Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/59005

TitleInformation theoretic stochastic search
Author(s)Abdolmaleki, Abbas
Advisor(s)Reis, L. P.
Lau, Nuno
Issue date12-Dec-2018
Abstract(s)Optimization is the research field that studies the design of algorithms for finding the best solutions to problems we may throw at them. While the whole domain is practically important, the present thesis will focus on the subfield of continuous black-box optimization, presenting a collection of novel, state-of-the-art algorithms for solving problems in that class. In this thesis, we introduce two novel general-purpose stochastic search algorithms for black box optimisation. Stochastic search algorithms aim at repeating the type of mutations that led to fittest search points in a population. We can model those mutations by a stochastic distribution. Typically the stochastic distribution is modelled as a multivariate Gaussian distribution. The key idea is to iteratively change the parameters of the distribution towards higher expected fitness. However we leverage information theoretic trust regions and limit the change of the new distribution. We show how plain maximisation of the fitness expectation without bounding the change of the distribution is destined to fail because of overfitting and the results in premature convergence. Being derived from first principles, the proposed methods can be elegantly extended to contextual learning setting which allows for learning context dependent stochastic distributions that generates optimal individuals for a given context, i.e, instead of learning one task at a time, we can learn multiple related tasks at once. However, the search distribution typically uses a parametric model using some hand-defined context features. Finding good context features is a challenging task, and hence, non-parametric methods are often preferred over their parametric counter-parts. Therefore, we further propose a non-parametric contextual stochastic search algorithm that can learn a non-parametric search distribution for multiple tasks simultaneously.
Otimização é área de investigação que estuda o projeto de algoritmos para encontrar as melhores soluções, tendo em conta um conjunto de critérios, para problemas complexos. Embora todo o domínio de otimização tenha grande importância, este trabalho está focado no subcampo da otimização contínua de caixa preta, apresentando uma coleção de novos algoritmos novos de última geração para resolver problemas nessa classe. Nesta tese, apresentamos dois novos algoritmos de pesquisa estocástica de propósito geral para otimização de caixa preta. Os algoritmos de pesquisa estocástica visam repetir o tipo de mutações que levaram aos melhores pontos de pesquisa numa população. Podemos modelar essas mutações por meio de uma distribuição estocástica e, tipicamente, a distribuição estocástica é modelada como uma distribuição Gaussiana multivariada. A ideia chave é mudar iterativamente os parâmetros da distribuição incrementando a avaliação. No entanto, alavancamos as regiões de confiança teóricas de informação e limitamos a mudança de distribuição. Deste modo, demonstra-se como a maximização simples da expectativa de “fitness”, sem limites da mudança da distribuição, está destinada a falhar devido ao “overfitness” e à convergência prematura resultantes. Sendo derivado dos primeiros princípios, as abordagens propostas podem ser ampliadas, de forma elegante, para a configuração de aprendizagem contextual que permite a aprendizagem de distribuições estocásticas dependentes do contexto que geram os indivíduos ideais para um determinado contexto. No entanto, a distribuição de pesquisa geralmente usa um modelo paramétrico linear em algumas das características contextuais definidas manualmente. Encontrar uma contextos bem definidos é uma tarefa desafiadora e, portanto, os métodos não paramétricos são frequentemente preferidos em relação às seus semelhantes paramétricos. Portanto, propomos um algoritmo não paramétrico de pesquisa estocástica contextual que possa aprender uma distribuição de pesquisa não-paramétrica para várias tarefas simultaneamente.
TypeDoctoral thesis
DescriptionThe MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
URIhttps://hdl.handle.net/1822/59005
AccessOpen access
Appears in Collections:BUM - Teses de Doutoramento
CAlg - Teses de doutoramento/PhD theses

Files in This Item:
File Description SizeFormat 
Abbas_Abdolmaleki.pdf6,53 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID