Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/37920

Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhongyun Liupor
dc.contributor.authorRalha, Ruipor
dc.contributor.authorZhang, Yulinpor
dc.contributor.authorFerreira, Carlapor
dc.date.accessioned2015-11-03T11:31:00Z-
dc.date.available2015-11-03T11:31:00Z-
dc.date.issued2015-10-
dc.date.submitted2014-07-14-
dc.identifier.issn1081-3810por
dc.identifier.urihttps://hdl.handle.net/1822/37920-
dc.description.abstractFor given $Z,B\in \mathbb{ C}^{n\times k}$, the problem of finding $A\in \mathbb{C}^{n\times n}$, in some prescribed class ${\cal W}$, that minimizes $\|AZ-B\|$ (Frobenius norm) has been considered by different authors for distinct classes ${\cal W}$. Here, we study this minimization problem for two other classes which include the symmetric Hamiltonian, symmetric skew-Hamiltonian, real orthogonal symplectic and unitary conjugate symplectic matrices. We also consider (as others have done for other classes ${\cal W}$) the problem of minimizing $\|A-\tilde{A}\|$ where $\tilde{A}$ is given and $A$ is a solution of the previous problem. The key idea of our contribution is the reduction of each one of the above minimization problems to two independent subproblems in orthogonal subspaces of $\mathbb{C}^{n\times n}$. This is possible due to the special structures under consideration. We have developed MATLAB codes and present the numerical results of some tests.por
dc.description.sponsorshipNational Natural Science Foundation of China, no. 11371075.por
dc.language.isoengpor
dc.publisherInternational Linear Algebra Societypor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/135888/PTpor
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.subjectLeast-squares approximationpor
dc.subjectCentralizer of Jpor
dc.subjectMoore- Penrose inversepor
dc.subjectAnticentralizer of Jpor
dc.titleMinimization problems for certain structured matricespor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttp://repository.uwyo.edu/ela/por
sdum.publicationstatuspublishedpor
oaire.citationStartPage613por
oaire.citationEndPage631por
oaire.citationTitleElectronic Journal of Linear Algebrapor
oaire.citationVolume30por
dc.identifier.doi10.13001/1081-3810.3144por
dc.subject.fosCiências Naturais::Matemáticaspor
dc.subject.wosScience & Technologypor
sdum.journalElectronic Journal of Linear Algebrapor
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
minimization-problems_2015_final.pdf353,91 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID