Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/51264

TítuloHumic acid can mitigate the toxicity of small copper oxide nanoparticles to microbial decomposers and leaf decomposition in streams
Autor(es)Pradhan, Arunava
Geraldes, Paulo
Mundiyath, Seena Sahadevan
Pascoal, Cláudia
Cássio, Fernanda
Palavras-chavefungi and bacteria
humic acid
litter breakdown in streams
nanoCuO toxicity
nanoparticle size
Data1-Dez-2016
EditoraWiley-Blackwell
RevistaFreshwater Biology
Resumo(s)As the use of copper oxide nanoparticles (nanoCuO) in consumer products grows, aquatic ecosystems are likely to receive increasing amounts of these nanomaterials. Dissolved organic matter (DOM) may interact with nanoparticles and reduce their reactive surface area, which, in turn, can influence the impact of nanoCuO on organisms and ecological processes. We conducted a microcosm experiment to investigate the impacts of three size classes of nanoCuO (12, 50 and 80nm mean diameter of the primary particles; five levels up to 400mgL(-1)) and humic acid (three levels up to 100mgL(-1)), as a major component of DOM, on microbial decomposers and leaf decomposition as an important ecosystem process in forest streams. Exposure to nanoCuO for 20days reduced decomposition rate and fungal and bacterial biomass, fungal sporulation and spore diversity associated with the decomposing leaves. The effects were stronger as nanoparticle size decreased and the specific surface area increased. More dissolved ionic copper was released from the small nanoparticles, suggesting that Cu2+ could have played a role in the observed size-dependent toxicity of nanoCuO. Bacteria appeared to be more sensitive to nanoCuO than fungi since nanoparticles reduced the biomass of bacteria at lower concentrations than that of fungi (EC20 was 22 times lower for small and medium-sized nanoparticles, and five times lower for large particles). However, fungal sporulation was the variable most sensitive to nanoCuO exposure (EC20=0.2mgL(-1) for the small nanoparticles). Microbial activity on the decomposing leaves was also inhibited by exposure to humic acid alone. However, humic acid also mitigated the adverse effects of the small and medium-sized nanoCuO on both the microbial decomposers and leaf decomposition. Overall, our microcosm experiment indicates that nanoCuO toxicity to microbial decomposers and leaf decomposition depends on particle size and the presence of DOM. This highlights the importance of considering environmental context and the specific pr
TipoArtigo
URIhttps://hdl.handle.net/1822/51264
DOI10.1111/fwb.12662
ISSN0046-5070
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:DBio - Artigos/Papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Pradhan et al 2016_FWB.pdf
Acesso restrito!
1,46 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID