boundary

conditions and an exchange interaction J . The parameter γT is defined as exp
(

J
kBT

)
.

Scheme

fraction 1
16

4
16

2
16

4
16

4
16

1
16

Boltzmann
factor

γ16
T 1 γ−16

T 1 1 γ16
T

described by a Markov-chain based on the Master equation (see eq. (1.19), from previous

chapter, and respective discussion). The Master equation is then,

d

dt
Ps(t) =

∑
r

WrsPr(t)−
∑
r

WsrPs(t) . (2.5)

Recall that Ps(t) is the population of the state s and Wrs the transition probability from

state r to state s. According to the detailed balance condition, for a system in equilibrium

with a thermal reservoir,
Wrs

Wsr

= exp

(
−Er − Es

kBT

)
, (2.6)

which is the eq. (1.24) from previous chapter. In 1953, N. Metropolis and co-workers

[85], proposed the following set of transition rates, leading to what is now known as the

Metropolis algorithm,

Wij = exp

(
−∆E

kBT

)
(2.7)

Wji = 1 (2.8)
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where ∆E = Ej − Ei and Ej ≥ Ei. At this point, it is important to stress that the

stochastic trajectory, obtained through the Master equation, with this set of transition

rates, does not describe properly the time evolution of the physical system [56, 86, 87].

Recall that our intention is to compute the equilibrium properties of the Ising model and

not to characterize the evolution toward equilibrium. Since detailed balance is taken,

we only guarantee that the relative weight between configurations is respected. As it is

discussed forward, for the proper time description of the system evolution, other transition

rates are required.

To apply Metropolis algorithm to the Ising model, for each iteration a spin is chosen

randomly. The value of the difference in energy, ∆E, for the spin-flip possibility, is

measured. If a spin-flip leads to a decrease in the total energy, ∆E < 0, the transition is

accepted with probability 1. Otherwise, if ∆E ≥ 0 the transition occurs with a probability

obtained with Wij in (2.7). A random number, Yp, is generated uniformly between 0 and

1 and the transition is accepted if the generated number is lower than the probability, this

is

Yp < Wij . (2.9)

Time is incremented by 1/L2, where L2 is the total number of spins in the system. The

time unit is the Monte Carlo step (MCS).

With Metropolis algorithm, for the purpose of loosing memory from the initial config-

uration, a significant number of “warm-up” iterations need to be performed before starting

with the measurements. The first set of steps drags the system to the equilibrium con-

figuration and the following ones describe the fluctuations around equilibrium. Enough

time (number of iterations) between different measurements shall be given to avoid cor-

relations. After a MCS, L2 iterations occur but that does not mean that all the spins

were tested for flipping. There is always a correlation between consecutive configurations.

A correlation time can be measured which gives the typical time of correlation between

states.

It is also important to note that, at high temperature, Wij → Wji = 1. Therefore,
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for each Monte Carlo step all the L2 spins tested for flipping are changed which means

that Metropolis algorithm becomes non-ergodic, since not all possible configurations are

accessible and the obtained ones are strongly correlated with the previous states.

Another problem with the implementation of the Ising model is related with the tran-

sition probabilities at low temperature. According to the Boltzmann factor (2.4), for

low values of temperature, the transition probabilities are low. Therefore, following the

methodology described above, most transitions are rejected. In 1975, Bortz and co-workers

[88], proposed a different algorithm to avoid such computational bottleneck. Below, we

discuss such algorithm as well as the methodologies to properly describe the time evolution

of the system.

2.1.2 Kinetic Monte Carlo

In the standard Monte Carlo method, with Metropolis algorithm, the number of re-

jected transitions increases both with the decrease of the temperature and approach to

equilibrium [56]. Besides, the stochastic trajectories obtained through the resolution of

the Master equation, with the transition rates (2.7) and (2.8), do not properly describe

the time evolution of the system [86, 87, 89]. In the present section we intend to address

these two problems.

Aware of the former problem, in 1975, Bortz, Kalos, and Lebowitz [88], proposed a

new, rejection free, algorithm for the simulation of Ising spins. The algorithm is coined

N -fold way since sites are classified into N different classes, based on their transition

probabilities. Each class corresponds to a possible process. For each iteration, the number

Qi is computed for each possible transition, such that,

Qi =
i∑

j=1

njWj , (2.10)

where nj is the number of spins in class j and Wj the transition rate of such process. A
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random number Yp is generated and the next transition i is picked, such that,

Qi−1 ≤ Yp < Qi . (2.11)

With the present algorithm, all the trials are accepted, no rejection occurs, leading to an

increase in the algorithm efficiency.

To obtain the same stochastic trajectory and time evolution of the standard method,

time needs to be incremented in the appropriate way. Consider the time increment ∆t.

Let us also define P (∆t) as the probability of no transition in the interval ∆t after the

previous transition. The probability of having a transition in the interval dt is Rdt, where

R is the total rate of events, obtained from,

R =
N∑
i=1

niWi . (2.12)

The probability of transition in the interval [∆t,∆t+ dt] is proportional to the probability

of no transition during ∆t, P (∆t), and the probability of transition in the interval dt.

Therefore, the probability of no transition in ∆t+ dt is given by

P (∆t+ dt) = P (∆t)− P (∆t)Rdt . (2.13)

Solving the equation above, we obtain,

P (∆t) = exp (−R∆t) , (2.14)

and so,

∆t = − 1

R
ln (1− Yt) , (2.15)

where Yt is a random number, uniformly distributed, in the interval [0, 1[.

The second problem referred above is related with the description of the time evolution.

Solving the Master equation with the transition rates proposed by Metropolis, does not
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describe properly the system time evolution [86, 87, 89]. Recall that the obtained rates

were computed from the detailed balance and the distribution of states in equilibrium,

given by the Boltzmann distribution. Consequently, such rates only guarantee the proper

weight for each configuration in equilibrium. It is common to, wrongly, associate the

Monte Carlo steps with the enhanced time between transitions in the “real” system [89].

Such consideration is far from realistic, since the transition rates, from Metropolis method,

only guarantee that detailed balance is respected. When equilibrium is considered, the

main goal is to compute averages over the phase space, i.e., as far as the right weight

for each sample is taken, the sequence of events is not relevant. In fact, as explained

before, the algorithm shall be able to converge to the equilibrium configuration with

the minimum number of iterations. However, as discussed with different models in the

previous chapter like, e.g., Diffusion-limited aggregation and Eden growth model, out-

of-equilibrium structures can only be understood through a study of the system kinetic

evolution. The obtained configurations are no longer the ones with lower thermodynamic

energy, named, thermodynamic configurations but, instead, the kinetic ones. A proper

description of the time evolution is required to understand the obtained kinetically trapped

structures. It is important to develop methods able to follow the time evolution of the

system. The set of Monte Carlo methods where time evolution is relevant are coined

kinetic Monte Carlo methods5.

The algorithm proposed by Bortz and co-workers is tailored to study kinetic evolu-

tion, regarding that the proper set of transition rates is considered. Selecting the proper

transition rates to describe the time evolution of the system under study becomes the

main challenge during model development. Let us start by considering the simplest case

of systems with only one process (N = 1). As examples, we have models of deposition

without relaxation like Diffusion-limited aggregation, Ballistic Deposition, and Random

Sequential Adsorption. Since only one process occurs (deposition), it is possible to mea-

sure the time in units of particles arriving to the substrate (deposited ones) and relate

5In the literature, specially in the field of chemistry, is also common to find the designation of Dynamic
Monte Carlo methods [90].
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with physical time through the flux of deposition since, by definition, the flux of deposition

is the number of particles arriving to the substrate, per unit time, per unit area.

When more than one process is consider the accurate transition rates becomes a non-

trivial issue. Two different methodologies can be followed. A more heuristic one, consist-

ing on the use of phenomenological arguments to tune the transition rates to fit experi-

mental results. Another possibility is to compute the activation energy of each possible

transition and respective attempt frequency and, subsequently, use such values to compute

the transition rates with harmonic Transition State theory [91]. The activation energy

can be computed with different methods, for example: regular Molecular Dynamics with

saddle search methods [92, 93, 94, 95], first principles with Density Functional Theory

(DFT) [96], and empirical potentials methods like embedded atom (EAM) [39, 40, 97].

To compute the attempt frequency the Vineyard method can be used [98]. We would like

to stress that, more important than consider the proper transition rate is to consider the

right relation between rates.

One interesting example, addressed in the present thesis, is the island nucleation and

growth on crystalline substrates. Atoms are deposited on the substrate with a flux F

and are able to diffuse in the substrate. If the activation barrier Ea of diffusive processes

is known and much higher than the thermal energy, kBT , since diffusion is a thermal

activated process, transition rates can be computed with Arrhenius equation (as explained

in the previous chapter) [75, 99]. In Chapter 5, the problem of nucleation and growth of

islands is discussed in detail and studied with a kinetic Monte Carlo model.

Chatterjee and Vlachos [90] presented five main challenges during the implementation

of the kinetic Monte Carlo method. The first is related with building the catalog of all

possible processes since, typically, such list is created in advance. The second is the search

and update in the data structure, specifically, when algorithms, like the one proposed by

Bortz and co-workers, are applied, hash-table-type data structure is the proper way of

dealing with the categorization of processes. As much as possible, update shall be local

and not global. The third is the separation of length scales, as explained previously, in
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the context of the Ballistic Deposition model, considering periodic boundary conditions

is not enough to avoid finite-size effects. Considered system sizes shall be larger than the

length scale of the relevant phenomena. Another challenge is the separation of time scales.

Being able to differ the “fast” from the rare events can improve the method. Finally, the

last challenge is related with the asynchronous dynamics of the method. Considering that

one event occurs at a time (no two events occurs simultaneously), becomes a bottleneck

to the implementation. An approximation method have been proposed by Gillespie [100],

the τ -leap method, were multiple transitions occur in parallel by considering that a single

transition does not change, significantly, the population of each class of processes. There

are also some effort to avoid such problem through parallel versions of the kinetic Monte

Carlo method [101, 102]. Forward, from these five challenges we address two: the catalog

of all processes and the separation of time scales.

Building the list of possible transitions in the system, implies an a priori knowledge of

them all. If not all transitions are known, it is important, at least, to consider the relevant

ones to describe the system dynamics. As it is discussed in Chapter 5, kinetic Monte Carlo

with a list of possible transitions defined in advance, has shown to be able to describe

interesting phenomena. But, on the other hand, recent works (like, e.g., [103, 104]) state

that, for certain systems, concerted moves, involving more than one particle, play an

important role in the system dynamics. Therefore, considering a static list of processes

can become a pitfall, when kinetic Monte Carlo is used. To avoid such difficulty, new

methods have been developed to build such list on-the-fly [75]. Henkelman and Jónsson

[104], proposed the use of dimer method [92] to search saddle points in the neighborhood

of a given state. Transition rates can then be estimated with harmonic Transition State

Theory and time evolution simulated according to kinetic Monte Carlo method. Trushin

et al. [105] presented a self-learning kinetic Monte Carlo method where, every time a new

configuration is found, all the possible transitions are listed, through saddle-point search

procedures, and included to a database of possible configurations and transitions. This

way, such database is no longer static and defined a priori, but built during the simulation



52 2.1. The Monte Carlo method

run. Other techniques have been also developed based on Molecular Dynamics method,

but are beyond the scope of this thesis [75, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114].

The other challenge that we want to address is related with the existence of different

time scales of processes occurring on the substrate. When the difference between the low-

est and the highest energy barrier is significant, the system perform a significant number

of “fast” processes (the one with low energy barrier) before a rare event occur (highest

barrier). Typically, the interesting phenomena are due to these rare events, meaning that

methodologies to by-pass “fast” transitions, without any bias, are required. The proposed

methods to overtake this obstacle are more problem oriented. According to the specificity

of the problem in hand, some techniques can be applied, e.g., Opplestrup et al. [115] pre-

sented a kinetic Monte Carlo algorithm for diffusion simulations where space is divided

in “protective domains”, each one with one particle, and through first-passage arguments,

particles are allowed to diffuse to the boundaries of such domains in a single iteration.

Other methods have been also proposed by Novotny, see ref. [116].

As discussed through the present chapter, many computational techniques have been

developed. Each one has its own strong and weak arguments. There is no universal

method able to solve all possible problems. More important than just start writing codes

and implement models, is important to stop, think, and analyze the level of detail, the

relevant time and length scales, and then choose the proper method or set of methods.
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Micro- to Nano-Scale





Chapter 3

Competitive adsorption on a line

“Entities should not be multiplied unnecessarily.”

Occam’s razor from William of Occam, in
Merriam-Webster’s Online Dictionary

From the first papers by Flory [117], on the adsorption of dimers on a lattice, and

by Rényi [118, 119, 120] on the adsorption of segments on a line, the Random Sequen-

tial Adsorption (RSA) model has become a paradigm for the study of phenomena from

physical chemistry, biology, ecology, and sociology [121, 122, 123, 124, 125, 126, 127, 128].

This part of the thesis is devoted to the use of the RSA model to study the adsorption

of a binary mixture of segments on a line (present chapter) and the effect of a patterned

substrate on the adsorption of particles on a surface (next chapter).

The RSA model was also known as car parking problem, since it has been discussed,

many times, in the context of parking lots efficiency. However, recent results report

that the distribution of distances between particles, obtained with the model, differs,

qualitatively, from the typical distribution between parked cars [129]. In the present

thesis we discuss the model in the context of adsorption, usually related with proteins

and submicron colloidal particles [130]. Notwithstanding, the results can be extended,

more or less straightforwardly, to different systems, where the model has been able to
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grab interesting phenomena.

In the context of adsorption, different versions of the model have been considered

like, e.g., the cooperative sequential adsorption, with adsorption rates dependent on the

local environment [121], inclusion of relaxation mechanisms such as detachment [131, 132]

and diffusion [133, 134], and multi-layer deposition [135, 136]. More recently, extended

versions were considered where particles, after being adsorbed, can shrink or expand

[137]. In the present chapter we address the adsorption of particles with different sizes.

In fact, in the last 15 years, interest as shifted towards such problem. Research efforts

have focused on the study of binary mixtures (two different sizes) of particles undergoing

either competitive adsorption or preadsorption. Regarding the latter case, particles adsorb

during two subsequent stages with a single particle species attempting adsorption at a time

[138, 139, 140, 141]. For competitive adsorption both particle species attempt adsorption

simultaneously [142, 143, 144, 145, 146, 147].

Our attention was drawn by some controversial results in the literature about competi-

tive adsorption. Bonnier [143], in 2001, for adsorption on a line, reported a lower coverage

efficiency for competitive adsorption than for adsorption of segments with single size. On

the other hand, in 2002, Hassan and co-workers [145], reported that coverage is larger for

binary mixture than for single size adsorption. In the present work we not only address

the question above as, we also characterize the jammed-state structure of the obtained

film for different values of size ratio.

Despite its illusory simplicity, the one-dimensional version of the RSA model is a

source of interesting results [127]. In truth, some properties are independent of spatial

dimensionality like, e.g., the existence of a jamming limit, as well as the asymptotic

approach to it, and the short-range correlations between adsorbed particles. Besides, the

1D RSA is also amenable for exact treatment [117, 118, 119, 120, 142, 143, 145, 148, 149]

since, due to the excluded volume interaction between particles, an empty interval smaller

than the minimum particle size, separates the substrate into two disconnected regions

where the kinetics of adsorption can be decoupled (shielding effect) [121].
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In this chapter we study the competitive adsorption of a binary mixture of segments on

a line. Specifically, through extensive Monte Carlo simulations, we analyze the influence

of the aspect ratio between the two types of segments in the jammed-state structure. We

compute the gap-size distribution function to characterize the interparticle distance and

we study the dependence on the size ratio of the first four cumulants of the distance.

Since the third and fourth cumulants are straightforwardly related to the skewness and

kurtosis, we actually use the latter quantities. Despite our model being one dimensional,

our analysis can serve as a guide to interpret and/or compare with similar results at

higher dimensions. We also propose a truncated exponential function for the gap-size

distribution at the jammed state and compute its parameters from the first moment of

the distance. Afterwards, we compute the first four cumulants and, consequently, the

skewness and the kurtosis. We report a good qualitative agreement with the Monte Carlo

simulational results.

We start with a brief introduction of the model followed by some relevant definitions

and relations. In Sec. 3.3 the Monte Carlo simulations are presented with a brief explana-

tion of the implemented algorithm. Then, the gap-size distribution function is discussed in

the context of the obtained results, with both computer simulations and with the proposed

function.

3.1 Model

The competitive adsorption, on a line, of a binary mixture of segments is considered.

A binary mixture is made up of segments with two different sizes: segments A with the

smallest size and segments B with the largest one. The only kind of interaction between

particles attempting adsorption is the excluded volume interaction: an adsorbing particle

cannot overlap an adsorbed one. Such interaction mimics a short-range interaction, where

the potential is infinite when an overlap occurs and zero otherwise.

Segments attempt adsorption uniformly all over the line. Once adsorbed, they stick
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Figure 3.1: Rules of the Random Sequential Adsorption model.

irreversibly to the substrate, i.e., no detach or diffusion occurs in the considered time scale.

When an adsorption attempt fails, due to the overlap with previously adsorbed segments,

the particle is removed from the system. In fact, since the mass transport of matter to the

substrate occurs through diffusion in the solution, it would be more realistic to assume

that, after failing, particles should attempt adsorption in a nearby position. However,

Senger et al. [150, 151] computed the coverage as well as the pair-correlation function

for such more realistic process and report that the obtained jammed-state structure is

indistinguishable from the RSA one.

Adsorbing particle can only stick to the substrate and not on top of other particles.

On that ground, the obtained film is characterized by a single layer adsorbate. The

conjugation of the excluded volume interaction and of the irreversible character of ad-

sorption leads to an asymptotic limit, named jammed state, where no more particles can

be adsorbed [125]. In Fig. 3.1 is a cartoon of the adsorption rules.

Before going on with the results, in the next section, we make some definitions and

discuss some relations.

3.2 Definitions and relations

At this point it is important to clarify some definitions like, e.g., size ratio, deposition

flux, coverage, and probability distribution. The first four moments and cumulants are

also defined as well as the skewness and the kurtosis.
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The present study is focused on the competitive adsorption of a binary mixture of

segments on a line. By binary mixture we mean that segments can have two different

sizes. It is possible to rescale the length scale of the system so that the smaller segments

(A) are of unit length, while the larger segments (B) have size R. Therefore, R can then

be defined as the size ratio of the deposited segments, i.e.,

R =
Length of a B segment

Length of an A segment
. (3.1)

Segments attempt adsorption on a line. One important parameter to characterize the

system is the relative population of A and B segments, performing such attempts. The

deposition flux is defined as the number of incoming segments per unit length per unit

time. We denote by ΦA the corresponding deposition flux of A segments and by ΦB the

deposition flux of B segments. Therefore, the total incoming flux of segments, Φ, is

Φ = ΦA + ΦB . (3.2)

For each attempt, the probability, qA, of having an A segment attempting deposition on

the line during an interval of time dt is,

qA =
ΦA

ΦA + ΦB

, (3.3)

while the probability, qB, of having a B segment is,

qB =
ΦB

ΦA + ΦB

, (3.4)

so qB = 1− qA, as expected.

To make possible the comparison with experimental results, the time should be mea-

sured in terms of the number of layers of segments that attempted deposition, even when

the deposition fails. As soon as the total size of the segments, which attempt adsorption

on the line, equals the size of the system, we increase the time by one unit, regardless
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of the fact that the segments actually adsorb, or not. Specifically, for each adsorption

attempt, time is incremented by a factor ∆t, such that

∆t =
Length of the segment

Length of the line
. (3.5)

In the remaining of this section, we introduce some parameters to characterize the

obtained film. For sake of simplicity, such definitions are made for the jammed state.

However, extension to intermediate states at specific times can be, straightforwardly,

obtained through the explicit time dependence taken into account and, also, by set the

upper limit of integration to infinity to consider gap sizes of all lengths.

The most common parameter to characterize the obtained adsorbate is the coverage

(θ), defined as the fraction of the line occupied by the adsorbed segments. The coverage

is a function of time. Since a jammed state exists as an asymptotic limit of the adsorption

process, a jamming coverage (θJ) is given by,

θJ = lim
t→∞

θ(t) . (3.6)

More insight of the morphology is obtained through the analysis of the empty space

between adsorbed segments. Since adsorption occurs on a line (continuum), due to the

stochastic nature of the model, the coverage efficiency is lower than 100%. The jammed-

state structure is made up of segments separated by a distance lower than one (length

of the smaller segment attempting adsorption). To characterize the gaps we define the

probability distribution of empty space as,

P∅(x)dx =
Number of empty intervals of size x within dx

Total number of empty intervals
dx , (3.7)

in the limit of dx being an infinitesimal quantity and the number of ensembles going to
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infinity. Thus, P∅(x)dx for the jamming state has the property

∫ 1

0

P∅(x)dx = 1 . (3.8)

Discriminating all gaps between pairs of consecutively adsorbed segments by AA, AB,

BA, andBB and defining density distribution functions Pb(x), with b ∈ {AA,AB,BA,BB},

one obtains the relation,

P∅(x) = PAA(x) + 2PAB(x) + PBB(x) , (3.9)

where we exploited the fact PAB(x) = PBA(x) due to symmetry reasons. Note from

eqs. (3.8) and (3.9) that the Pb(x) are not normalized.

Higher moments of the gap-size distribution functions are defined as

< xn >a=

∫ 1

0
xnPa(x)dx∫ 1

0
Pa(x)dx

, (3.10)

with a ∈ {∅, AA,AB,BA,BB}.

Using eq. (3.9) one can relate the moments of the gap distribution functions with the

corresponding moment of the global distribution function given by eq. (3.10), yielding

< xn >∅ = < xn >AA

∫ 1

0

PAA(x)dx

+2 < xn >AB

∫ 1

0

PAB(x)dx

+ < xn >BB

∫ 1

0

PBB(x)dx , (3.11)

defined for all values of n = 0, 1, 2, . . .

We also compute the cumulants, κam, of a distribution function defined as,

lnGa(k) =
∞∑
m=1

(ik)m

m!
κam , (3.12)
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where Ga(k) is the so called characteristic function [36] defined by

Ga(k) =< eikx >a=

∫ 1

0
eikxPa(x)dx∫ 1

0
Pa(x)dx

. (3.13)

The function above is a moment generation function, since the coefficients of its Taylor

expansion contain the moments,

Ga(k) =
∞∑
m=0

(ik)m

m!
< xm >a . (3.14)

From eqs. (3.10), (3.12), (3.13), and (3.14), one derives the first four cumulants as

κa1 = < x >a , (3.15)

κa2 = < x2 >a − < x >2
a , (3.16)

κa3 = < x3 >a −3 < x2 >a< x >a

+2 < x >3
a , (3.17)

κa4 = < x4 >a −4 < x3 >a< x >a

−3 < x2 >2
a +12 < x2 >a< x >2

a

−6 < x >4
a , (3.18)

where κa1 is just the mean value and κa2 the variance. The third and fourth cumulants are

used in the definition of the skewness,

Sa =
κa3

(κa2)3/2
, (3.19)

and kurtosis,

Ka =
κa4

(κa2)2 , (3.20)

respectively [36].
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3.3 Monte Carlo simulations

In this section we present the results obtained through extensive Monte Carlo simula-

tions. The algorithm and simulations are introduced in Secs. 3.3.1 and 3.3.2, respectively.

In Sec. 3.3.3 results are presented and discussed.

3.3.1 Algorithm

In Chapter 2 we stress that an efficient algorithm shall minimize, as much as possible,

the number of irrelevant instructions in the code. A naive trial and error algorithm,

where for each iteration an adsorption attempt occur blindly all over the substrate, is an

inefficient one to simulate the adsorption of segments on a line. Therefore, to fully attain

the jammed state and be able to perform enough samples it is mandatory to develop a

more tailored algorithm.

For the present study, only the jammed-state structure is important so, the description

of the kinetics toward the jammed state is not relevant. On that ground, the algorithm

presented here is not capable of describing the evolution toward the jammed state, it only

deals with the jammed state itself. We leave the discussion about an algorithm to study

the kinetic behavior to the next chapter.

When a segment is adsorbed, on a given gap, the substrate is divided into two smaller

gaps. Due to the shielding property, the adsorption on each gap is independent, meaning

that the kinetic of adsorption can be decoupled. The jammed-state structure can be

generated for each gap independently. We use such concept to develop the algorithm.

To start, a segment type is randomly selected, according to the probabilities qA and

qB, and adsorbed on the center of the substrate. Then, for each iteration, for all gaps

larger than unitary size, a particle size is generated. If the size of the gap is smaller than

the larger particle size, the size is trivially one, otherwise, the segment size is selected

according to the fluxes. A position for adsorption inside the gap is randomly chosen. If

adsorption do not leads to overlap with previously adsorbed segments, the adsorption is
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a)

b)

c)

Figure 3.2: Algorithm cartoon for three consecutive steps (a), (b), and (c). The dashed
particles represent segments adsorbed during the elapsing step.

successful and two new gaps are obtained. The process is repeated till no gap larger than

one is found. In Fig. 3.2 is a cartoon of such algorithm for three consecutive iterations.

With the scheme described above, the jammed-state structure of the film is obtained.

It is important to stress, once again, that this algorithm is tailored to generate asymptotic

configurations. No information can be obtained about the kinetics toward the limiting

state.

3.3.2 Simulations

To characterize the dependence of the jamming coverage and jammed-state structure

on the size ratio, we performed a series of Monte Carlo simulations. For simplicity, we

consider the case of equal fluxes of incoming segments, i.e., qA = qB.

To obtain the results, discussed below, we implemented the algorithm presented pre-

viously, except to study the time dependence, where a different algorithm was considered.

The latter requires more computational time than the former and it is discussed in the

next chapter.

We simulated a system size of 107 units and generated 102 samples to characterize the

jammed state. For the study of time dependence, since the algorithm is computationally

more demanding, we simulated a smaller system size, 106, and obtained 102 samples.

In a recent paper, Hassan et al. [145], consider that particle, attempting adsorption,

has the smaller size with probability q and the larger size with probability 1 − q. In the

present case, we consider equal fluxes for both segment sizes, meaning that our study
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Figure 3.3: Coverage dependence on the size ratio for equal depositing fluxes of each
segment size, for various values of the size ratio, namely, 1, 1.1, 2, 4, and 10. Results
obtained for a system size of 106 and averaged over 102 samples.

represents the particular case of q = 1/2. However, results of this reference are only valid

for values of R below two. We, not only, consider a wider range of size ratios as, our

study, also includes quantities, such as dispersion and fraction of empty space, which are

not possible to compute by their method.

We perform a wide range of values of size ratio, namely for values of 1, 1.05, 1.1, 1.2,

1.25, 1.3, 1.4, 1.5, 1.6, 1.75, 2, 2.1, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.5, 5, 5.5, 6, 7, 8,

10, 12, 14, 16, 18, and 20.

3.3.3 Results

We presently discuss the results obtained with the Monte Carlo simulations. We split

the discussion in two different parts. A first one where the jammed state is discussed

based on the coverage, the fraction of empty space, and the population of each gap type,

and a second one where the cumulants up to the fourth order are reported and analyzed.

We leave for the next section the study of the gap-size distribution function.
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Figure 3.4: Coverage dependence on the size ratio for equal depositing fluxes of each
segment size. Plot showing the jamming coverage dependence on the size ratio.

Jammed state structure

To analyze the jammed state we start with the analysis of the coverage. In Fig. 3.3

we plot the time dependence of the coverage, θ(t), for some values of size ratio, namely,

1.0, 1.1, 2.0, 4.0, and 10.0. We observe that, the approach to the jamming limit scales

according to a power-law, with exponent 1, independent of the size ratio.

Since the first works of Rényi, for deposition of segments with unit size on a line, the

value of the coverage has been discussed in the literature. Our model boils down to such

limit when the size ratio is equal to one. We obtain the value of 74.75958% ± 0.0067%

which is quite close to 74.75979202%, first obtained by Rényi and subsequently calculated

with larger precision by Blaisdell and Solomon [118, 143, 145].

As referred previously, regarding the effect of a binary mixture on the coverage effi-

ciency, two contradictory analytical results, were reported in the literature. According to

Bonnier [143], the coverage efficiency decreases with the size ratio and, the case of unit

segment size, is a higher bond of coverage efficiency. On the other hand, Hassan and

co-workers [145] reported the adsorption with size ratio equal to one as a lower bond and

an increase of the coverage efficiency with the size ratio. In Fig. 3.4 we plot the jamming

coverage as a function of the size ratio. A monotonically increase of the efficiency is ob-
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Table 3.1: The table presents the coverage, θJ , as a function of the size ratio, R, while
σ represents the associated error. These results are for a system size of 107 and for 102

samples.

R θJ σ
1.00 0.7475958 0.000067
1.05 0.7544753 0.000062
1.10 0.7599829 0.000063
1.20 0.7683652 0.000058
1.25 0.7716358 0.000063
1.30 0.7744377 0.000054
1.40 0.7789946 0.000063
1.50 0.7825520 0.000064
1.60 0.7854349 0.000053
1.75 0.7890016 0.000066
2.00 0.7941038 0.000058
2.10 0.7961414 0.000053
2.25 0.7991661 0.000058
2.50 0.8036444 0.000060
2.75 0.8073996 0.000065
3.00 0.8105172 0.000066
3.25 0.8131850 0.000060
3.50 0.8155590 0.000065
3.75 0.8176675 0.000073
4.00 0.8195500 0.000070
4.50 0.8227540 0.000063
5.00 0.8253667 0.000067
5.50 0.8275848 0.000074
6.00 0.8294481 0.000076
7.00 0.8324537 0.000076
8.00 0.8347729 0.000094
10.00 0.8381112 0.000097
12.00 0.8403695 0.00010
14.00 0.8420603 0.00011
16.00 0.8433187 0.00013
18.00 0.8443186 0.00012
20.00 0.8451377 0.00012
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Figure 3.5: Fraction of available empty space, at the jamming state. In the insets the
size ratio varies between 1 and 20. One has the AA-, AB-, and BB-gap types represented
by circles, squares, and triangles, respectively. Due to symmetry reasons, the BA case
(non filled squares) is equal to the AB one.

served (see Table 3.1). Therefore, our results support the ones from Hassan et al. [145],

which it is not entirely surprising, since for equal relative fluxes of incoming segments

and large asymptotic values of the size ratio, a stretch of the line is either fully covered

by a large segment or paved by the small, unit size, segments with an upper limit of the

coverage given by the Rényi value. As both segment sizes can attempt deposition with

equal probability, we get 1/2(1 + 0.7476) = 87.38%. However, this upper limit is not

attained as one increases the values of the size ratio, the limiting value of the coverage

around 84.5%, obtained for a size ratio of 20, remains lower as one can observe in Fig. 3.4.

In the Fig. 3.5 is the fraction of empty substrate, at the jamming state, as a function

of the size ratio. We differentiate each pair of consecutive segments, namely of type

AA, AB, BA, and BB. As explained before, the case of BA overlaps the AB case due

to the model symmetry. At the jammed state, a monotonic increase of the fraction of

empty space with the size ratio, for AA-gap type, is observed as well as a decrease of the

remaining gap types. To understand such behavior we plot, in Fig. 3.6, the normalized

population of the gap types. The sum of the contributions of the four gap types adds up

to the unit for every values of the size ratio. The fraction of empty space due to the AA
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Figure 3.6: Normalized population of gaps at the jamming state. In the insets the size
ratio varies between 1 and 20. We use the same legend as in Fig. 3.5.

gaps increases monotonically with the size ratio. This can be understood by considering

the significant drop in the population of BB gaps at the jammed state as the size ratio

increases, since these gaps must be smaller than unit. The probability of having two

consecutive B segments adsorbed on the line decreases with size ratio since adsorption

of two, neighboring, large segments imply a gap larger than their size and both being

adsorbed at a distance smaller than unit to prevent an A segment to fit in between. Such

probability decreases with size ratio. Increasing the size ratio, rise the number of small

segments (A) that can adsorb between two B segments, which implies an increase of AA

population. The diminishment of AB population and of the fraction of corresponding

empty space, indicates, for large size ratios, a jammed state constituted by alternating

streaks of A segments by a single B segment. This argument is consonant with the drop

of BB population. With the increase of size ratio, the relative population of AB and BB

gap types, as compared to the corresponding population of the AA gaps becomes less and

less relevant, therefore leaving, in this limit, long streaks of A segments.
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Table 3.2: The table summarizes the estimated values of R, where the first four cumu-
lants take maximum and minimum values, all measured with an error of ±0.005. The
corresponding values of the cumulants are also included. Cells marked with (*) means
that the BB-gap is strictly monotonic.

gap types minimum maximum
R Value R Value

Distance
AA 1.31 0.2924895
AB 1.22 0.3291302
BB (*) (*)

Dispersion
AA 1.55 0.2681662 1.02 0.2825507
AB 1.55 0.2788692 1.05 0.2825593
BB 1.01 0.2815730 - -

Skewness
AA - - 1.34 0.9227950
AB - - 1.29 0.7253401
BB (*) (*)

Kurtosis
AA - - 1.40 −0.2290402
AB - - 1.36 −0.6281340
BB (*) (*)

Cumulants up to the fourth order

Above, the jammed state was characterized by its coverage, population of gaps, and

fraction of empty space. To analyze further, it is important to obtain more information

about the distribution of gaps. We compute quantities involving cumulants up to the

fourth order and propose the use of them to describe the film structure.

In Fig. 3.7(a-d) are the mean distance (Fig. 3.7(a)), dispersion (Fig. 3.7(b)), skewness

(Fig. 3.7(c)), and kurtosis (Fig. 3.7(d)), as defined in eqs. (3.15)-(3.20). We study, at

the jammed state, the dependence of these quantities on the size ratio. We observe that,

both the AA and AB gap types have rich nonmonotonic behavior, for the mean gap

size, dispersion, skewness, and kurtosis. Despite such nonmonotonic behavior, the critical
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Figure 3.7: Plots involving cumulants up to the fourth order of the gap-size distribution
functions for each gap type as a function of the size ratio. Results obtained through
Monte Carlo simulations (a, b, c, and d) and from proposed function to the gap-size
distribution (e, f, g, and h). We use the same legend as in Fig. 3.5. (a) and (e) Average
distance between pairs of segments. (b) and (f) Dispersion of the distance between pairs
of segments. (c) and (g) Skewness. (d) and (h) Kurtosis.
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values for AA and AB gaps are not coincidental. As summarized in Table 3.2, for most

cases, the critical values for AA gaps occur at a slightly higher value of the size ratio. The

behavior of the dispersion shows the presence of both a minimum and a maximum values.

It is only for the maximum value of the dispersion that the opposite happens. The value

of the size ratio at which it occurs is slightly lower for the AA gap type than for AB one.

In fact, the minimum values occur, within the error bounds, at the same values of R. The

skewness shows a maximum occurring at different R values, namely, 1.34 and 1.29 for the

AA and AB gap types, respectively. The kurtosis reveals a single maximum for these two

gap types, once again noncoincidental in their size ratio value, with the maximum for the

AA gaps, once again, slightly above, the corresponding one for the AB gaps.

Regarding the BB type, we observe a less rich behavior. The mean gap size strictly

increases, monotonically, with R, and the skewness and the kurtosis decreases. The

exception regards the dispersion. For the dispersion, a minimum occurs for R = 1.01 as

evident in Fig. 3.7(b) and stated in Table 3.2. Note also, from the inset of the same figure,

that the dispersion of BB and AB intersect at R = 6.

If only large segments were deposited, then all gap sizes up to R would be present.

Since we are depositing a binary mixture with unit segments, all gap sizes larger than

unit must disappear at the jamming limit due to the adsorption of unitary segments. As

soon as the typical sizes of gaps drops below R, the large segments stop adsorbing on the

line. The smaller, unit segments (A), contrary to larger segments (B), have to fit into all

available spaces (gaps larger than unit). For size ratios R < 1.55 the population of BB

gaps remains significant, as compared to the AA gap one, with the consequent formation

of BB gaps close to unit. Some of this gaps, are strictly larger than unit, in size, and we

call this events of snug fits, regarding the adsorption of a smaller segment on such space.

As R increases the number of BB gaps decreases, to form AA and AB gaps, therefore,

increasing the probability of snug fit events. With larger R the probability of a BB snug

fit decreases and, therefore, a monotonic behavior of the various cumulants for this regime

is observed. On the other hand, the larger number of these events for values of R . 1.55
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accounts for such rich behavior of the cumulants up to the fourth order. On that ground,

the minimum values of the AA and AB gap sizes can now be understood as events from

the late stage kinetics close to the jamming state and the same for the minimum values

of the dispersion, since such events tend to lower the uncertainties of adsorbed segments.

For values of R < 1.05 there is a maximum value for both AA and AB gaps and

a minimum of the BB gaps. Since the size difference of both segments is small, they

compete until coverage values become close to the jammed state, which leads to snug fit

events of the BB gap. Consequently, the uncertainty for the BB gaps diminish and for

the AA and AB gaps intensify.

For values of R ≥ 1.55, the significant drop in the population of BB gaps can be

understood of the early onset of a mean gap size smaller than R at low coverage values,

which effectively blocks the adsorption of large segments. We obtain a flatter distribution

function of the BB gap type with increasing values of the size ratio, since the net effect

of increasing the size ratio is to diminish the asymmetry of the BB gap distribution. The

monotonic behavior for R > 1.55 stems from the absence of a competing mechanism.

For large size ratios, the jamming state follows, therefore, the picture of alternating

streaks of A segments, interfaced with a single B segment referred above. The presence of

such streaks prevents the AB gap population to decrease slower than that of the BB gap

one. The snug fits also favor small gap sizes, and this effect makes the distribution function

less flat and more skewed, thus increasing the value of the kurtosis and skewness of both

AA and AB gaps in the region where the effect is manifest, specifically, for R < 1.5.

3.4 The gap-size distribution

So far we considered the first four cumulants to characterize the distribution of empty

size on the line. Another way is to analyze the distribution itself. In the present section

we start with a description of the gap-size distribution, defined in eq. (3.7), obtained

through computer simulations. Then, based on heuristic arguments, a function is proposed
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Figure 3.8: Gap-size distribution functions at the jamming state: For a size ratio of one,
the solid curve represents P∅(x), while the remaining AA-, AB-, and BB-gap types are
identical, and therefore fall onto a single curve.

and cumulants are computed with it. We report results obtained with such function in

agreement with the computational results.

3.4.1 Computational results

In Figs. 3.8 and 3.9, we plot the gap-size distribution for size ratio of one and two,

respectively. For each case we differ the contribution of each gap type. Results were

obtained with Monte Carlo simulations in the conditions described above.

The distribution functions, P∅(x), PAA(x), PAB(x), and PBB(x), at the jammed state,

for a size ratio of one, are in Fig. 3.8. As expected, for this size ratio, all gap types are

equal since there is a single segment size. Therefore, a collapse of the PAA(x), PAB(x),

and PBB(x), onto a single curve, is observed. The distributions satisfies the relation

P∅(x)/4 = PAA(x) = PBB(x) = PAB(x) in agreement with eq. (3.9) for a size ratio of one.

In Fig. 3.9, we merely change the value of size ratio to 2.0. Due to the difference

in size between the two types of segments, A and B, the symmetry between the various

gap types is broken. The only symmetry that remains is the one between AB and BA

gap types. Adding the various gap distributions, for every value of gap size, according to
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Figure 3.9: Gap-size distribution functions at the jamming state: For a size ratio of 2.0,
one observes the splitting of the various gap types. Please, refer to the text for further
details.

eq. (3.9), actually reproduces P∅(x). As compared with size ratio of one, the AA gap type

increases its dominance and, consequently, the AB gap slightly lowers its contribution and

the BB gap significantly drops its influence. As stated before, with size ratio, becomes

less probable to have consecutive deposition of B segments with gap lengths smaller than

unit.

3.4.2 Proposed function

The probability that a segment is deposited in a given gap is proportional to the size

of the gap, therefore, the probability distribution shall be an exponential distribution.

Besides, at the jammed state, the probability of having a gap with size larger than one

is zero. Consequently, we propose, for the gap-size distribution, at the jammed state, an

exponential function truncated between zero and one, i.e.,

Pa(x) =

 Aa(αa)e
−αax, 0 < x < 1

0, x > 1
, (3.21)
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where αa is the single parameter used to characterize the distribution function. As defined,

only P∅(x) must be normalized so,

A−1
∅ (α∅) =

∫ 1

0

e−α∅xdx =
1− e−α∅

α∅
. (3.22)

With eq. (3.10) it is possible to obtain the first two moments of the distribution as a

function of αa,

〈x〉a =
1

1− eαa
+

1

αa
(3.23)

and

〈x2〉a =
2 + αa(2+αa)

1−eαa

α2
a

. (3.24)

The first and the second cumulants are obtained with eqs. (3.15) and (3.16), so

κa1 =
1

1− eαa
+

1

αa
(3.25)

and

κa2 =
1

α2
a

+
1

2− 2cosh (αa)
. (3.26)

Skewness and kurtosis

To better characterize the distribution function it is important to compute the higher-

order moments and cumulants. With them it is possible to compute the skewness and

the kurtosis. The former is related with the asymmetry of the distribution. The kurtosis,

since we assume that we compare the kurtosis of functions of the same type, can be used

to relate the peakness or flatness of each one.

To compute these two parameters, it is necessary the third and fourth moments.

Following, once again, the definition given by eq. (3.10), for the proposed function (3.21),

we obtain,

〈x3〉a =
6− 6eαa + αa(6 + αa(3 + αa))

(1− eαa)α3
a

(3.27)
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and

〈x4〉a =
24− 24eαa + αa(24 + αa(12 + αa(4 + αa)))

(1− eαa)α4
a

. (3.28)

From eqs. (3.27) and (3.28), through the definitions (3.17) and (3.18), we obtain,

κa3 =
2

α3
a

− 1

4
coth

(αa
2

)
csch2

(αa
2

)
(3.29)

and

κa4 =
6

α4
a

− 1

8
(2 + cosh (αa))csch4

(αa
2

)
. (3.30)

The skewness and the kurtosis can then be obtained, according to eqs. (3.19) and

(3.20), so

Sa =
4− 4cosh (αa) + α3

acoth
(
αa
2

)
αa
√

1
α2
a

+ 1

2−2cosh(αa)
(2 + α2

a − 2cosh (αa))
(3.31)

and

Ka = −2((24 + α4
a)cosh (αa) + 2(−9 + α4

a − 3cosh (2αa)))

(2 + α2
a − 2cosh (αa))2

, (3.32)

for the distribution function previously defined by eq. (3.21).

Results with proposed distribution function

With the Monte Carlo results and the first moment defined by eq. (3.23) we determine

the values of the parameter αa for all type of gaps and for values of size ratio ranging

from 1.0 to 20.0. In Fig. 3.10 are the values of αa as a function of the size ratio. For BB

gap type a monotonic decrease is observed. For AA and AB gap types a nonmonotonic

behavior is reported, with a maximum at 1.30± 0.05 to the AA type and at 1.20± 0.05

to the AB.

Following the eqs. (3.25), (3.26), (3.31), and (3.32), and the obtained values of αa, we

compute the mean size, dispersion, skewness, and kurtosis, of the gap sizes. The results

are plotted in Figs. 3.7(e-h). For AA and AB gap types, we observe a nonmonotonic

behavior for all parameters. For BB gap type, we obtained a monotonic increase for the
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Figure 3.10: Plot of αa as a function of size ratio obtained from the first moment of Monte
Carlo simulations. We use the same legend as in Fig. 3.5

mean size and dispersion, and a monotonic decrease for the skewness and kurtosis. For

the mean size and dispersion, the minimum for the AA gap type occurs at 1.30±0.05, and

for the AB gap occurs at 1.20± 0.05. For the skewness and kurtosis, there is a maximum

for the AA type at 1.30± 0.05 and at 1.20± 0.05 for the AB type.

In Fig. 3.7(e-h), these results can be compared with simulational ones, in Fig. 3.7(a-

d). For all parameters the same qualitative behavior is obtained. For the dispersion, the

proposed probability distribution (3.21), does not reproduce simulational results, for size

ratio near one. The difference can be due to the snug fit events explained previously.

These events destroy the exponential behavior of AB gap type distribution functions.

Recall that snug fit events are only relevant for values of R close to unit.

3.5 Conclusions

In this chapter we studied the competitive sequential adsorption of a binary mixture

of segments on a line. The considered binary mixture is made up of segments with two

possible sizes. Both segments arrive to the substrate with the same flux. Specifically, we

characterized the morphology of the jammed state and its dependence on the size ratio.

Monte Carlo simulations were performed, for different values of size ratio, and the
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cumulants, up to the fourth order, of the size of empty spaces, computed. We propose the

use of four parameters to describe the structure of the jammed state, namely, the mean

size, dispersion, skewness, and kurtosis, of the hiatus between adsorbed segments. For

values of the size ratio below two, the behavior of such parameters, for the AA, and AB

types are nonmonotonic due to the presence of snug fit events. For large values of size

ratio, the jamming state is characterized by streaks of A interrupted by a single B.

We also presented a different approach with potential for a more detailed analysis.

The first moment, obtained from simulation, can be used to grab information about the

other three. A truncated distribution was proposed for the gap-size distribution and

parametrized from the mean gap size. Then, with the obtained function, the dispersion,

skewness, and kurtosis were computed. The results are in qualitative agreement with

Monte Carlo simulations and the specific differences in the dispersion can be explained

by snug fit events.





Chapter 4

How can a pattern change the

irreversible adsorption?

“Order is repetition of units. Chaos is multiplicity with-
out rhythm.”

M. C. Escher, in Thinkexist.com

In the previous chapter we discussed the implementation of the random sequential

adsorption (RSA) model to study the adsorption of a binary mixture of segments on a

line. In the present one, the same model is considered to characterize the effect of pre-

treated substrates on the irreversible adsorption of colloids. By pre-treated we mean that

a pattern is constructed on the surface such that adsorption can only take place inside

well defined regions.

The study of monolayer and multilayer fine-particle deposits (e.g., colloids) at surfaces

is of interest for a wide range of applications, including photonic crystals, quantum dots,

heterogeneous catalysts, sensors, and microarrays [152, 153, 154, 155, 156, 157, 158].

The control of the film properties requires a quantification of the kinetics of synthesis,

aggregation, and surface interactions of particles. Furthermore, the surfaces with which

fine particles interact can now be pre-treated to control and modify the particle attachment

81
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kinetics and the resulting deposit morphology [149, 152, 159, 156, 160, 161, 162, 163].

Specifically, it is possible to build well defined, regular, and reproducible patterns on

a substrate with different shapes and distributions [160, 163, 164, 165, 166, 167, 168].

It is important to stress that, recent experiments have produced pattern with a typical

size of the order of the particle size. Thus, deposition kinetics will be affected by such

adsorption constrain which can improve the properties of the obtained film. From a

theoretical perspective, such processes pose interesting challenges, including identification

of the parameters that control the properties of the resulting structure.

We report a detailed study of the influence of a pattern consisting of cells, with square

shape, in which centers of circular particles can land (e.g., projections of spherical fine

particles depositing in a monolayer), distributed in a square lattice array. The adsorption

process is considered to be fully irreversible and particles are considered to have fixed size

and interact solely through excluded volume. Therefore, we develop an extended version

of the random sequential adsorption (RSA) model for rigid disks adsorption on patterned

substrates.

So, with RSA model [121, 122, 125, 142, 143, 146, 148, 169, 170, 171, 172, 173, 174] we

assume that particle-particle interactions and particle-substrate interactions can be ac-

counted for, approximately, by purely geometrical restrictions and features. Furthermore,

the details of the particle transport to (and, for rejected particles, away from) the surface

are lumped into the assumption of uniform flux of deposition attempts per unit surface

area1. Despite its simplicity, the RSA model provides a surprisingly rich set of limiting

behaviors and morphologies [120, 121, 122, 123, 125, 126, 128, 137, 147, 149, 175, 176,

177, 178, 179, 180, 181, 182, 183].

As already discussed in the context of the previous chapter, the hard-core interaction

between particles, as well as the irreversibility of the adsorption process, leads to a jammed

state in the asymptotic limit, where no more particles can be adsorbed (see, e.g., [125]).

1As already discussed in Chapter 3, a more realistic description of mass transport to the substrate
shall account with particles diffusion in the solution. However, Senger et al. [150, 151], report that the
obtained structure would be similar to the RSA one.
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Such jammed state is made up of a single layer since particles cannot adsorb on top of

other particles. In the present chapter, we characterize the influence of the pattern on

the structure of the obtained single-layer deposit and in the kinetic evolution of the film

during adsorption.

Computer simulations able to fully attain the jammed state are far-from trivial, due

to the stochastic nature of the adsorption process in the continuum. We also present an

algorithm to perform Monte Carlo simulations of such model. Due to the relevance of

RSA model in different fields [128, 137, 147, 184, 185, 186, 187, 188, 189], we attempt a

general discussion of such implementation for cases with and without the pattern. From

now on, for sake of simplicity, the substrates without pattern are denoted as clean or

regular substrates.

The chapter is organized in the following way. We start with a brief description of the

model and some definitions in Sec. 4.1. A diagram of the system based on the pattern

parameters is presented and its main regions are discussed in Sec. 4.2. The jammed-state

structure and the adsorption kinetics are discussed in the Secs. 4.3 and 4.4, respectively.

In the Sec. 4.6, we draw some conclusions.

4.1 Model and definitions

Our goal is to study irreversible adsorption of identical hard-core spherical particles

on flat patterned substrates, which is equivalent to the deposition of disks with excluded

volume interaction. As explained in the preceding chapter, such type of interaction means

that the interacting potential is infinite when overlap occurs and zero otherwise.

To characterize the effect of a pattern in the adsorption process we consider that

particles can only adsorb on well defined regions on the substrate. For simplicity, such

regions are considered to have square shape. But, in fact, other shapes could also be

considered, therefore, from now on, we refer to such square regions as cells, since most of

the general conclusions can be straightforwardly map to different cell shapes. Cells are
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α

β

α + β

Figure 4.1: Scheme of four pattern unit cells. Dashed lines delineate the square lattice
unit cells. Adsorption of disks can only take place when their geometrical center lands
inside the blue regions. Two parameters characterize the pattern, the size of the cell and
the cell-cell separation.

considered to be distributed in a square lattice array, i.e., one cell per vertex of a square

lattice. Such configuration of cells in a lattice leads to the concept of unit cell which is

larger than the landing cell (represented by dashed lines in Fig. 4.1).

In the present work, we consider particles of fixed radius, r0. Experimentally, the

particles size and shape are always characterized by some dispersion. For dispersions above

O(10%) of the mean size, particles are considered polydispersed. Syntheses of uniform

spherical colloids and polydispersity as low as 4% have been reported [190, 191, 192,

193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205], so that the monodisperse

approximation is quite realistic for many systems of interest. Notwithstanding, studies

were also performed for particles with gaussian-size distribution [188], but are beyond the

scope of the present thesis.

We assume that particles arrive with flux F . Recall that flux is the rate, per unit
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(a) (b)

Figure 4.2: A disk fails adsorption onto the substrate because (a) its center does not fall
within an allowed-landing cell, or (b) it overlaps with a previously adsorbed disk.

time, of deposition attempts of disk centers at the substrate, per unit area. Particles ar-

rive to the surface randomly and uniformly. If the disk (geometrical) center falls outside

the cell or overlap a previously adsorbed particle, adsorption fails, see Fig. 4.2. Other-

wise, if adsorption is successful, particles stick, irreversibly, to the substrate. Irreversible

means that, after being adsorbed, particles cannot detach or diffuse, which is a very good

approximation for colloid deposition [125, 126], but can be questioned, e.g., for protein de-

position: indeed, studies of RSA-type models with particle rearrangement on the surface

have also been reported [206, 207, 208, 209, 210, 211, 212, 213, 214]. Particles can only

bind to the substrate and not on top of other particles, leading to a single layer deposit,

a jammed state is then obtained where no more particles can be adsorbed2 [130, 217].

The conditions described above can be well mimicked by the RSA model. The depo-

sition rules are then summarized in Fig. 4.2. In the irreversible RSA model, the deposit

density initially grows linearly with time, t. However, as the particle density increases,

2Multilayer adsorption was studied in various experimental and theoretical contexts [135, 136, 169,
215, 216].
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the hard-core exclusion leads to slowdown of the adsorption process. Ultimately, for large

times the jammed state is approached, at a density lower than that of close packing and

with no long-range order in the particle positioning, but no gaps left for any additional

particle deposition. The density of particles can be characterized, as in the previous chap-

ter, by the coverage, θ(t), i.e., the fraction of the total surface covered by the particles.

The jammed state coverage is defined, as discussed in eq. (3.6), as

θJ = lim
t→∞

θ(t) . (4.1)

Time is defined in a way that, when a unit time elapses, the total area of the particles

that attempt adsorption is equal to the area of the substrate (L2). Meaning that, for

adsorption of particles with radius r0, everytime a particle attempt adsorption time is

incremented by

∆t =
πr2

0

L2
. (4.2)

Therefore, the time is rescaled by a factor inversely proportional to the flux and particle

“volume”, here (πr2
0F )−1.

As stated previously, we consider as a pattern, equal size cells regularly distributed

over the substrate, in a square lattice arrangement (see Fig. 4.1). The pattern is char-

acterized by two different parameters: the size of the cell a and the cell-cell distance b.

Meaning that, the unit cell has size a+ b. Since all the particles, attempting adsorption,

are considered to have the same size, is preferable to use adimensional parameters to char-

acterize the pattern. Without loss of generality, we rescale the substrate lengths relative

to the diameter of the disks. Specifically, we define

α =
a

2r0

, (4.3)

and

β =
b

2r0

. (4.4)



Chapter 4. How can a pattern change the irreversible adsorption? 87

2 /2

SPCA

Deposition of a single
particle per cell.

NICCA

Particles from different
cells do not interact.

MPCA

Deposition of more than one particle per cell.

NICCA

Particles from different cells do not interact.

MPCA

Deposition of more than one particle per cell.

ICCA

Interaction between particles from different cells.

α

β

1

ICCA

Interaction between particles
from different cells.

SPCA

Deposition of a single
particle per cell.

Figure 4.3: The major subdivisions in the two-parameter space. For cell-cell separation
β < 1 we have the interacting cell-cell adsorption (ICCA), while for β ≥ 1 we have the
noninteracting cell-cell adsorption (NICCA). For cell sizes α < 1/

√
2 we have a single-

particle-per-cell adsorption (SPCA), while for α ≥ 1/
√

2 we have multiparticle-per-cell
adsorption (MPCA).

The present model is a generalized version of lattice RSA [117, 118, 121, 122, 125,

126, 127, 128, 141, 169, 217], on par with such generalizations as RSA of mixture (see

previous chapter) [146, 143, 144, 145, 137, 147, 148, 149, 218, 219, 220, 221] or deposition

on finite-size substrates [142].

4.2 The “Phase Diagram”

Based on the cell size (α) and the cell-cell separation (β) we propose a diagram in

the two-parameters space (α, β), to categorize the typical regimes of adsorption. In the

horizontal axis is the parameter α, related with the cell size and, in the vertical axis, is

the parameter β, related with the cell-cell separation. The diagram is in Fig. 4.3.

For values of cell size such that only one particle can be adsorbed per cell
(
α < 1√

2

)
,

stands the single-particle-per-cell adsorption regime (SPCA). On the other hand, for

α ≥ 1√
2
, the regime is denoted multiparticle-per-cell adsorption (MPCA). Regarding
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the cell-cell separation, vertical axis, two different regimes can also be identified. For

β < 1, particles attempting adsorption on a given cell can be constrained by particles

previously adsorbed on neighboring cells. Such regime is denoted interacting cell-cell ad-

sorption (ICCA). For β ≥ 1, cell-cell distance is such that adsorption on each cell can be

decoupled, yielding the noninteracting cell-cell adsorption regime (NICCA).

Interesting limit cases can be identified in the diagram. For large values of the cell size,

α→∞, or small values of cell-cell separation, β→ 0, adsorption conditions are similar

to the case without the pattern, so we denote as continuum limit. On the other hand,

when SPCA and NICCA are considered, only one particle can be adsorbed per cell and

there is no “interaction” between cells. This adsorption regime is similar to the adsorption

of particles on a lattice (lattice like limit). For vanishing values of cell size (α → 0)

and values of cell-cell separation above 1 (β ≥ 1), the system is equivalent to a square

lattice with a lattice constant of β. Another limit occurs for β < 1 and α→ 0, which

corresponds to a well-defined square lattice structure for the deposition of disk centers.

Since each adsorbed particle effectively “shades” a circle of unit radius, which is larger

than the lattice constant β < 1, deposition does not correspond to that of monomers as

compared to the NICCA-SPCA case discussed above, as the adsorbed particle will surely

block neighboring cells, and possibly more remote ones, depending on the value of β. For

values of β = 0 the system no longer has a pattern, regardless of the value of α. The corner

of the phase diagram near the point (α, β) = (0, 0) is special, but we did not consider this

region because it is more mathematically interesting than physically relevant: see recent

literature on the kinetics of this type [143, 144].

Throughout the next two sections, the effect of the considered pattern on both the

jammed-state structure and adsorption kinetics is discussed.
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4.3 The jammed state

The considered system is not in equilibrium, therefore the obtained structure is de-

pendent on the kinetic evolution of the system. In the present section the jammed-state

structure of the film for different regions of the diagram is described and the discussion

of the kinetic evolution is postponed to the next section.

Let us focus on the jammed-state structure. As discussed in Sec. 4.2, depending on

the cell-cell distance, two different regions of the two-parameter diagram can be defined:

NICCA and ICCA. The first two subsections are devoted to the jammed-state coverage

and to a general discussion of the morphology, based on snapshots, for these two different

regions. In the third one, the interparticle distribution function is defined to analyze the

effect of the pattern on the particle-particle correlations.

4.3.1 Noninteracting cell-cell adsorption

If cells are too far apart from their nearest neighbors, then particles at different cells

will not be able to “see” each other through excluded volume. Specifically, for a cell-

cell distance β ≥ 1, particles (disks) attempting adsorption cannot overlap other disks,

previously adsorbed, in neighboring cells. We denote such regime Noninteracting cell-

cell adsorption (NICCA) in opposition with the Interacting cell-cell adsorption (ICCA)

where adsorption attempts can fail due to the excluded volume interaction with particles

adsorbed on other cells.

In this subsection we consider the NICCA case defined by β ≥ 1. Since no interac-

tion occurs between particles on different cells, the kinetics of adsorption decouples into

independent local kinetics at each landing cell. Therefore, for this range of β values, the

model is equivalent to continuum RSA on finite-size substrates, with somewhat unusual

boundary conditions that a particle can “stick out” of the finite α × α region as long as

its geometrical center is within the cell.

As explained above, based on the number of particles that can fit inside a cell, two
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Figure 4.4: Typical configuration of a region of 30× 30 unit cells, for α = 0.6 and β = 1.2
at the jammed state. This snapshot corresponds to the NICCA-SPCA, upper-left, region
in Fig. 4.3.

different regimes can be described, the SPCA, for α < 1/
√

2 and the MPCA, for values

of α ≥ 1/
√

2. For the SPCA and NICCA, kinetics corresponds to that of lattice RSA

of monomers, since each cell is certain to have a single particle at the jammed state.

The difference relative to the lattice RSA is in the particles position, which here are

uncertain within the order of the size of the cell. In Fig. 4.4 is a snapshot of a typical

configuration for such region of the two-parameter diagram. While perhaps theoretically

least interesting, such patterning provides for the most “controlled” particle adsorption in

applications. Since each cell ends up having a single particle, the jammed-state coverage,

defined by eq. (4.1), is simply

θJ(α, β) =
π

4(α + β)2
, (4.5)

which holds for β ≥ 1 and 0 ≤ α < 1/
√

2.
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Figure 4.5: Typical configuration of a region of 30×30 unit cells, for α = 1.2 and β = 1.2
at the jammed state. Particles attempting adsorption never overlap previously adsorbed
ones in different cells, but contrary to Fig. 4.4 each cell can now adsorb more than one
particle. Since β = 1.2 > 1, the kinetics of adsorption at each cell is decoupled from that
at other cells. This snapshot corresponds to the NICCA-MPCA, upper-right, region in
Fig. 4.3.

In the regime of NICCA with MPCA, a possibility opens up for having more than

one particle being adsorbed in each cell. In Fig. 4.5 is a snapshot of a configuration

for such regime. As in the SPCA case, kinetics of adsorption is decoupled in the sense

explained above, therefore one can make some conclusions regarding the coverages for

a given number of particles. Let us consider the case up-to-two particles per cell as an

example, which is obtained for values of α in the range 1/
√

2 ≤ α < (1 +
√

3)/2
√

2. The

coverage of the close-packed (maximally packed) configuration is given by π/2(α + β)2

for two particles per cell and for β ≥ 1. The closed packed means that all the cells

have exactly the maximum number of particles adsorbed in (in the present case each cell

accommodates two particles). Such closed-packed coverage will change discontinuously at

α = (1 +
√

3)/2
√

2, as illustrated in Fig. 4.6. However, our numerical results, also in the
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Figure 4.6: Coverage values obtained by Monte Carlo simulation of our RSA model
(red solid line, the jammed-state coverage) and by direct calculation for the close-packed
configurations (green dashed line), both for β = 1. Notice the discontinuities in the values
of the close-packed coverage as opposed to the smooth variation in the RSA case. The
jammed-state coverages for β = 2, calculated according to relation (4.6), are also shown
for comparison (blue dotted line).

same figure, indicate that the value of the jamming coverage for the RSA model, which

for more than one particle per cell, is less than the maximal coverage (closed-packed one),

remains continuous at such value of cell size and also at α = 1/
√

2, for which more than

one particle can adsorb. This behavior continues for larger number of particles per cell,

see Fig. 4.6. In the close-packed problem, the highest coverage, at fixed β, occurs for the

smallest cell, i.e., the smallest value of α = αn allowing the prescribed number of particles,

n. As expected, Fig. 4.6 illustrates the discontinuous coverage increments at αn, followed

by a decrease ∝ (α + β)−2.

The simulated results for θJ in the SPCA regime follow the close-packed values, since

the two problems coincide in this α range. However, at α = α2 the RSA coverage is

continuous, since the probability of having a second adsorbed particle in any given cell

remains small for values of cell size slightly above α2. This property reflects the stochastic

nature of the RSA model, i.e., in most cases the first particle adsorbs at a position inside

the cell that blocks the chance for the second particle to adsorb later. A similar observation
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Table 4.1: The table shows the jammed coverage values in the NICCA-MPCA case, i.e.,
for β ≥ 1 and α ≥ 1/

√
2. In the first column, n is the number of particles per unit cell

of the close-packed situation. The values of αn, defined in the text, are shown in the
second column. The third column gives the close-packed coverage values for the range of
up-to-n particles per cell. In the fourth column, the jamming coverage values, θJ , from
simulations are presented. These values are for a representative choice β = β∗ = 1.2 (see
text), and for the α values shown in the second column. Finally, in the fifth column, the
standard deviation, σJ , of the jamming coverages is given.

n αn θn θJ(αn, β
∗) σJ × 104

2 1√
2

π
2(α+β)2

0.21594 0

3 1
2
√

2
(1 +

√
3) 3π

4(α+β)2
0.26901 1.7

4 1 π
(α+β)2

0.27471 1.7

5
√

2 5π
4(α+β)2

0.36148 1.0

∞ ∞ π
2
√

3
0.547067 0.38

applies as α crosses αn=3,4,.... Our numerical results for θJ were actually obtained for a

representative β value, β∗ = 1.2. The coverage for any other β ≥ 1, for a given fixed value

of α, can then be calculated from

θJ(α, β) =

(
α + β∗

α + β

)2
θJ(α, β∗) . (4.6)

The standard deviation of the coverage is given by

σJ(α, β) =

∑N
i=1 θ

2
Ji

N
−

(∑N
i=1 θJi
N

)2 1
2

, (4.7)

where the index i numbers the Monte Carlo runs, and N stands for the total number of

runs. From this definition, after some algebra one can show that

σJ(α, β) =

(
α + β∗

α + β

)2
σJ(α, β∗) . (4.8)
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The above observation and the appropriate parameter and coverage values are summarized

in Table 4.1, which in particular gives jamming coverage values θJ(αn, β
∗).

The jamming coverage values, obtained through simulation, for varying α are given

in Table 4.2. In the present RSA problem, for β = β∗ = 1.2 the minimum of the

coverage is θJmin
= 0.21199 ± 0.00006, and it occurs for αmin = 0.745 ± 0.005. Finally,

in the limit α→∞ one recovers the well-known RSA of disks on continuum substrates

[121, 125, 126, 128, 175, 180, 222, 223, 224, 225].

Our value for the coverage is 0.5470669 ± 0.0000012, which should be compared to

the range 0.54700 ± 0.00006 recently estimated in [226]. Our estimation was obtained

with a system size of 4096× 4096 particle diameters and averaged over 103 samples. The

respective close-packed value is π/2
√

3, corresponding to the α∞ case in Table 4.1.

4.3.2 Interacting cell-cell adsorption

In the previous subsection we discuss the NICCA regime. In the present one, we

discuss the ICCA case where adsorption is constrained not only by the pattern but also

by particles, previously, adsorbed. Such particles can be adsorbed either within the same

cell, where adsorption attempt takes place, or in different cells. Due to the interaction

between particles in different cells, correlation can develop beyond single cells.

At this point, the discussion focus in the jammed-state coverage and morphology

snapshots. A more detailed description of particle-particle correlations is postponed to

the next subsection where the interparticle distribution function is discussed in detail.

To analyze the effect of the pattern on the jammed state structure in the ICCA regime,

as was already done for the NICCA case, we perform extensive Monte Carlo simulations of

our extended version of the RSA model. A system size of 500×500 unit cells is considered,

unless otherwise stated, and periodic boundary conditions were applied both horizontally

and vertically to reduce the finite-size effects. Results have been average over 102 samples.

As stated in the beginning of the present chapter, we leave the discussion of the efficient

algorithm to an individual section in the end of the chapter. At this point we just want
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Table 4.2: Tabulation of numerically simulated RSA jammed-coverage values, at fixed
β = β∗ = 1.2, for the range of α from 0.72 to 1.40. The standard deviations are also
shown.

α θJ σJ × 104

0.72 0.21360 0.2
0.74 0.21204 0.5
0.75 0.21208 0.6
0.76 0.21259 0.8
0.78 0.21486 1.1
0.80 0.21856 1.3
0.82 0.22346 1.5
0.84 0.22934 1.6
0.85 0.23257 1.6
0.86 0.23598 1.5
0.88 0.24339 1.6
0.90 0.25130 1.7
0.92 0.25820 1.8
0.94 0.26332 1.6
0.95 0.26596 1.9
0.96 0.26794 1.7
0.97 0.26969 1.7
0.98 0.27117 1.6
0.99 0.27262 1.5
1.02 0.28321 1.8
1.04 0.29127 1.6
1.05 0.29518 1.9
1.06 0.29893 1.8
1.08 0.30621 1.9
1.10 0.31291 2.0
1.12 0.31918 1.9
1.14 0.32486 1.8
1.16 0.33013 1.9
1.18 0.33484 1.8
1.20 0.33908 1.4
1.22 0.34290 1.8
1.24 0.34624 1.4
1.26 0.34918 1.6
1.28 0.35178 1.4
1.32 0.35593 1.3
1.34 0.35755 1.3
1.36 0.35889 1.2
1.38 0.36002 1.2
1.40 0.36096 1.3
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Table 4.3: The table shows simulated values of the coverage, θJ , and the corresponding
standard deviation σJ , for several values of α and β, in the ICCA-SPCA and ICCA-MPCA
regions of the “phase diagram” shown in Fig. 4.3.

α β θJ σJ × 104

0.1 0.14 0.5377 13
0.2 0.2 0.50866 7.6
0.2 0.28 0.54865 6.7
0.2 0.5 0.46563 5.0
0.2 0.8 0.54499 3.1
0.3 0.42 0.48338 5.2
0.4 0.2 0.52428 5.2
0.4 0.56 0.54519 3.9
0.5 0.7 0.54326 0.6
0.6 0.2 0.53444 3.9
0.8 0.2 0.55103 2.9
0.8 0.8 0.33358 1.5
1.0 0.2 0.53529 2.5
1.0 0.8 0.39362 2.4
1.2 0.2 0.53725 2.3
1.2 0.8 0.45497 2.4

to stress that the used algorithm allow a detailed study of the jammed-state structure.

In Table 4.3 are reported the values of coverage and the corresponding standard devi-

ations for the various cases studied in the present regime. The ICCA regime is obtained

for β < 1. As opposed to the NICCA case, in ICCA the kinetics of adsorption is no longer

“decoupled”, and particles, or clumps of particles, that belong to the same landing cell,

not only follow the square positioning pattern of the landing cells but can also become

correlated with particles in other cells. The resulting film morphology and degree of order-

ing will depend on the geometrical parameters, as well as on the fully irreversible nature

of the RSA model. In fact, depending on the values of α and β, particles attempting

adsorption can overlap others that belong to cells more distant than the nearest-neighbor

cells of the landing one. Therefore, in addition to the jammed-state coverage, a more

detailed study in the ICCA regime should also involve consideration of particle-particle
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Figure 4.7: Configuration of a region of 30 × 30 unit cells, for α = 0.2 and β = 0.5, at
the jammed state. A particle attempting adsorption can overlap a previously adsorbed
particle in a different cell. This excluded volume interaction is responsible for correlations
which result in locally-diagonal, semi-ordered domains as seen in this snapshot. Such
snapshots corresponds to the ICCA-SPCA, lower-left, region of the diagram (Fig. 4.3).

correlations in the jammed state, as addressed in the next subsection.

Following the strategy of NICCA discussion, we split the ICCA regime into two dif-

ferent subregions of the two-parameter diagram: SPCA and MPCA. Combining ICCA

with SPCA, which holds for parameter values β < 1 and α < 1/
√

2 and corresponds to

the lower-left region in Fig. 4.3, can lead to particle configurations correlated beyond the

pattern cell. Therefore, the obtained film yields nontrivial local particle arrangements.

The resulting morphologies stem not only from the pattern, but also, from the cooperative

interaction between particles during adsorption. Visually, see Fig. 4.7, the “crystallites”

are oriented along the diagonal direction of the square lattice of pattern cells. However, it

is well known [175, 177, 178] that the RSA process alone (i.e., without the pattern) can-

not impose long-range ordering. Indeed the particle correlation in RSA are usually rather

short range. The obtained order can extend over several lattice spacings. More generally,
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Figure 4.8: Configuration of a region of 30 × 30 unit cells, for α = 1.2 and β = 0.2, at
the jammed state. Such snapshots corresponds to the ICCA-MPCA, lower-right, region
of the diagram (Fig. 4.3). For this low β value, the probability of a particle attempting
adsorption to overlap with one in a neighboring cell is appreciable, thus building up a
somewhat longer range diagonal semiordering than that seen for the parameter values of
Fig. 4.7.

the ordering should also depend on the shape of the deposited objects [135, 179]. The

pattern does influence the creation of ordered structures in an otherwise uniform depo-

sition process. However, the stochastic RSA dynamics and the adsorption irreversibility

tend to prevent the long-range order of the pattern from being fully “imprinted” in the

deposited particle configuration, as observed in Fig. 4.7.

Combining ICCA with MPCA, which stands for β < 1 and α ≥ 1/
√

2, corresponds

to the lower-right region of the diagram in Fig. 4.3. In this regime, the excluded vol-

ume interaction can lead to deposit morphology with semiordering beyond a single cell.

However, the overlap with particles in the neighboring cells can extend at most up to

the second-nearest-neighbor cells (diagonally neighboring cells). Consequently, smaller

the cell size more relevant the cell-cell exclusion effect. The cell-cell exclusion leads to a
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further reduction of the average cell population, illustrated in Fig. 4.8, where α = 1.2 and

β = 0.2. For these values of the parameters, each cell has enough area to accommodate

up to four particles, but excluded volume interaction due to nearest-neighbor cells for this

low value of β substantially lowers the average cell population, as compared, e.g., with

that of Fig. 4.5 for α = 1.2 and β = 1.2: the average number of particles per cell in the

case of β = 1.2 is 2.487± 0.001, while that of β = 0.2 is 1.3407± 0.0006. Notwithstand-

ing, the case of β = 0.2 still has a higher value of the coverage, 0.5373± 0.0002, while for

β = 1.2 the value of the coverage is lower, 0.3391± 0.0001, because of more void space in

the inter-cells region.

4.3.3 Interparticle distribution function

So far, discussion was focused on the coverage efficiency and qualitative descriptions

of the structure based on representative snapshots. To further characterize the jammed

state, we introduce the distribution function of the distances, r, between the centers of

adsorbed particles, Prad(α, β; r).

The system is translationally invariant in terms of the integer multiples of the unit cell

size (α, β), because we use periodic boundary conditions both horizontally and vertically.

Therefore, instead of particle centers positions, only displacement vectors between particle

centers matter when studying particle-particle correlations. For convenience, in order to

avoid discussion of the“connected”part vs. the full correlation function, we normalized the

correlations by counting only distances between pairs of particles within a cutoff distance,

R. The distances r and R will be assumed dimensionless, measured in units of the particle

diameter. We found it appropriate to limit our study to separations up to R = 5(α+ β).

Since we are interested in the tendency for semi-ordering on length scales of several

unit cells, we found it convenient to define

Prad(α, β; r) =
Number of pairs of particles with distances in (r, r + dr)

r dr (Total number of pairs of particles at distances < R)
. (4.9)
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This distribution function is normalized as follows,

∫ R

0

Prad(α, β; r) r dr = 1 . (4.10)

The shape of the distribution function at the jammed state depends on the values of

α and β. The position of the first peak measures typical distances between the closest

particles. To better understand the role of α and β, we considered three families of

distribution functions, as defined in the following subsections: effect of varying α, effect

of varying β, and behavior along β =
√

2α.

Effect of varying α on the distribution function

We start by studying the influence of varying the cell size, α, on the semi-ordering of

the jammed state. We carried out a series of simulations at fixed β = 1.2 and varied α.

The results are shown in Fig. 4.9(a). The dimensionless center-center distance, r— the

horizontal axis of the plot — was further rescaled in terms of the unit cell size, to r/(α+β),

see Fig. 4.9.

Keeping β ≥ 1, here β = 1.2, corresponds to the NICCA case. In the NICCA-SPCA

case, the first peak appears at a unit (rescaled) distance, since the distance to the closest

particle, on average, is that to the nearest-neighbor cell. For NICCA-SPCA, well-defined

peaks also appear that correspond to other underlying lattice distances defined by the

square-lattice pattern. This is apparent in the distribution functions for α = 0.2, 0.4,

shown in Fig. 4.9(a), with peaks at distances of 1.0,
√

2 ≈ 1.4, 2.0, and
√

5 ≈ 2.2, etc.

Increasing the value of α in the NICCA-SPCA regime increases the uncertainty in the

position of the particle within the cell, i.e., it leads to peak broadening.

Now, in the NICCA-MPCA case, the position of the first one or more peaks depends

on the value of α for a given value of β = 1.2 > 1; also shown in Fig. 4.9(a). Additional

peaks will reflect the intra-cell particle distribution and can be positioned well below the

unit-cell size. Peak broadening and peak-peak overlap are superimposed in this case, but

the pattern-induced tendency for semi-ordering is still quite visible in the appropriate
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curves for α = 0.8, 1.4 in Fig. 4.9(a).

In the ICCA case, the structure and the position of the first peak will be more complex

due to the possibility of overlap of an incoming particle with others belonging to neigh-

boring cells. In terms of the distribution function, the presence of the excluded volume

interaction has an interesting effect of smoothing out the lattice-induced tendency for

ordering, as shown in Fig. 4.9(b). The effect is particularly noticeable when one compares

these plots with those for the same values of α in Fig. 4.9(a). The features of the distri-

bution function seem to be determined primarily by the particle-particle jamming effects,

rather than by the underlying landing-cell pattern.

Finally, for β = 0.8, though the interaction between particles at different cells is

present, it is not as prominent as for β = 0.2, and one observes an intermediate behavior,

as shown in Fig. 4.9(c). The distribution function is still smoothed out due to the jam-

ming effects between particles at different cells, but traces of the lattice-induced ordering

remain, specially for α = 0.2, 0.4.

Effect of varying β on the distribution function

To discuss the effect of the value of β on the structure of the jammed state, let us first

consider fixed α = 0.2, with varying β = 0.2, 0.5, and 1.2, as shown in Fig. 4.10(a). One

observes that, as β increases, the distribution function becomes more detailed with peaks

becoming sharper. There is also peak splitting, related to a lesser degree of excluded

volume interaction between a particle attempting adsorption and another one from a

different cell. We comment that for values of β ≥ 1 the general shape of the radial

distribution function is no longer changing, since particles cannot overlap.

The excluded volume interaction with particles belonging to neighboring cells also

reduces the number of particles effectively adsorbed in a cell as observed in snapshots of

the jammed state in Figs. 4.5 and 4.8, with α fixed at 1.2, while β changing from 1.2 to

0.2, respectively.

For α = 1.2 and for increasing values of β in the interval (0, 1), one observes that the
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radial distribution function reflects more structure from particle arrangements inside the

cells, see Fig. 4.10(b). As β increases, the position of the first peak also shifts to lower

values. However, as far as the pattern-induced ordering is concerned, very little trace is

left of it, and the curves are relatively flat, dominated by particle-particle jamming effects.

Jammed-state structure along β =
√

2α

As our last example, we consider the effect of changing both α and β along the diagonal

of the ICCA-SPCA region, which corresponds to values of 0 < α < 1/
√

2 and 0 < β < 1.

Here particles are larger than the cells and they can overlap particles from neighboring

cells, not necessarily the nearest-neighbor ones. In the ICCA-SPCA regime, particle

deposition leads to highly correlated jammed structures.

Though not specifically taken along the diagonal line, a snapshot of such a highly-

correlated jammed state can be seen in Fig. 4.7. As a rule, the tails of the distribution

functions, see Fig. 4.10(c), mostly coincide regardless of the values of both α and β. This

simply reflects the fact that these correlations are dominated by the excluded-volume

jamming effects, rather than by the landing-cell pattern. However, correlations up to

(scaled) distances of ∼ 2.5 units do show parameter-dependent features. Specifically, the

position of the first peak shifts to lower values of the distance, since the relative size of

the particles compared to that of the unit cells decreases for increasing values of α (or β).

4.4 Adsorption kinetics

Previously, we have discussed the jammed-state structure obtained through adsorption

under the constrain of a pattern. In the present section, we discuss the influence of the

pattern on the adsorption kinetics. As stressed in Chapter 1, the obtained structures

in far-from-equilibrium systems are strongly dependent on the time evolution of the film

growth.

The kinetic evolution of the coverage toward the jammed-state value, in the RSA
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model, is characterized by different functional dependence on- and off-lattice. For the

lattice case, the coverage approach to the jamming limit is known to scales according to

an exponential law [121],

θ(∞)− θ(t) ∼ exp(−kt) . (4.11)

Off-lattice [175, 177, 178, 179, 227, 228], since vanishing-small areas available for adsorp-

tion can occur, the approach extends in a power-law,

θ(∞)− θ(t) ∼ t−
1
d . (4.12)

Such result was observed by Feder through computer simulations [175] and later ex-

plained by Pomeau [177] and Swendsen [178]. For disks with equal size, adsorbing on a

clean/regular substrate, d = 2.

The pattern allows to interpolate between the continuum limit and the lattice like be-

havior, therefore it is important to identify where the transition occurs for the considered

pattern as well as characterize it. The transition is expected to occur when there is no

minimum finite area available for adsorption, meaning that vanishing-small areas can be

obtained, with non-zero probability. In the ICCA-SPCA limit, since only one particle

can fit per cell, the existence of minimum finite area is related with particles previously

adsorbed on neighboring cells. When a particle is successfully adsorbed, due to excluded

volume interaction, no more particles can adsorb in a circle with radius equal to 1 (units

of particle diameter) centered in the particle center (“shadowed” region). If the “shad-

owed” region of four particles adsorbed on neighboring cells can completely overlap the

cell (blocking adsorption), there is no minimum finite area available to accommodate one

particle (see Fig. 4.11). On the other hand, if particles adsorbed on neighboring cells can-

not lock adsorption inside the cell, a minimum finite area is obtained in the interception

of the four “shadowed” regions. The transition occurs for values of α and β such that

α

2
+ β = 1 , (4.13)
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α/2+β

Figure 4.11: For ICCA-SPCA, a particle adsorbed in a neighboring cell can constrain
particles adsorption on the central cell. For each adsorbed particle there is a “shadowed”
region where no other particle center can adsorb. If the overlap of the shadowed regions
of the four neighboring particles completely overlap the central cell, there is no minimum
finite area available for adsorption and the average number of particles per cell will be
less than one.
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Figure 4.12: For fixed value of cell size (α = 0.6) and different values of the distance
between cells (β = {0.3, 0.4, 0.67, 0.69, 0.71, 0.8, 1.2}): (a) Approach of the coverage to
the jamming limit as a function of time. (b) Distribution of empty, depositable, areas,
before the jammed state.

where no minimum available area can be defined in the interception of four “shadowed”

regions.

To characterize the transition, we fix the value of the cell size (α) in the SPCA regime

and range the value of the cell-cell distance (β). For α = 0.6, the critical value of β, given

by equation (4.13) is 0.7. In Fig. 4.12(a) is the approach of the coverage to the jamming

limit, for different values of β, as a function of time. For values of β below the critical

value the approach scales as a power-law. Up to four particles adsorbed on neighbor cells

are able to completely block the adsorption on the cell. Approaching the critical value,

the power-law is only recovered for later times. The exponent is always 1/2 as expected

for adsorption of monodisperse particles on a clean substrate [175, 177, 178]. For values

of β above the critical value, the coverage approaches the jammed state exponentially. A

minimum finite area occurs in the interception of the four particles “shadowed” region. It

is important to stress that we are reporting lattice like behavior even in the ICCA regime.

More insight into the system can be obtained with the distribution of empty, de-

positable, area (gaps). Such gaps are defined as regions where the geometrical center of

a particle can land without overlapping a previously adsorbed particle. In Fig. 4.12(b)
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Figure 4.13: For fixed value of cell-cell separation (β = 0.7) and different values of the cell
size (α = {0.2, 0.4, 0.55, 0.59, 0.62, 0.7}): (a) Approach of the coverage to the jamming
limit as a function of time. (b) Distribution of empty, depositable, areas.

is plotted the probability distribution of gaps available for adsorption before the jammed

state is attained, for t = 100 for all values of β, except β = {0.8, 1.2}, where t = 30. Such

difference is due to the fact that, for the exponential behavior, the jammed state is at-

tained much earlier than in the power law side. When power law holds, a vanishing-small

area can be obtained with non-zero probability. In the exponential side, the distribution

is characterized by a minimum finite area. The minimum finite area corresponds to the

interception of the four “shadowed” regions, eq. (4.13).

The same transition is observed when we fix the cell-cell separation (β) and range the

values of cell size (α). We keep the value of β = 0.7 and range the values of α from 0.2

to 0.7, all in the SPCA regime, see Fig. 4.13. According to eq. (4.13), for such value of β

the value of α where the transition occurs is 0.6. All the observed behavior for fixed cell

size is observed (see Figs. 4.12 and 4.13).

As previously stated (see Sec. 4.3) [187], ranging the values of α and β, a rich set of

morphologies is obtained at the jammed state. Consider the SPCA, in the NICCA regime,

since adsorption on an empty cell is not constrained by particles previously adsorbed on

a neighboring one, adsorption can occur, with equal probability, all over the cell. On the

contrary, in the ICCA regime, the adsorption inside the cell is non-uniform. In Fig. 4.14 is
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Figure 4.14: Spatial distribution of particles inside the cell, at the jammed state, for
α = 0.6 and for different values of β: (a) 0.4, (b) 0.5, (c) 0.6, and (d) 0.7.
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(a) (b)

(c) (d)

Figure 4.15: Snapshot of the jammed state with 30 × 30 unit cells, for α = 0.6 and for
different values of β: (a) 0.4, (b) 0.5, (c) 0.6, and (d) 0.7.
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Figure 4.16: Spatial distribution of particles inside the cell for α = 0.6 and β = 0.7 for
different values of coverage: (a) 80%, (b) 90%, and (c) 99.9% of the jamming coverage.

plotted the spatial distribution of particles inside the cell, at the jammed state, for α = 0.6

and different values of β = {0.4, 0.5, 0.6, 0.7}. Snapshots of the system, for different values

of the two parameters, are in Fig. 4.15. For β = 0.4, particles adsorb preferentially at

the cell edges. Approaching the critical value of β = 0.7, the probability of adsorption in

the cell center increases. It is then relevant to understand how such behavior emerges in

time.

For RSA on a clean substrate (without the pattern), Pomeau [177] proposes two steps

for the dynamics. An initial stage where large holes are filled up so the progress is

exponential, and a later one where small holes are filled, being power law. Particles

adsorbed during the former step are distributed randomly in the cell. The structure of

the spatial distribution of particles inside the cell is, then, defined by the latter step.

When the adsorption constrain, due to the interaction between cells, is significant, the

spatial distribution of particles inside the cell reveals preferential regions. In Fig. 4.16,

are the spatial distributions of particles inside the cell for (α, β) = (0.6, 0.7), and for

different values of the coverage, namely, 80%, 90%, and 99.9% of the jamming coverage.

In Fig. 4.14(d) is the distribution at the jammed state. The preferential region in the

center of the cell only becomes bold for later times, close to the jammed state.

The present results were obtained with computer simulations. A system size of 103×103

unit cells (of the pattern) was considered. Periodic boundary conditions were applied

both horizontally and vertically. Regarding the number of samples, for the distribution of
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Figure 4.17: Scheme of the algorithm.

empty, depositable, area, it was different from case to case, based on the frequency (num-

bers) per bin of the distribution, such that a frequency of 103 cases per bin are obtained,

assuming uniform distribution. For the remaining data, results have been averaged over

103 samples. Distributions were computed with 80 bins per unit area, yielding a resolution

of 1.25% of the unitary area.

4.5 An efficient algorithm

In the present section, the algorithm developed to obtain the results discussed above,

is presented (the algorithm is summarized in Fig. 4.17). Given the relevance of the RSA

model, a general description is considered, which includes both the clean and patterned

substrates.

Two different stage of the RSA process can be identified. At early times, the excluded
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volume condition plays a weak role, since particle adsorption takes place almost uniformly

on the substrate. At late times, the typical scenario involves a myriad of disconnected

regions where adsorption can take place with areas (volume in general) varying across

different orders of magnitude [177, 178] (see Figs. 4.12(b) and 4.13(b)). Therefore, a

naive trial and error algorithm is far from efficient since the number of failed trials will

drastically rise with the coverage.

Several algorithms have been introduced in the literature [179, 180, 225], which go

beyond the naive trail and error one. For example, in the case of the adsorption of

oriented squares on a surface, Brosilow et al. [179] were able to write a fail proof algo-

rithm. In contrast, Privman et al. [180] and later Wang [225] introduced non-fail proof,

though efficient versions for the deposition of disks on surfaces. Other studies included,

for example, different particle shapes and size distributions [179, 180, 188, 224, 229, 230],

competitive adsorption of different particle types [146, 224, 229], pre-treated substrates

[128, 187, 217, 231], etc. Efficient algorithms are, thus, paramount to perform extensive

simulations, particularly near the jammed state. Though we did not explicitly include

the possibility of detachment [232], such a process can be effectively accounted for by

performing the reverse actions necessary for a successful adsorption attempt.

An algorithm able to reach the jammed state is bound to offer more significant digits

for the same amount of sampling and system size. In the present section, we introduce

one such algorithm used and tested across a substantial set of study cases, which allows

us to extend previously reported results and present new ones [121, 127, 128, 225, 146,

187, 188, 189]. The event-driven algorithm outlined in this work makes the attainment

of the jammed state possible, since we use overlap conditions up to four particles. These

overlap rules are general enough to allow size dispersion to be considered, regarding that

a minimum and a maximum size is defined. The substrates can also be either clean,

patterned, or pre-adsorbed.
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4.5.1 Clean substrate

The main feature of the RSA problem regards its ability to describe physical phenom-

ena that do not have mobility within experimental timescales. However, in order to make

further progress, we adopt a terminology used in the field of colloidal particle adsorption,

but the ideas and concepts are more general.

As described in the section about the model, the RSA model assumes that particles

land uniformly (i.e., without any spatial dependence) on a substrate (in two dimensions).

Everytime a particle attempts adsorption, such an attempt only succeeds if the landing

particle does not overlap a previously adsorbed one. Once adsorbed, a colloidal particle

will ’stick’ to the substrate, i.e., it will not diffuse on or detach from the substrate [125],

a regime known in the literature as irreversible adsorption.

Though the present chapter is devoted to the adsorption on patterned substrates,

previous research have focused on studies of the irreversible adsorption on ’clean’ (i.e.,

non-patterned or pre-treated) substrates [180, 184, 225]. Recall that studies of the jammed

state require algorithms, which remain efficient at late times, i.e., the number of adsorption

failures is as few as possible, without biasing the results. Therefore, a naive trial and error

algorithm is a far-from-good option since it would blindly attempt adsorption of particles

in the ’physical’ perspective, i.e., without regard to substrate areas blocked from further

adsorption by previously adsorbed particles.

The existence of a jammed state implies that the available area for adsorption decreases

each time an adsorption occurs. Consequently, one naturally expects the time for such

an algorithm to be limited by the smallest available area for adsorption at late times

and, since such an area can be several orders of magnitude smaller than the total area,

the efficiency decays by a factor of the order of the ratio of the total and the available

areas. One cannot expect such algorithms to reach the jammed state, so coverage results

represent lower bounds. To overcome such shortcomings, more efficient algorithms have

been proposed [179, 180, 225]. The main idea is to perform adsorption attempts only at

those regions were the available area for adsorption is maximized (we describe below how
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this can be accomplished). We also point out that such improved algorithms are still of

the trial and error type, but with a much better efficiency.

Finally, it is of interest to describe how the system approaches the jammed state. To

this end, the time unit is naturally defined in terms of the number of particles necessary

to cover the substrate, so that if a adsorption event for a particle of area a fails, the clock

still ticks on average by a/A, where A is the substrate area. For example, for the specific

case of adsorption of disks the time increment is obtained by eq. (4.2) as discussed above

[121, 128]. The time increment after every adsorption attempt in the naive trial and error

algorithm is proportional to such ratio. Using the idea of available areas for adsorption,

the time increment between consecutive adsorption attempts is

∆t = − ln (1− Yt) a
Λ

, (4.14)

where Λ represents the area engulfing all available areas for adsorption and Yt is a uni-

formly distributed random variable in the interval [0, 1[. The former quantity includes not

only the available area for adsorption, but also already blocked areas. Ideally, one would

like to prevent blocked areas to be taken into account, but we show below that there are

situations where the presence of such areas is either unavoidable or too cumbersome to

be completely eliminated.

The equation above can be understood in the following way: the average number of

landing attempts within the area Λ is proportional to Λ/A, while the time per attempt is

given by a/A. Consequently, the time for a particle to land within the Λ region is given

by a Poisson process with average time of a/Λ, i.e.,

P (4t) = exp

(
−Λ

a
∆t

)
, (4.15)

see eq. (2.15) and respective discussion. Similar ideas where also used by other authors

[88, 179, 225].
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The basic algorithm

For the sake of simplicity, we now present a basic description of the algorithm, while

leaving more specific cases to later subsections of this section. Let us consider the contin-

uum adsorption on a two-dimensional substrate (surface), but our considerations can be

straightforwardly extended to higher spatial dimensions.

As above-mentioned, a simple minded overlap test based on previous adsorbed par-

ticles becomes particularly unfeasible at late times from the computational perspective.

Using the idea of making deposition only on the available areas can actually increase the

computational efficiency of the algorithm. A practical implementation includes the notion

of a mesh cell, i.e., a discretization of the substrate into an array of square cells arranged

in square lattice pattern. Such mesh cells are virtual in the sense that no physical meaning

is associated with them, but they provide for an efficient way of identifying neighboring

particles (i.e., previously adsorbed particles) [179, 184, 223, 225, 233]. The size of a mesh

cell is such that a single particle completely inscribes it. As an example, in the case of

disks of unit diameter, the linear size of the mesh cell, c, has to be c <
√

2/2, so we

choose, c = 1/2 for simplicity.

To provide for a fast identification of neighboring mesh cells, each mesh cell can have

three different states, namely, occupied, shadowed, or free. Occupied mesh cells are those

with the center of an adsorbed particle inside it, while shadowed ones are those completely

overlapped by one or more neighboring, adsorbed particles. Free mesh cells have, at least,

a region within where adsorption is possible. It is clear that the area of all free mesh

cells is simply Λ, which amounts to nfc
2, where nf is the number of free mesh cells. Up

to this point we introduced the basic terminology necessary to understand how the basic

algorithm works.

Let us now proceed towards the full description of the basic algorithm, especially in

what concerns the role of the mesh cells. A list of all free mesh cells is used to draw

adsorption attempts. A mesh cell belonging to this list is randomly chosen with uniform

probability, with uniform random coordinates within the cell also drawn for the particle
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center. If the particle does not overlap any previously adsorbed one, the attempt is

successful. Otherwise, it fails and the substrate remains unchanged. In either cases, time

is incremented using equation (4.14), which gives the appropriate time increment for each

adsorption attempt. Here, we comment that Λ represents an area that is at least equal

to the available area for deposition, but it is usually larger as some of the free mesh cells

can be partially shadowed by neighboring (previously) adsorbed particles. This is why

one still needs to test the landing particle for overlap. Nonetheless, such a procedure

maximizes the number of successful trials.

In the event of a successful attempt the chosen free mesh cell becomes now occupied

and neighboring mesh cells are tested for shadowing. In the latter case, shadowed mesh

cells are all those were adsorption is no longer possible, which includes not only the ones

overlapped by the adsorbing particle, but also the ones provided by the excluded volume

interaction. For example, for the case of adsorption by disks of fixed radius, the overlapped

cells are all those fully within a distance equal to the radius of the disk, but the excluded

volume interaction eliminates also those within a radius twice that of the disk. Partially

covered cells are kept free. It is now straightforward to observe that more stringent rules

can be made on the classification of partially shadowed mesh cells. We will return to this

subject later on.

The above procedure is iterated until one reaches a pre-defined critical number of free

mesh cells, usually defined as a fraction of the initial total number of mesh cells. The

actual value depends on the particularities of the problem at hand and the iteration level

of the mesh cells. As one approaches the critical value, the population of free mesh cells

are those with a reasonable shadowed area inside them. Upon reaching such a critical

value, one rescales the size of each mesh cell by halving its linear size, i.e., the rescaled

value of c is c/2. This procedure multiplies by four the initial number of mesh cells.

However, in the new mesh, some of the mesh cells previously reported as free, will now

have part of their offspring classified as shadowed. Consequently, the entire procedure

removes shadowed areas from the pool of free mesh cells, thus enhancing the probability
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(a) (b)

Figure 4.18: Snapshot of the system before and after rescaling. The black squares repre-
sent the free mesh cells. Without changing the coverage, a rescale of the mesh cell reduce
the total area where adsorption attempts take place.

for successful attempts each time such a mesh cell is chosen from the list of free mesh cells

(see Fig. 4.18).

As the adsorption attempts proceed, it is important to rescale the mesh size, if the

number of failed attempts becomes high enough to favor the rescale procedure. Other-

wise, it is computationally more efficient to remain at that iteration level of the mesh.

This finalizes the explanation of the basic algorithm and we now proceed to describe the

sufficient conditions for the elimination of mesh cells.

4.5.2 Mesh-cell test conditions

As mentioned previously, the conditions for changing the status of mesh cells from free

to shadowed are fundamental to the efficiency of the algorithm. To this end, the set of

overlap test rules must be as inclusive as possible. We mention that they can be applied

to any particle size distributions as far as they allow for a positive minimum value of the

radius, rmin, and also a finite maximum value of the radius, rmax.
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(a) (b)

(c) (d)

Figure 4.19: Scheme of shadow tests for (a) one particle, (b) two particles, (c) three
particles, and (d) four particles. The blue cells are the ones that become shadowed due
to the mesh-cell test.
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Each rule involves a given number of particles, and in the present case we define rules

involving up to four particles. In the case of a single particle, the condition is simply to

have the four corners of the mesh cell inside the circle of radius r + rmin, where r is the

radius of the adsorbed particle, see Fig. 4.19(a). The two particles condition, Fig. 4.19(b),

allows for further elimination of mesh cells. Such rule applies only to mesh cells partially

shadowed by a particle with another one within a distance of r + rmax + 2rmin. The idea

is to define a band consisting of two parallel straight lines along the centers connecting

both particles and passing through the intersection points of the circles. All mesh cells

with the four corners within the band and the center of the circles are eliminated. The

rule involving three particles, Fig. 4.19(c), compounds on the previous one involving two.

At the intersection of the two circles the two-particle rule fails, but the mesh cell can

still be shadowed by the presence of a third particle at a distance r + rmin. Finally, the

case involving four particles, requires that the intersection points between two particles lie

within the same mesh cell. The fourth particle must be a distance r+rmin across the band

relatively to the third particle, see Fig. 4.19(d). The set of rules can be applied to various

commonly studied cases such as the monodisperse, truncated Gaussian distribution, and

binary mixtures [128, 187, 188].

4.5.3 Pre-patterned substrate

In the context of the present thesis, we consider as a pattern equal-size cells regularly

distributed (see Fig. 4.1). Despite that, other patterns can also be considered as well as

other arrangements. For example, a pattern can also consist of randomly placed regions

like the hexagonal pits appearing on InGaN/GaN [234]. Another possibility is the study

of adsorption on pre-adsorbed substrates [141, 217]. Meaning that film growth takes place

in two stages, an initial one consisting of adsorption of one type of particles followed by a

second stage where a different type attempts adsorption (see previous chapter). Typically,

particles have different sizes and shapes, and the coverage at the end of the first stage

does not necessarily have to reach the jammed-state value.
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The presence of a pattern puts some restrictions in the algorithm by reducing the

initial number of free mesh cells. Those mesh cells falling outside the pattern cells are

immediately considered as shadowed. In terms of performance, it is important to elimi-

nate adsorption attempts outside of any given cell by performing such test first and only

consider the overlap test after. Everytime rescaling occur, the presence of the pattern

must be considered when testing mesh cell offsprings for shadowing.

In the specific case of the pattern consisting of square cells mentioned above, one

can perform the overlap test of the mesh cells by considering the actual available area

for deposition instead that of the original mesh cell. This can be easily implemented by

considering the vertices of the resulting rectangle after the original mesh cell being clipped

by a given cell and use such coordinates as the effective ones for the overlap tests.

Contrary to the basic algorithm, to study adsorption on substrates without pattern,

the pattern can fundamentally change its efficiency. As discussed above, the considered

pattern can change the functional dependence of the coverage approach to the jamming

limit from power-law to exponential. Note that, for certain regions of the two-parameter

diagram (see Fig. 4.3) some more tailored algorithms can be developed. For example,

when NICCA case is considered, the decoupling of the kinetics in different cells can be

used to develop parallelized versions of the present algorithm.

4.5.4 Some results

The algorithm described allows us to obtain more significant digits for previously

calculated results in the literature. Of course, apart from the intrinsic efficiency of the

algorithm, there is also the gain in computer power since the time of their publication.

Nonetheless, our results are truly pushed to the jammed state for each of the samples, i.e.,

no large enough space is left to accommodate one more particle. Otherwise stated, the

number of samples for each data point is 103 samples and periodic boundary conditions

apply both horizontally and vertically.

The first case regards adsorption of monodisperse disks on a clean substrate for a
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Table 4.4: The table presents the jammed state coverage (θ∞), the coverage error (σθ),
and the computational run time (tCPU), as a function of the linear system size (L), for
103 independent runs of monodisperse particles adsorption on clean/regular substrate.

L θ∞ σθ tCPU(s)
16 54.670 0.031 47
32 54.673 0.015 318
64 54.6941 0.0080 1559

128 54.6985 0.0039 2577
256 54.6993 0.0019 9081
512 54.70054 0.00098 31889

1024 54.70612 0.00048 152672
2048 54.70650 0.00024 819996
4096 54.70669 0.00012 2047776

linear system size, L, of 4096 particle diameters. We obtain the value of the coverage as

54.70669± 0.00012 at a full jammed state. This value is substantially more precise than

previously values of 54.70690±0.00007 by Wang [225], 54.67±0.03 by Meakin and Julien

[224], 54.6± 0.2 by Hinrichsen et al. [223], and 54.73± 0.09 by Tanemura [222].

We present in Table 4.4 the values of the coverage as a function of the linear size of

the system together with their respective statistical errors. In Fig. 4.20(a), it is plotted

the coverage vs the linear size of the system. The inset shows the coverage vs 1/L, which

implies that in the thermodynamic limit, L → ∞, 54.71% is a reasonable upper bound

value. We do not only present the value of the coverage, but also the second cumulant

of the distribution P (θ)dθ, i.e., the variance of the coverage. This is accomplished in

Fig. 4.20(b), where the log-log plot of the variance of the coverage as a function of the

system size (L2) is shown.

We also showed that the algorithm provides for accurate time evolution towards the

jammed state (see Sec. 4.4). Recall that, according to Feder’s law, the approach to the

jammed state in continuum RSA scales according to a power-law, eq. (4.12), where d

represents the effective dimensionality of the problem [175, 177, 178]. For monodisperse

particles, d = 2, while for polydisperse particles, d = 3. In fact, the approach to the
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Figure 4.20: For the irreversible adsorption of monodisperse disks. (a) Coverage, θ∞ as
a function of the linear size of the system. (b) Error of the coverage as a function of the
system size.
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Figure 4.21: Coverage as a function of time for adsorption on clean/regular substrates. On
clean substrates, adsorption of monodisperse particles for a system size of L = 4096 (red
solid line) and truncated gaussian-size distributed particles with size dispersion of 1% and
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Figure 4.22: Run time as a function of substrate area for 103 independent runs of monodis-
perse particles adsorption on clean/regular substrates.

jammed state is characterized in the latter case by a crossover from d = 2 to d = 3

[224, 228] with the crossover time shifting to later time with decreasing values of the size

dispersion. Consequently, on finite systems and at low size dispersions the crossover to

d = 3 can actually not be observed. The only way is to simulate larger system sizes

and be able to reach the jammed state, a feature easily achieved with the present type

of algorithms [224, 235]. Figure 4.21 shows plots of the time dependence of the coverage

at late times for the cases monodisperse and polydisperse particles on (clean) substrates.

In specific case of the polydisperse adsorption of disks, the linear size of the systems is

L = 2048 mean particle diameters. A truncated Gaussian size distribution is used to

simulate a 1% spread around the mean value, where truncation means that values outside

the interval ]rmin, rmax[ with rmin =< r > −2σ, rmax =< r > +2σ, where σ represents the

dispersion around the mean, are neglected. Such a value of the polydispersity is considered

highly monodisperse in experimental terms, where size dispersions of . 4% are considered

highly monodisperse. Finally, we point out that the simulation results do confirm Feder’s

law.

We now address more technical details as they do not contribute directly to the physics

of the problem, but more into the properties of the algorithm, e.g., the CPU time depen-
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dence with the linear size of the system. The CPU time dependence is shown in Fig 4.22

and in Table 4.4. Figure 4.22 shows a power-law dependence of the CPU time, tCPU, with

the system size, L2, i.e.,

tCPU ≈ L2η , (4.16)

where3 η = 0.94± 0.03.

We point out that the dependence of the tCPU on the linear size of the system should

also dependent on, at each iteration of the mesh, the critical free-mesh cell number, i.e.,

the number of available free-mesh cells below which rescaling of the mesh occurs. This

can be understood as follows: a large critical value of free-mesh cell number favors an

’early’ rescaling of the system mesh, i.e., without a significant number of failed adsorption

attempts, thus leading to extensive overhead on the rescaling process. On the other hand,

if the critical free-mesh cell number is low, the number of failed adsorption attempts can

become high.

Pair correlation function

As discussed above, the interparticle distribution function is an important statistical

parameter to characterize the morphology of the jammed state (see Sec. 4.3.3). In Fig. 4.23

are the distribution functions for three different cases of adsorption on a regular substrate:

monodisperse particles on a system with size L = 4096; binary mixture of particles4 with

size ratio 2 for a system size of L = 2048; and truncated gaussian-size distributed particles

with size dispersion of 1% for a system size of L = 2048. These results are in agreement

with previous theoretical [236] and experimental results [176, 237, 238].

Since the present algorithm allows characterization of the jammed state, it is possible to

compute the pair correlation function in more detail. Our numerical results also reproduce

the logarithmic divergence expected at r→1 [177, 178]. The observation of such divergence

3The machine characteristics are Dual Intel Xeon (64-bits, 3.2 GHz, 2MB L2 Cache) with 8 GB RAM
and 80 GB Sata disk.

4As in the previous chapter, binary mixture is a mixture of particles with two different particle sizes.
An aspect ratio of two, means that the radius of the larger particle is twice the radius of the smaller one.
Both particle types arrive to the surface with the same flux.
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is strongly dependent on the system size, see Fig. 4.24, since the contact singularity is

difficult to observe.

4.5.5 Measurement of empty area distribution

To characterize the kinetic behavior of the system is important to compute the distri-

bution of empty area (see Sec. 4.4). A simple method is presented.

Clusters of empty mesh cells are identified with Hoshen-Kopelman algorithm [84]. For

each cluster, mesh cells are iterated (divided) kc times (only for cells of the cluster). Then,

for each offspring mesh cells, single particle overlap test is performed. If a mesh cell is

not completely shadow it contributes for the size of the empty area. Therefore, the size

(area) is obtained with a precision of (1/4)kcc2.

4.6 Conclusions

We present a study of the random sequential irreversible adsorption of particles with

disk shape on patterned substrates. For simplicity we consider as a pattern equal-size cells

with square shape positioned in a square-lattice matrix, such that we have one particle

per vertex of a square lattice.

To characterize such pattern two parameters are used: the cell size and the cell-cell

separation. Therefore, a two-dimensional diagram was presented and several adsorption

regimes identified. We characterize the influence of the pattern on both the jammed-state

structure and the kinetic evolution of the film. We report that by tuning the values of the

pattern parameters, it is possible to control the jammed-state morphology. Specifically, it

is possible to range from a completely ordered structure, reveling the order of the pattern,

to an homogeneous structure qualitatively similar to the one obtained with the regular

RSA model. In between, interesting, non-trivial, morphologies are observed, with local

order resulting not only from the constrain of the pattern but also due to the cooperative

interaction with particles previously adsorbed. Such particles can be adsorbed in the same
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cell or in a neighboring one.

Through the pair correlation function we characterize the particle-to-particle corre-

lation and systematize the influence of each parameter in the jammed-state structure.

We observe that, in the presence of the pattern, the distribution is characterized by a

sequence of peaks. The cell size is related with the dispersion of the peak and the cell-cell

separation with the distance between peaks.

To perform such extensive Monte Carlo simulations we develop an extended version

of algorithms previously proposed by Privman et al., Brosilow et al., and Wang et al.

[179, 180, 225]. Specifically, the main advantage of the present one relies on the overlap

rules as well as on its straightforward extension to different patterns. As discussed in

Sec. 4.5, such algorithm has been applied to different study cases, not only the adsorption

of monodisperse particles [128, 187, 189] but also to the adsorption of particles with

truncated gaussian-size distribution [188] and a binary mixture.

The algorithmic approach is also amenable to be extended to include other geometrical

or even complex particle shapes. However, in such cases overlap rules become different and

have to be redefined. Besides, is also straightforward to adapt the same set of concepts to

other types of patterns. The same algorithm can be applied to different system dimensions.

For example, we develop the same algorithm to study the kinetic evolution of the coverage

during adsorption on a line. Notwithstanding, as referred in the Chapter 3, to study the

jammed-state structure, other more tailored algorithms have been developed [146].





Part III

Down to the Atomic Scale





Chapter 5

Islands nucleation and growth:

submonolayer epitaxial deposition

“The individual organs follow the same pattern as the
whole organism, i.e. they have their period of growth, of
stationary, maximum activity and then of aging decline.”

W. Ostwald, in Nobel Lecture (1909)

So far, the discussion about films growth has been focused on the irreversible adsorp-

tion regime, i.e., after being adsorbed, particles cannot detach or diffuse, at least within

experimental time scales. Besides, landing particles have been considered much larger

than the ones from the substrate, leading to a continuum description of particles posi-

tion on the substrate. However, for certain films, diffusion of particles can no longer be

neglected, so the relaxation process is fundamental to understand the physical phenomena.

Understanding how relaxation affects film growth is the main goal of this chapter.

The film evolution is a balance between the deposition process, that kicks the system to

out-of-equilibrium conditions, and the diffusion process driving the system to equilibrium,

therefore, the system is kept out of equilibrium during deposition. If the deposition of

particles stop, the system relaxes towards equilibrium and, eventually, after a typical

131
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relaxation time, the equilibrium configuration is obtained.

Example of such systems is the growth of films on crystalline substrates, e.g., the

growth of Ag/Ag(100) that is addressed in this chapter. Specifically, we focus on the

formation of the first layer of atoms (layer with one atom thickness). At such length

scales, an atomistic description of the system is required. Thiel and Evans [239], in a

recent review of the key energetic parameters of diffusion on Ag/Ag(100), refer a set of

reasons to study silver. We stand out the fact of being representative for investigation of

the main mechanisms in higher melting point metals like, e.g., Pt and Fe, which are more

difficult to study.

Metals like silver tend to arrange on a FCC lattice [240]. Such structure is characterized

by a lattice constant alc that differs from metal to metal. Consequently, the description of

the growth needs to take into account if the deposited atoms (film atoms) are of the same

type of the surface atoms (substrate atoms) [77, 241]. If the film atoms and the substrate

ones are of the same type, the natural distance between particles is the same, both in the

film and in the substrate. Therefore, a strain-free structure can grow. Such deposition

regime is known as homoepitaxial1 [243, 244, 245]. On the other side, in heteroepitaxial

regime [246, 247, 248, 249], the deposited atoms and the surface ones have different typical

distances (lattice constant) so, a mismatch occurs and, consequently, the film grows under

strain. Besides, different interactions between particles lead also to interesting phenomena

not observed within homoepitaxial growth [250, 251, 252].

Typically, the obtained films have a thickness larger than the atomic size (multilayer

growth)[16, 77, 241, 247, 253]. Though, since the first layer works as a template for the

multilayer growth, it is important to study the submonolayer regime [254, 255].

We start with the discussion of the diffusion process and we describe the type of models

that have been developed to study islands nucleation and growth. Following, we introduce

our model and characterize the submonolayer growth of Ag/Ag(100) at 200K. Specifically,

we discuss the influence of the flux in the density of islands, in the mean island size, and

1The term epitaxial was coined by L. Royer [242] and comes from the Greek, where epi means “on”
and taxi means “order”.
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in the island size distribution.

5.1 Surface diffusion

For films growth on crystalline substrates, two different types of processes are relevant:

the deposition and the diffusion. The former consists of the flux of particles randomly and

uniformly all over the substrate, while the latter one is the subject of the present section.

Atoms, after being deposited, hop on the surface between different lattice positions.

Such hopping process is a thermally activated process. Due to this phenomenon of mass

transport, particles nucleate and islands (cluster of atoms) are obtained. Therefore, the

morphology of the film is sensitive to the surface temperature [253].

The process of mass transport is known as diffusion. Two types of diffusion coefficients

can be identified [256]: collective diffusion and tracer diffusion coefficients. The collective

diffusion coefficient2 (Dc) describes the collective movement of matter due to concentration

gradients. Specifically, the mass transport can be described by,

∂Np

∂t
= Dc∇2Np , (5.1)

where Np is the density of particles. The tracer diffusion coefficient (D), describes the

mean square displacement of one isolated random walker per unit time (see Chapter 1). As

discussed below, such diffusion coefficient can be studied through the island size density.

At low coverage, when the interaction between film atoms can be neglected, these two

diffusion coefficients become equivalent. From now on, the latter coefficient is denoted

just as diffusion coefficient.

In Chapter 1, we have referred that the transition state theory (TST) can be applied

to compute the hopping rate of an adatom on a periodic substrate (see eq. (1.10) and

discussion therein). At that point, we have just referred the Arrhenius equation to obtain

the rate of the process from the temperature, the activation barrier, and the attempt

2In the literature is also possible to find other terms like chemical or Fickian diffusion.
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frequency. Though, TST can be formulated in a more general description to obtain more

insight of the attempt frequency. Generically, for harmonic TST, the hopping rate between

two different states is given by

ν =
kBT

h
exp

(
−∆F
kBT

)
, (5.2)

where ∆F is the difference in the Helmholtz free energy between the saddle point (tran-

sition site) and the local minimum of the potential energy surface (binding site), and h

is a constant. Using the Helmholtz free energy definition [2], F = E − TS, we separate

the energy term from the entropic one, in eq. (5.2), and arrive to the Arrhenius equation

(1.10),

ν = ν0 exp

(
− Ea
kBT

)
, (5.3)

where the attempt frequency (ν0) is given by,

ν0 =
kBT

h
exp

(
∆S

kB

)
. (5.4)

To a very good approximation, attempt frequency can be considered temperature inde-

pendent, since the decrease of the entropy variation with the temperature increase does

counterbalance the temperature increase in the prefactor of eq. (5.4) [256]. In the present

work, for the considered temperature of 200K and all possible transitions, the attempt

frequency is taken temperature independent and equal to 1013s−1.

The Einstein relation developed for the Brownian motion on a square lattice [256],

allows to relate the attempt frequency with the diffusion coefficient D by,

D =
1

2d
ν , (5.5)

where d is the dimension of the motion. The diffusion coefficient can then be obtained by,

D = D0 exp

(
− Ea
kBT

)
, (5.6)
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where

D0 =
1

2d
ν0 . (5.7)

To apply TST we assume that diffusion occurs through jumps between neighboring

sites and with atoms being most of the time at the binding sites. The latter assump-

tion allow us to consider that atoms have enough time to thermally equilibrate, with

the substrate, between transitions. Such consideration is fundamental to treat the sys-

tem evolution as a Markov process where successive transitions are uncorrelated. Voter

and Doll [257] demonstrate that TST and molecular dynamics yield similar results with

considerable computational savings in the case of TST. The efficiency of TST increases

with the decrease in the temperature. The lower the temperature, the greater the typical

resting time at the binding sites. On that ground, for low values of temperature, the time

increments between transitions are typically larger.

5.2 Definitions

Before going on with the model and the results, let us make some definitions like, e.g.,

the concept of island, density of islands, and mean island size.

Islands are defined as clusters with more than one atom. If s defines the number of

atoms in the cluster, then an island is characterized by s > 1. To characterize the number

of islands in the substrate, the density of islands (Nisl) is considered, which is defined as

the number of islands per unit lattice site. For a square lattice with lateral length L (in

units of lattice constants),

Nisl =

∑
s>1 ns

L2
, (5.8)

where ns is the number of islands of size s. The density of adatoms (N1) is, in a similar

way, given by

N1 =
n1

L2
, (5.9)

where n1 is the number of monomers. It is also possible to define the density of islands
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of size s (Ns), as

Ns =
ns
L2

. (5.10)

Together with the density of islands, to characterize the morphology of the surface at

the submonolayer regime, it is relevant to define the mean island size (sav) as the average

size of the islands,

sav =

∑
s>1 nss∑
s ns

. (5.11)

The out-of-equilibrium nature of the problem is related with the balance between the

flux of incoming atoms (Φ) and the diffusion of adatoms on the substrate (D). A relevant

parameter is the relation between these two, so we define RM as

RM =
D

Φ
. (5.12)

5.3 Modeling islands nucleation and growth

As discussed in Chapter 2, physical phenomena occur at different time and length

scales. Based on the problem at hands, it is important to define what are the phenomena

that we want to understand and the required level of detail to study them. The analysis

of the thin-film evolution and, specifically, the influence of the flux in such evolution,

requires, at least, time scales of the order of the second. Moreover, to attempt a statistical

description, in order to avoid statistical errors, large system sizes need to be considered.

Therefore, with Molecular Dynamics, it is not possible to achieve the required time scales

and system sizes. Theoretical models have been developed to analyze the island nucleation

and growth and results have been obtained with rate equations and/or direct simulation

[77].

In this section we describe the types of models that have been developed and, briefly,

discuss the use of rate equations to study such models. We leave to a later section the

use of kinetic Monte Carlo method to implement our own model.

Evans and Bartelt, in ref. [254], classify models into four different categories: models
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with critical size s∗, models with prescribed bond scission, nearest-neighbor pair-interaction

models, and classical “exact” treatments. In models with critical size s∗ [255, 258, 259,

260], islands with size s > s∗ are, assumed, stable and never dissociate. When such

type of models are studied with a rate equations formalism, substable (s ≤ s∗) clusters

are considered in quasiequilibrium (discussion below). For models with prescribed bond

scission [261], two possible choices can be followed: no breaking of any (single or multiple)

bonds or breaking of single, but not multiple bonds. This produces a model similar to

s∗ = 2 on a triangular lattice and s∗ = 3 on a square lattice. Since such type of models

can be mapped to the ones related with critical size, they lead to similar results. The

previous two types of models are only valid for regimes where the shape of the island does

not, significantly, affect the capture of particles in the neighborhood of the island. In fact,

the morphology of the island can influence, e.g., the density of adatoms and island size

distribution [262, 263, 264, 265]. Therefore, the study of restructuring is also relevant

[266, 267, 268, 269, 270].

The other two type of models account for relaxation phenomena. In the nearest-

neighbor (NN) pair-interaction models [271, 272], adatoms hop to empty nearest neighbor

sites with an activation barrier that depends on the number of intralayer NN adatoms

before hopping, specifically, activation energy is considered to be given by

Ea = Ed + nEbond , (5.13)

where Ed is the activation barrier for the adatom diffusion (terrace diffusion), Ebond is a

measurement of the strength of interaction, and n the number of nearest-neighbors before

hopping. Other similar models have also been developed with n being the difference

between the number of nearest-neighbors before and after the hop [266, 267, 268, 269]. In

the classically “exact” treatments of surface diffusion, a“catalogue”of all possible processes

[39, 97, 239] and respective rates is required. Values of activation barriers can be computed

with different techniques like, e.g., embedded adatom method (EAM) or density functional

theory (DFT), as discussed in Chapter 2. Typically, instead of considering all the possible
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transitions, phenomenological arguments are used to select the fundamental ones. In fact,

no one can guarantee that all the relevant processes are considered in the system, however,

for homoepitaxial growth, the use of a predefined list of processes has been leading to

satisfactory results. Notwithstanding, as discussed in Chapter 2, new methods based on

accelerated Molecular Dynamics [75, 114] and kinetic Monte Carlo with dimer methods

[104], are being developed to avoid a predefined, static, list of processes.

5.3.1 Rate equations

The most common analytical method to study submonolayer growth, specially nucle-

ation problems, is the use of rate (master) equations. A set of differential equations is

written and solved to describe the time evolution of the system. We follow the method-

ology used by Venables [273] to discuss the method. Such description is intended to put

forward the limitations of this treatment and stress where the computational methods can

bring more insight into the problem.

Atoms arrive to the substrate with flux Φ. Once deposited, they can diffuse, with a

diffusion coefficient D, or evaporate with a rate τa. Due to the diffusion process, adatoms

can collide with islands, with size si, at a rate Ui. Therefore, an ensemble of different

islands sizes is obtained on the substrate.

The density of adatoms (isolated walkers), N1, increases due to the deposition event

and decreases due to evaporation, collision between two adatoms leading to dimers, or

capture of adatoms by an i-island with size si. Generally, the rate equation for the density

of adatoms can be written as

dN1

dt
= Φ− N1

τa
− 2U1 −

∑
i>1

Ui , (5.14)

where the 2U1 refers to the collision between two adatoms and the
∑

i>1 Ui to the capture

by i-islands of size si.
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The rate equation for the density of islands of size si, Ni, is

dNi

dt
= Ui−1 − Ui (i > 2) , (5.15)

with a gain contribution from the capture of adatoms by islands of size si−1 and a loss

contribution from the capture of atoms by i-islands.

It is now necessary to find an expression for the capture of atoms by i-islands, Ui. To

simplify the problem we consider two assumptions: islands with a size s > s∗ are stable

and subcritical islands (s ≤ s∗) are in local equilibrium with adatoms population. The

former consideration means that, usually, another adatom arrives before the island decay.

If we define Nx as the density of stable islands, then

dNx

dt
=
∑
i>i∗

(Ui−1 − Ui) = Ui∗ , (5.16)

where all the other terms cancel in pairs. It is also possible to subtract another term related

to other phenomena, like loss of islands due to coalescence. The second consideration leads

to the Walton equation [273],

Ni = (N1)i
∑
m

C(m) exp

(
Ei(m)

kBT

)
(5.17)

where the sum is over all the possible configurations m for islands of size si and Ei(m) is

the binding energy of the m configuration. Such relation comes from the detailed balance

of local equilibrium
Ni

Ni−1

= N1C exp

(
∆E

kBT

)
, (5.18)

where C is a weight, which is constant for a particular size.

The rate of capture, Ui, shall include the growth term, σiDN1Ni−1, related to adding a

single atom to an island of size si−1 by diffusion of the atom, and the decay term (i→ i−1),

−ν0Ni exp
(
−(Ed+∆E)

kBT

)
, where ∆E is the difference in binding energy between islands with

size i and i− 1. The term σi represents the capture number of an island with size i.
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The rate equation to single atoms, eq. (5.14), must simplify,

dN1

dt
= Φ− N1

τa
−

(
2U1 +

∑
i<i∗

Ui

)
− σDN1Nx , (5.19)

where the term 2U1 +
∑

i<i∗ Ui is almost always numerically unimportant3 and the capture

of atoms by stable islands, σDN1Nx, can be written as n1

τc
, where τc is the rate of capture.

Recall that τa is the evaporation rate.

The density of stable islands, Nx, is then

dNx

dt
= σDN1Nx − UC (5.20)

where UC is due to coalescence of islands and proportional to Nx
dθs∗
dt (θs∗ is the coverage

of the substrate by stable islands) [273], and σ is the capture number related to the size,

stability, and spatial distribution of islands [264].

Generally, the density of atoms, N1, is

dN1

dt
= Φ− N1

τ
(5.21)

where τ−1 = τ−1
a + τ−1

n + τ−1
c + ..., with τa related with evaporation, τ−1

n =
2U1+

P
i<i∗ Ui

N1

related with capture by subcritical-size islands (almost numerical unimportant), and τ−1
c =

σxDNx related with capture by stable islands.

As stated previously, island morphology, as well as the local configuration, affects

the capture of adatoms. The capture number, σi, is not only size dependent but also

spatially dependent. Yet, the rate equations method eliminate spatial fluctuations leading

to uncontrolled approximations and problems are limited to simple models. Therefore,

different methods need to be applied to deal with such cases. In the next section, we

present a model to mimic the submonolayer growth of Ag/Ag(100) that is simulated

based on the kinetic Monte Carlo method, which has been introduced in Chapter 2.

3Bartelt and Evans considered, without proof, that s∗ = 1 to Ag/Ag(100), see e.g. [258].
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5.4 Model

We intend to study the submonolayer growth of Ag/Ag(100). In the present section,

we present our model to simulate such system.

An atomistic description needs to be considered. Atoms are deposited in the substrate

with a given flux, Φ, and after being deposited they are able to diffuse. The energy

landscape of the surface, is characterized by a set of basins denoted as binding sites.

As discussed in Chapter 1, atoms stay most of the time vibrating within the basin and,

eventually, due to thermally activated processes, they hop to different ones.

Ag atoms are deposited randomly on the substrate with equal probability for all lattice

sites. Since the Ehrlich-Schwoebel barrier is very low for Ag(100), when a deposited

particle lands on top of an occupied site it diffuses, in a random walk, to an empty one.

It is due to such low value of the barrier that Ag/Ag(100) is known to growth in a layer-

by-layer way (Frank-van der Merwe mode of growth). Besides, it is also reasonable to

assume that, in the considered time scale, silver atoms are not able to detach from the

substrate [77].

Silver, as other metals, tend to order in a FCC crystal [240]. So, when it is cut in

the (100) crystal orientation, it has the atoms organized on a square lattice. Therefore, a

square lattice is considered. We decouple the atoms vibration (within the basin) and the

atoms diffusion (hops between basins) and, instead of attempting a detailed description

of the vibration, we only account for the thermal fluctuations of the kinetic energy. As

explained in the context of eq. (5.3), based on the activation barrier, it is possible to

compute the frequency of each considered process in the system.

Build up the list of relevant processes is a far-from-easy task. Different techniques

to “catalogue” such processes were already discussed in Sec. 5.3. Keeping in mind the

main goal of computing the activation barriers, and consequently the rate of each process,

and since such barriers are dependent on the local configuration, we consider the cell of

12 lattice sites schematized in Fig. 5.1. Note that, a given adatom on a square lattice,

can move to, up-to, four different neighbors, meaning that the periodicity of the lattice
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Figure 5.1: Basic cell of 12 lattice sites. The central sites are the initial and final position
and the numerated ones are their first and second neighbors.

is characterized by a π/2 rotation symmetry. The two central lattice sites represent the

initial and final position of a given hop. For all considered processes, the initial position

needs to be occupied and the final one empty. On that ground, only the states of the 10

lattice sites change from process to process.

If such set of 10 lattice sites is considered, and since each one can be occupied or empty

(two possible states), with a naive (without symmetry operations) construction of the list,

210 = 1024 processes are obtained. In fact, symmetry operations can be applied to reduce

the number of processes in the list. For example, consider two different configurations A

and B. Each one characterized by its 10 lattice-site states. If A4 = B4 and A5 = B5,

where the index is related with the site number in Fig. 5.1, then an obvious symmetry

occurs, as far as A0,1,2,3 = B6,7,8,9 and A6,7,8,9 = B0,1,2,3. Accordingly, the list is reduced

to 544 possible processes, without any approximation.

Another important data is the activation energy for each process. To the best of our

knowledge, the most complete database of processes and respective activation barriers,

for Ag/Ag(100), have been reported by Voter [39], in 1987. The considered interatomic

potential is similar to the embedded atom method (EAM) previously presented by Daw

and Baskes [274]. We just summarize here the main features of the potential. For further

reading see, e.g., [39, 274]. Since in metals the atom core is “embedded” in a electron fluid,

in the embedded atom method, the potential energy is written as a sum of the pairwise
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(a) (b) (c) (d)

(f) (g) (h) (i) (j)

(e)

Figure 5.2: Fundamental processes for Ag/Ag(100). All processes that can take place in
the surface are superpositions of these fundamental processes with the terrace diffusion.
(a) initial bond break, (b) initial second neighbor (can be one or two), (c) first initial
slide neighbor, (d) second initial slide neighbor, (e) first edge neighbor, (f) second edge
neighbor, (g) final bond formation, (h) final second neighbor, (i) first final slide neighbor,
and (j) second final slide neighbor.

interaction between atoms, φ, and an embedding function Fe which accounts for the effect

of the electron density, ρe. Specifically,

H =
1

2

∑
i

(∑
j 6=i

φ (rij) + Fe [ρe (ri)]

)
, (5.22)

where the used parameters for silver are discussed in the original paper [39].

We consider that each process can be taken as the superposition of the terrace diffusion

and a combination of up-to ten other processes, namely: initial bond break, initial second

neighbor (can be one or two), first initial slide neighbor, second initial slide neighbor,

first edge neighbor, second edge neighbor, final bond formation, final second neighbor

(existence or not4), first final slide neighbor, and second final slide neighbor. All processes

are schematized in Fig. 5.2. Based on such set of fundamental processes, the total list of

possible transitions shrinks to 241 processes.

To construct the list of the 241 processes referred above it is important to take into ac-

count that certain fundamental processes cannot occur simultaneously, i.e., if a given fun-

damental process is present the other one cannot be. We list some examples. When a first

4The effect of having one or two final second neighbors is the same.



144 5.4. Model

edge neighbor (Fig. 5.2(e)) exists, there are no first initial slide neighbor (Fig. 5.2(c)) and

first final slide neighbor (Fig. 5.2(i)). If there is a second edge neighbor (Fig. 5.2(f)), there

is also a first edge neighbor (Fig. 5.2(e)) but no: first initial slide neighbor (Fig. 5.2(c)),

second initial slide neighbor (Fig. 5.2(d)), first final slide neighbor (Fig. 5.2(i)), second

final slide neighbor (Fig. 5.2(j)). A first initial slide neighbor (Fig. 5.2(c)) is incompatible

with a second final slide neighbor (Fig. 5.2(j)) or a first final slide neighbor (Fig. 5.2(i)) in

the same side. A second initial slide neighbor (Fig. 5.2(d)) occurs with a first initial slide

neighbor (Fig. 5.2(c)), but it is incompatible with a first and a second final slide neighbor

(Fig.5.2(i) and (j)). In the same way, if there is a first final slide neighbor (Fig.5.2(i))

there is no second initial slide neighbor (Fig.5.2(d)).

From the results of ref. [39], we compute how each fundamental process affects the

activation energy of a process. The results are summarized in Table 5.1. For each one,

the activation barrier (Ea) can be computed as,

Ea = Ed +
∑
j

∆Ej , (5.23)

where Ed is the activation energy of the terrace diffusion and the sum is over the funda-

mental processes.

The model has been implemented with the kinetic Monte Carlo method5. During

the simulation, a “dynamical hierarchy” of transition probabilities is adopted, based on

the energy barrier of each process, according to eq. (5.3). At each iteration, a process

occurs, based on the transition probabilities, and time is incremented in agreement with

eq. (2.15). The obtained results, with the model described above, are discussed in the

next section.

5See Sec. 2.1.2 for discussion about the method.
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Table 5.1: The table summarize the contributions (∆E) of each fundamental process to
the activation barrier, eq. (5.23). Values computed from different processes cataloged by
Voter [39].

+0.486 eV +0.279 eV

+0.013 eV +0.133 eV

+0.051 eV −0.280 eV

−0.027 eV −0.030 eV

−0.250 eV −0.027 eV

+0.007 eV
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5.5 Results

Atoms are deposited on the crystalline substrate and, after being deposited, they jump

from binding site to binding site. The hopping process between different sites is a ther-

mally activated process, therefore the diffusion coefficient increases with the temperature.

The higher the temperature, the larger the transition rate. At the same time, to minimize

the total free energy of the system, atoms tend to aggregate leading to clusters (islands).

On that ground, studying the fundamental mechanism related with the nucleation process

as well as the influence of the controlled parameters, like flux and the temperature, are

important to predict how to tune the morphology of the film through the control of the

deposition conditions.

Research efforts have been focused on the statistical analysis of islands formation.

We present our own results obtained for the island density, mean size, and distribution,

defined in the Sec. 5.2, through simulation of the homoepitaxial deposition of Ag/Ag(100)

at a temperature of 200K. Specifically, for different values of the flux of incoming particles,

ranging from 10−3−100ML/s, we study the system evolution for values of coverage below

20%. For each simulated case, results were averaged over five different samples. In

Fig. 5.3(a)-(d) are snapshots of the system for different values of the flux. It is clear that

the flux of particles affects, not only, the density of islands, but also their size distribution.

We focus our study in three different parameters: island density, average island size, and

island size distribution.

As atoms are deposited, they diffuse and eventually nucleate. At an earlier stage of

the deposition process, the density of islands is expected to rise due to the nucleation

of new islands. The system is mainly made-up of adatoms that diffuse randomly and

nucleate leading to dimers. This regime is denoted as the nucleation regime. As the

number of islands increases, the probability of an adatom collision with an existent island

also increases so, mainly, islands growth is observed instead of nucleation. This regime is

known as the growth regime. Eventually, the size of the islands is such, that islands start

to coalesce (coalescence regime). The density of islands will then decrease and the size of
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(a) (b)

(c) (d)

Figure 5.3: Snapshots of a system with 256×256 lattice sites for a coverage of 20%, under
different fluxes of incoming atoms: (a) 100 ML/s, (b) 10−1 ML/s, (c) 10−2 ML/s, and (d)
10−3 ML/s.
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Figure 5.4: For different values of the flux: (a) Density of islands (Nisl) as a function of
the coverage (θ). (b) Density of monomers (N1) as a function of the coverage (θ). System
size of 256× 256 lattice sites and results averaged over five samples. Error bars included
for each data point.

the islands will augment. In the limit of 100% coverage, a single layer is obtained with a

single island of the size of the system.

In Fig. 5.4, we plot the density of islands (Nisl), Fig.5.4(a), and the density of monomers

(N1), Fig.5.4(b), as a function of the coverage for four different fluxes, namely, 10−3, 10−2,

10−1, and 100 ML/s. We only consider values of coverage below 20%. It is possible to ob-

serve the first two regimes referred above. As the value of the flux increases, the crossover

between the nucleation regime and the growth regime occurs for greater values of coverage.

The density of monomers, Fig. 5.4(b), is characterized by a maximum value. Initially an,

almost linear, increase of N1 with the coverage is observed but, when the rate of cap-

ture by islands becomes relevant, such behavior smooths out and eventually it starts to

decrease.

In Fig. 5.5, is the average island size (sav) as a function of the coverage. In the island

nucleation regime, the mean island size does not change significantly with the coverage,

but in the growth regime it augments. From Figs. 5.4 and 5.5, it is also evident that

the transition from the first to the second regime occurs for different values of coverage

depending on the value of the flux. Greater the flux, later (in terms of coverage) the
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Figure 5.5: Average island size (sav)as a function of the coverage (θ). System size of
256×256 lattice sites and results averaged over five samples. Error bars included for each
data point.

transition, i.e., high values of flux extends the nucleation regime and leads to a greater

island density (number of islands) but smaller ones.

According to mean field studies [77, 256], for models of islands with critical size s∗,

the island density (Nisl) is expected to scale according to a power law

Nisl ∼
(
D

Φ

)−χ
= R−χM . (5.24)

For the asymptotic limit of the growth regime, when models of critical size s∗ are consid-

ered, the exponent χ is

χ =
s∗

s∗ + 2
. (5.25)

Computational results for such model corroborate the predicted results [255, 258]. Mo et

al. [243] present an investigation of the surface self-diffusion of Si adatoms on Si(001),

using a method based on the STM analysis of the number of stable islands formed during

submonolayer deposition. They did observe that, for temperatures ranging from 348 K to

653 K, the density of islands decreases with temperature and, for temperatures higher than

573 K, the density of islands drops, due to island coarsening. The power-law dependence
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Figure 5.6: Density of islands as a function of the parameter RM = D
Φ

. (a) For values
of RM ranging from 10−1 to 102. (b) For higher values of RM . System size of 256 × 256
lattice sites and results averaged over five samples. Error bars included for each data
point.

was also experimentally observed for Fe/Fe(100) by Stroscio and co-workers [244, 245].

Monte Carlo results by Ratsch et al. [275] show that the power law holds even when

detachment from island edges is considered but, in that case, the exponent is dependent

on the interaction energy between particles.

Brune et al. [248, 256] report that the exponent predicted by eq. (5.25), are only exper-

imentally observed for RM � 105. Their results have been obtained for the Ag/Pt(111).

For values of RM below this value, the power-law behavior changes. Eventually, for values

of RM < 1 the density of islands is almost independent of RM . In Fig. 5.6(a), we plot the

density of islands as a function of RM , for values RM ranging from 10−1 to 102. Despite

being a different material, we observe the same qualitative behavior of the one observed

by Brune and co-workers [248]. For R > 1, a power-law behavior is observed as evident in

Fig. 5.6(b), with an exponent χ = 0.242 ± 0.005. For lower values of RM , the density of

islands becomes almost independent of the parameter RM . As RM decreases, due to the

flux increase, the time between deposition events is such that adatoms have no enough

time to diffuse and nucleate. The number of islands rises with the coverage and the island

average size does not change significantly, see Figs. 5.4 and 5.5.
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Figure 5.7: Average island size as a function of the parameter RM = D
Φ

. (a) For values
of RM ranging from 10−1 to 102. (b) For higher values of RM . System size of 256 × 256
lattice sites and results averaged over five samples. Error bars included for each data
point.

Experimental results by Zhang et al. [276] report a power-law relation between the

average island size and the parameter RM , with the same exponent χ,

sav = Rχ
M . (5.26)

The results have been obtained for Ag/Ag(100) at a temperature of 295K. They also

report a decrease of sav with temperature. Some theoretical results report the same

relation [77, 263]. In Fig. 5.7 are the results obtained with our model. The behavior of

the average island size is similar to the one from the density of islands. In the regime of

RM > 1, see Fig. 5.7(b), the obtained exponent is χ = 0.256± 0.003.

In 1984, Tamás Vicsek and Fereydoon Family [277], have studied the cluster growth of

diffusion-limited aggregation of clusters in two dimensions. They report that, the cluster

size distribution should obey a scaling law. According to these results [77, 256, 258, 259,

261, 278], for a given coverage θ, the island-size distribution Ns(θ) can be written in the

scaling form

Ns(θ) = θs−2
av fs∗

(
s

sav

)
, (5.27)
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Figure 5.8: Island size distribution for different values of flux obtained for a coverage of
20%. (a) For high values of flux. (b) For low values of flux. System size of 256 × 256
lattice sites and results averaged over five samples.

where fs∗
(

s
sav

)
is a scaling function normalized, with mean value 1, and the index s∗

stands for the functional dependence on the critical island size [261].

Results obtained through different methods (analytical, computational, and experi-

mental) [77, 244, 245, 256, 258, 259, 260, 261, 275, 279], show that such scaling function,

for s∗ ≥ 1, is characterized by a maximum value near 1, and, for s∗ = 0, the island size

distribution decays monotonically with size [256, 261].

In Fig. 5.8 are the island size distributions for different values of the flux. We di-

vided the results into two different groups. At high fluxes, Fig. 5.8(a), we recover the

expected scaling function for s∗ = 0, meaning that adatoms have no enough time to

diffuse significantly and, therefore, can be considered frozen (without mobility). Islands

grow mainly due to particles that are deposited at the edge of an existing one. At low

fluxes, Fig. 5.8(b), the diffusion of adatoms can no longer be neglected. Between depo-

sition events, monomers have enough time to diffuse and, eventually, either nucleate or

aggregate to an existing island. At the same time, larger islands have lower mobility

[280, 281]. Consequently, the island size distribution is characterized by a maximum at a

size near the average size. As time evolves, under deposition, the average size increases
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as well as the most probable island size.

5.6 Conclusions

The present chapter is focused on the effect of diffusion in the morphology of a film.

Specifically, we studied the nucleation and growth of islands, in the submonolayer regime,

of Ag/Ag(100) deposition.

Atoms of silver are deposited on a crystalline substrate and, once on the surface, they

vibrate within an energetic basin and thermalize with the substrate. Eventually, due to

thermal fluctuations, the adatom acquires enough energy to cross an activation barrier,

in the energy landscape, and jump to a different basin. The balance between the typical

deposition time and the diffusion time is the main parameter to take into account to

understand the film morphology.

We are proposing a model, where processes are identified by considering the cell of 12

lattice sites. Each process is written as a combination of up-to 10 processes with terrace

diffusion. Therefore, the activation energy, and respective transition rate, for each process

can be computed in a straightforward manner. The model have been implemented with

the kinetic Monte Carlo method. We simulate the effect of the flux on the morphology of

a film resulting from silver deposition on Ag(100) substrate at a temperature of 200K.

Our results show that deposition evolves in two different regimes: nucleation regime

and growth regime. In the former one, the main event is the nucleation of adatoms leading

to new islands. The density of islands increases in time and the mean island size does

not change significantly. In the latter regime, the density of islands is such that adatoms

collide with pre-existing islands. The average size of islands increases with the number of

deposited atoms and the density of islands is characterized by a plateau.

We also compute the island size distribution for 20% of coverage. For low values of

flux, island size distribution obeys the scaling law predicted in the literature for critical

island sizes greater than zero (s∗>0). For high values of flux, the island size distribution
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is the characteristic one for systems with s∗=0. Since time interval between depositions

is short when compared with the typical time for hopping, adatoms can be considered

motionless and islands nucleation occurs, mainly, due to the deposition of particles in the

neighborhood of an existing one.

A static list of possible processes is considered. In fact, as previously referred, recent

techniques have been developed to avoid such consideration. Notwithstanding, models

with a predefined list of processes have been used successfully, specially in the case of

homoepitaxial growth, where relevant transitions only involve a single atom jump to a first

neighboring site, as considered by our model. Such models have been able to reproduce

results obtained with theoretical and experimental methods. On the other hand, methods

where the list is built on-the-fly (or is unnecessary) are more tailored for heteroepitaxial

growth, where concerted moves, involving more than one adatom, have been reported.

This work emphasis the model and its validation. As a follow-up, the model can

be applied to study other system properties. Since processes are treated in a way that

relaxation phenomena are considered, it is tailored to study properties related with the

morphology/shape of the islands and the effect of the local configuration in the island

growth.



Final Remarks

In the present work, the growth of films, under far-from-equilibrium conditions, is

studied using statistical physics methods. We have developed stochastic models to char-

acterize how phenomena can emerge from the collective behavior of particles during the

adsorption and (separately) the growth process.

Under equilibrium growth conditions, the obtained structures are the ones with low-

est free energy, denoted as thermodynamic equilibrium structures. However, in Nature,

this is more an exception rather than the rule. Systems evolve in a way that thermody-

namic structures cannot be achieved. Mechanisms, like add particles to the system and

relaxation, compete leading to kinetically trapped structures.

Studied cases have been split in two different parts. A first one (Part II) where ad-

sorption phenomena have been addressed, in the limit where particles (either segments

or disks) stick irreversibly to the substrate, i.e., they cannot detach or diffuse after ad-

sorption. A second one (Part III) where the effect of relaxation is considered, in the

homoepitaxial growth of a silver film on a crystalline substrate.

In Part II we have addressed two different problems: the competitive adsorption of

a binary mixture of segments on a line (Chapter 3) and the effect of a pattern on the

adsorption of particles on a substrate (Chapter 4). In the former case, we take as a binary

mixture, segments with two different sizes, which is characterized by its size ratio. In

the limit of equal flux of both segment types, we have characterized the size distribution

of the gaps between segments. Specifically, we have computed the cumulants up-to the

fourth order of the distance between segments.
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A distribution function for the distance between segments have been also proposed

and parametrized with the first moment of the distance obtained through simulation.

The cumulants of the distance have been computed with the proposed function. We

found agreement between the Monte Carlo results and the ones for the proposed function.

In this work, we put forward a novel method to characterize the morphology of the film

using the higher-order cumulants. Despite apparently simple, the 1D version of the model

grasp interesting phenomena, bringing not only more insight to the analysis at higher

dimensions, but also to intrinsically one-dimensional problems like, e.g., the adsorption of

polymeric chains. The considered process accounts for no other type of interactions be-

tween segments but the excluded volume and, notwithstanding, it represents a prototype

for further studies of more complex systems where, e.g., soft segments are considered or

particles shrink/expand once adsorbed [137, 147, 282].

For the adsorption on a surface, we studied the random sequential adsorption of par-

ticles, of disk shape, on a patterned substrate. As a pattern we considered, well defined

regions, of square shape, organized in a square lattice matrix. Landing particles, solely in-

teracting through excluded volume, can only adsorb inside those regions (cells). Changing

the pattern parameters (size and distribution), it is possible to tune the morphology of the

film, ranging from completely ordered (revealing the order of the pattern) to homogeneous

adsorption (no long-range order). However, interesting morphologies, emerge in between

where local order is observed, with a correlation length larger than the cell size. Under

the constraint of the pattern, a transition in the functional dependence of the coverage

kinetic approach to the jamming limit is identified. For the considered pattern we are

able to pin down the set of pattern parameters where the transition occurs. Moreover,

due to the stochastic nature of the random sequential adsorption process, an algorithm to

fully attain the jammed state is itself a challenge. We proposed an efficient algorithm to

attain full coverage, which can be straightforwardly applied to other problems like, e.g.,

adsorption of particles with size dispersion [188].

In this study, we neglected interactions such as electrostatic interactions, capillary
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forces, and interaction between particles and the pattern-cell edges. Focus have been on

the geometrical properties of the pattern constraint. Further work can address such more

complex interactions. Besides, though the obtained results/conclusions can be extended

to other cell shapes and distributions, different interesting properties can also emerge from

such cases. For example, the effect of a pattern distributed randomly on the substrate, can

pose a relevant case for the use of self-organized structures as a template for adsorption,

which avoids the use of lithographic methods to produce the pattern.

In Part III (Chapter 5), the effect of diffusion is considered. Specifically, we developed

a model, and used the kinetic Monte Carlo method, to study the homoepitaxial growth of

Ag/Ag(100). We used an atomistic description to characterize the morphology of the film

and its dependence on the ratio of the diffusion coefficient and flux of incoming particles.

This work have been mainly devoted to the validation of a model as well as to the identi-

fication of its strengths and weaknesses. We report that, the model, allows reproduction

of previous results and achieve experimental time scales. More insight into the system

can be obtained with the model specially regarding the island shape and the effect of the

local environment like, e.g., distribution of islands in the neighborhood. Since relaxation

mechanisms have been included, it is tailored to study restructuring and coalescence of

islands, which cannot be done with most previously presented models as the ones based on

point-like islands, critical island size, or nearest-neighbor pair-wise interaction. A static

list of processes has been considered, thus, it is not possible to guarantee that such model

accounts for all relevant processes but, for homoepitaxial growth, such type of models has

been yielding satisfactory results. Besides, our results are in agreement with previously

reported ones.
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“Integration of colloidal nanocrystals into lithographically patterned devices,” Nano

Lett., vol. 4, p. 1093, 2004.

[169] M. C. Bartelt and V. Privman, “Kinetic of irreversible monolayer and multilayer

adsorption,” Int. J. Mod. Phys. B, vol. 5, p. 2883, 1991.

[170] B. Bonnier, “On the random sequential adsorption of d-dimensional cubes,” J. Phys.

A, vol. 34, p. 10757, 2001.

[171] M. C. Bartelt and J. W. Evans, “Scaling of spatial correlations in cooperative se-

quential adsorption with clustering,” J. Stat. Phys., vol. 76, p. 867, 1994.

[172] B. Bonnier, M. Hontebeyrie, Y. Leroyer, C. Meyers, and E. Pommiers, “Adsorption

of line segments on a square lattice,” Phys. Rev. E, vol. 49, p. 305, 1994.

[173] N. V. Brilliantov, Y. A. Andrienko, P. L. Krapivsky, and J. Kurths, “Fractal for-

mation and ordering in random sequential adsorption,” Phys. Rev. Lett., vol. 76,

p. 4058, 1996.



176 BIBLIOGRAPHY

[174] V. Privman (ed.), “Adhesion of submicron particles on solid surfaces,” Adhesion of

submicron particles on solid surfaces, Coll. and Surfaces A, vol. 165, Nos. 1-3, 2000.

[175] J. Feder, “Random sequential adsorption,” J. Theor. Biology, vol. 87, p. 237, 1980.

[176] J. Feder and I. Giaever, “Adsorption of ferritin,” J. Colloid Interf. Sci., vol. 78,

p. 144, 1980.

[177] Y. Pomeau, “Some asymptotic estimates in the random parking problem,” J. Phys.

A, vol. 13, p. L193, 1980.

[178] R. H. Swendsen, “Dynamics of random sequential adsorption,” Phys. Rev. A, vol. 24,

p. 504, 1981.

[179] B. J. Brosilow, R. M. Ziff, and R. D. Vigil, “Random sequential adsorption of parallel

squares,” Phys. Rev. A, vol. 43, p. 631, 1991.

[180] V. Privman, J.-S. Wang, and P. Nielaba, “Continuum limit in random sequential

adsorption,” Phys. Rev. B, vol. 43, p. 3366, 1991.
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Monte Carlo, 62, 81, 110

direct, 37

importance sampling, 39, 42

integration, 37

kinetic, 47, 139, 142

Markov-chain, 37

method, 37

Monte Carlo steps, 42

N-fold way, 47

simple sampling, 39, 40

standard, 39

MPCA (multiparticle-per-cell adsorption), 87,

89, 95

nearest-neighbor pair-interaction, 134

NICCA (noninteracting cell-cell adsorption),

87, 89
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power law, 103

prescribed bond scission, 134

Random Sequential Adsorption, 57, 83

on a line, 55

algorithm, 63

jammed state structure, 65

on a surface, 81

rare events, see infrequent events

rate equations, see Master equation
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regular substrate, see clean substrate

roughness, 25, 27

saturation, 27

scaling, 22, 27

function, 27

relation, 27

silver, 129

skewness, 58, 69, 76, 77

spatial distribution of particles, 103

SPCA (single-particle-per-cell adsorption),

87, 89, 95

spins, 42

state vector, 7

stochastic

processes, 14

systems, 14, 37

variables, 14

submonolayer, 129, 134

time scales, 13, 47

transition rate, 17, 47, 131, 139

Transition State Theory, 13, 131

two-parameters space, 87

universality, 22, 25, 27

universality class, 22, 25, 27

Kardar-Parisi-Zhang, 27
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