Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/27891

TitleCredit scoring as an asset for decision making in intelligent decision support systems
Author(s)Silva, Fábio
Advisor(s)Analide, César
Issue date17-Nov-2011
Abstract(s)Risk assessment is an important topic for financial institution nowadays, especially in the context of loan applications or loan requests and credit scoring. Some of these institutions have already implemented their own custom credit scoring systems to evaluate their clients’ risk supporting the loan application decision with this indicator. In fact, the information gathered by financial institutions constitutes a valuable source of data for the creation of information assets from which credit scoring mechanisms may be developed. Historically, most financial institutions support their decision mechanisms on regression algorithms, however, these algorithms are no longer considered the state of the art on decision algorithms. This fact has led to the interest on the research of new types of learning algorithms from machine learning able to deal with the credit scoring problem. The work presented in this dissertation has as an objective the evaluation of state of the art algorithms for credit decision proposing new optimization to improve their performance. In parallel, a suggestion system on credit scoring is also proposed in order to allow the perception of how algorithm produce decisions on clients’ loan applications, provide clients with a source of research on how to improve their chances of being granted with a loan and also develop client profiles that suit specific credit conditions and credit purposes. At last, all the components studied and developed are combined on a platform able to deal with the problem of credit scoring through an experts system implemented upon a multi-agent system. The use of multi-agent systems to solve complex problems in today’s world is not a new approach. Nevertheless, there has been a growing interest in using its properties in conjunction with machine learning and data mining techniques in order to build efficient systems. The work presented aims to demonstrate the viability and utility of this type of systems for the credit scoring problem.
Hoje em dia, a análise de risco é um tópico importante para as instituições financeiras, especialmente no contexto de pedidos de empréstimo e de classificação de crédito. Algumas destas instituições têm já implementados sistemas de classificação de crédito personalizados para avaliar o risco dos seus clientes baseando a decisão do pedido de empréstimo neste indicador. De facto, a informação recolhida pelas instituições financeiras constitui uma valiosa fonte de dados para a criação de ativos de informação, de onde mecanismos de classificação de crédito podem ser desenvolvidos. Historicamente, a maioria das instituições financeiras baseia os seus mecanismos de decisão sobre algoritmos de regressão. No entanto, estes algoritmos já não são considerados o estado da arte em algoritmos de decisão. Este facto levou ao interesse na pesquisa de diferentes algoritmos de aprendizagem baseados em algoritmos de aprendizagem máquina, capaz de lidar com o problema de classificação de crédito. O trabalho apresentado nesta dissertação tem como objetivo avaliar o estado da arte em algoritmos de decisão de crédito, propondo novos conceitos de optimização que melhorem o seu desempenho. Paralelamente, um sistema de sugestão é proposto no âmbito do tema de decisão de crédito, de forma a possibilitar a perceção de como os algoritmos tomam decisões relativas a pedidos de crédito por parte de clientes, dotando-os de uma fonte de pesquisa sobre como melhorar as possibilidades de concessão de crédito e, ainda, elaborar perfis de clientes que se adequam a determinadas condições e propósitos de crédito. Por último, todos os componentes estudados e desenvolvidos são combinados numa plataforma capaz de lidar com o problema da classificação de crédito através de um sistema de especialistas, implementado como um sistema multi-agente. O uso de sistemas multi-agente para resolver problemas complexos no mundo de hoje não é uma nova abordagem. No entanto, tem havido um interesse crescente no uso das suas propriedades, em conjunto com técnicas de aprendizagem máquina e data mining para construir sistemas mais eficazes. O trabalho desenvolvido e aqui apresentado pretende demonstrar a viabilidade e utilidade do uso deste tipo de sistemas no problema de decisão de crédito.
TypeMaster thesis
DescriptionDissertação de mestrado em Engenharia de Informática
URIhttps://hdl.handle.net/1822/27891
AccessOpen access
Appears in Collections:BUM - Dissertações de Mestrado
DI - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
eeum_di_dissertacao_pg15251.pdf1,24 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID