Please use this identifier to cite or link to this item:

Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartins, Carla I.por
dc.contributor.authorCouto, Vitória Gil Padrãopor
dc.description.abstractThis work aims at presenting a new strategy for the use of cork by-products on the development of sustainable composites with potential applications in rotational molding. In this study, different cork granulometries (0.15-3 mm) and matrix/cork ratios (90/10, 85/15, 80/20) are analyzed to access the processability of medium-density polyethylene (MDPE) with cork by rotational molding. The influence of processing parameters, such as the mold peak internal air temperature (PIAT) (200-240 degrees C), is analyzed and correlated with the aesthetics, morphological and mechanical properties of the parts. The aim is to obtain a complete understanding of the processing-structure-property relationships. Defect-free parts are obtained with thin granulometric cork powders at a maximum of 10% by weight in PE/cork composites. The increase in cork content reduces the sintering capability and increases the porosity, wall thickness, and surface defects, simultaneously weakening the mechanical properties. The increase in PIAT favors a more compact structure and reveals better impact properties. All the parts are soft on touch and transmit the comfort and sensation of warm feeling of the cork. Moreover, lightweight parts and hydrophobic surfaces are achieved from the cork intrinsic properties. As a natural material, cork darkens its color with temperature, which is attributed to the reactions of the extractives within the components of cork, with no degradation associated. The work shows that polymer cork composites (CPC) are suitable for rotational molding within the processing window characteristic of PE, to achieve innovative and sustainable products with unique aesthetics and functionalities given by the cork material.por
dc.description.sponsorshipThe authors acknowledge the financial support of the Project RoTMI-Rotomolding Technology and Materials Innovations (POCI-01-0247-FEDER-33095), cofinanced by the European Regional Development Fund (FEDER) through the Operational Program for Competitiveness and Internationalization (POCI) under the "Portugal 2020" framework. IPC acknowledges the support of the Portuguese Foundation for Science and Technology (FCT) through the National Funds References UIDB/05256/2020 and UIDP/05256/2020.por
dc.publisherFrontiers Mediapor
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05256%2F2020/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05256%2F2020/PTpor
dc.subjectRotational moldingpor
dc.subjectThermal propertiespor
dc.subjectMechanical propertiespor
dc.titleProcessing-structure-properties of cork polymer compositespor
dc.subject.wosScience & Technology-
sdum.journalFrontiers in Materialspor
Appears in Collections:IPC - Artigos em revistas científicas internacionais com arbitragem

Files in This Item:
File Description SizeFormat 
A_2020_rotomolding PEcork_fmats-07-00297.pdf5,44 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID