Please use this identifier to cite or link to this item:

Titleβ-Lg nano delivery systems: sustained release of riboflavin into food simulants under various temperatures
Author(s)Simões, Lívia Souza
Vicente, A. A.
Ramos, O. L.
KeywordsHydrophilic compounds
Food grade
Whey protein
Gelling agent
Release kinetics
Issue date7-Jul-2019
CitationSimões, Lívia S; Vicente, António A.; Ramos, Óscar L., β-Lg nano delivery systemsnano delivery systems: sustained release of riboflavin into food simulants under various temperatures. DOF 2019 - 8th International Symposium on "Delivery of Functionality in Complex Food Systems" (Book of Abstracts). Porto, Portugal, July 7th - 10th, 78-79, 2019. ISBN: 978-989-20-9533-2
Abstract(s)β-Lactoglobulin (β-Lg), the main protein fraction of whey proteins, can be used to encapsulate bioactive compounds due to its gelation capacity, which allows forming nanostructures, and their affinity to bind to a wide range of molecules. Riboflavin is an essential vitamin for human growth and wellbeing, having thus been studied as hydrophilic model compound. Its use in food products is still limited by several issues including photodegradation and low solubility in water. Riboflavin encapsulation may overcome these issues and possibly display a controlled release behavior. Food-grade -Lg nanostructures (-LgN) were developed at pH 6, at 80 °C for 15 min to encapsulate 0.105 mg mL-1 of riboflavin. Release kinetics of riboflavin from -LgN were assessed in hydrophilic (ethanol 10%) and hydrophobic (ethanol 50%) food stimulants (Commission Regulation EU No10/2011) at 4 and 25 C. Kinetic models considering both Fickian and Case II transport (Linear Superposition Model - LSM) were fitted to release kinetics data. The impact of release conditions on particle size and surface charge of nanostructures was performed by dynamic light scattering (DLS). The LSM model was the most suitable to describe the release kinetics, which is mainly governed by a relaxation mechanism. These results were in agreement with DLS observations, which showed a decrease on surface charge and an increase on particle size. -LgN were relaxed and weaker as a consequence of the riboflavin release until the equilibrium state was reached. It was observed that the contribution of relaxation to the release mechanisms increases with temperature. Riboflavin release kinetics on the hydrophobic food simulant provided a higher riboflavin retention when compared with the hydrophilic food simulant, independently of temperature. These observations indicate that food-grade -LgN may represent suitable means for controlled delivery of hydrophilic compounds in food applications, however, further information is needed to clarify the mechanisms which are involved in it.
Publisher version
AccessOpen access
Appears in Collections:CEB - Resumos em Livros de Atas / Abstracts in Proceedings

Files in This Item:
File Description SizeFormat 
document_51838_1.pdf151,8 kBAdobe PDFView/Open
document_51838_2.pdf157,2 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID