Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/56319

TítuloGellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model
Autor(es)Carvalho, C. R.
Wrobel, S.
Meyer, C.
Branderberger, C.
Cengiz, I. F.
López-Cebral, R.
Silva-Correia, J.
Ronchi, J.
Reis, R. L.
Grothe, C.
Oliveira, J. M.
Haastert-Talini, K.
Palavras-chaveBiomaterials
Gellan Gum
Peripheral Nerve Regeneration
DataMai-2018
EditoraRoyal Society of Chemistry
RevistaBiomaterials Science
CitaçãoCarvalho C. R., Wrobel S., Meyer C., Branderberger C., Cengiz I. F., López-Cebral R., Silva-Correia J., Ronchi J., Reis R. L., Grothe C., Oliveira J. M., Haastert-Talini K. Gellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model, BIOMATERIALS SCIENCE, Vol. 6, Issue 6, pp. 1059-1075, doi:10.1039/c7bm01101f, 2018
Resumo(s)Peripheral nerve injuries (PNI) resulting in a gap to be bridged between the transected nerve ends are commonly reconstructed with autologous nerve tissue, but there is a need for valuable alternatives. This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels made from chitosan with a 5% degree of acetylation. The engineered constructs should remodel the structural support given to regenerating axons by the so-called bands of Büngner. Four different GG formulations were produced by combining varying amounts of High-Acyl GG (HA-GG) and Methacrylated GG (MA-GG). The effective porosity of the freeze-dried networks was analysed by SEM and micro-CT 3D reconstructions, while the degradation and swelling abilities were characterized in vitro for up to 30 days. The metabolic activity and viability of immortalized Schwann cells seeded onto the freeze-dried networks were also evaluated. Finally, the developed hydrogel formulations were freezedried within the chitosan nerve guides and implanted in a 10 mm rat sciatic nerve defect. Functional and histomorphological analyses after 3, 6, and 12 weeks in vivo revealed that although it did not result in improved nerve regeneration, the NGC25:75 formulations could provide a basis for further development of GG scaffolds as luminal fillers for hollow nerve guidance channels.
TipoArtigo
URIhttps://hdl.handle.net/1822/56319
DOI10.1039/c7bm01101f
ISSN2047-4830
e-ISSN2047-4849
Versão da editorahttp://pubs.rsc.org/en/content/articlehtml/2018/BM/C7BM01101F
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
19530-final PDF C7BM01101F.pdf745,73 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID