Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/60779

TítuloCarbonaceous filler type and content dependence of the physical-chemical and electromechanical properties of thermoplastic elastomer polymer composites
Autor(es)Dios, Jose Ramon
García-Astrain, Clara
Costa, Pedro Filipe Ribeiro
Viana, J. C.
Lanceros-Méndez, S.
Palavras-chavepolymercomposites
nanocarbonanceous fillers
thermal annealing
piezoresistive materials
Data30-Abr-2019
EditoraMultidisciplinary Digital Publishing Institute
RevistaMaterials
Resumo(s)Graphene, carbon nanotubes (CNT), and carbon nanofibers (CNF) are the most studied nanocarbonaceous fillers for polymer-based composite fabrication due to their excellent overall properties. The combination of thermoplastic elastomers with excellent mechanical properties (e.g., styrene-b-(ethylene-co-butylene)-b-styrene (SEBS)) and conductive nanofillers such as those mentioned previously opens the way to the preparation of multifunctional materials for large-strain (up to 10% or even above) sensor applications. This work reports on the influence of different nanofillers (CNT, CNF, and graphene) on the properties of a SEBS matrix. It is shown that the overall properties of the composites depend on filler type and content, with special influence on the electrical properties. CNT/SEBS composites presented a percolation threshold near 1 wt.% filler content, whereas CNF and graphene-based composites showed a percolation threshold above 5 wt.%. Maximum strain remained similar for most filler types and contents, except for the largest filler contents (1 wt.% or more) in graphene (G)/SEBS composites, showing a reduction from 600% for SEBS to 150% for 5G/SEBS. Electromechanical properties of CNT/SEBS composite for strains up to 10% showed a gauge factor (GF) varying from 2 to 2.5 for different applied strains. The electrical conductivity of the G and CNF composites at up to 5 wt.% filler content was not suitable for the development of piezoresistive sensing materials. We performed thermal ageing at 120 °C for 1, 24, and 72 h for SEBS and its composites with 5 wt.% nanofiller content in order to evaluate the stability of the material properties for high-temperature applications. The mechanical, thermal, and chemical properties of SEBS and the composites were identical to those of pristine composites, but the electrical conductivity decreased by near one order of magnitude and the GF decreased to values between 0.5 and 1 in aged CNT/SEBS composites. Thus, the materials can still be used as large-deformation sensors, but the reduction of both electrical and electromechanical response has to be considered.
TipoArtigo
URIhttps://hdl.handle.net/1822/60779
DOI10.3390/ma12091405
ISSN1996-1944
Versão da editorahttps://www.mdpi.com/1996-1944/12/9/1405
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:FUNCTIONAL AND SMART MATERIALS AND SURFACES FOR ADVANCED APPLICATIONS (2018 - ...)
IPC - Artigos em revistas científicas internacionais com arbitragem

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
materials-12-01405.pdf3,78 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID