Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/72765

Registo completo
Campo DCValorIdioma
dc.contributor.authorRaimundo, João Alexandre Pereirapor
dc.contributor.authorSobral, Rómulo Sacramentopor
dc.contributor.authorLaranjeira, Sarapor
dc.contributor.authorCosta, Maria Manuela Ribeiropor
dc.date.accessioned2021-05-20T16:47:12Z-
dc.date.issued2018-
dc.identifier.citationRaimundo, J., Sobral, R., Laranjeira, S., & Costa, M. M. R. (2018). Successive domain rearrangements underlie the evolution of a regulatory module controlled by a small interfering peptide. Molecular biology and evolution, 35(12), 2873-2885por
dc.identifier.issn0737-4038-
dc.identifier.urihttps://hdl.handle.net/1822/72765-
dc.description.abstractThe establishment of new interactions between transcriptional regulators increases the regulatory diversity that drives phenotypic novelty. To understand how such interactions evolve, we have studied a regulatory module (DDR) composed by three MYB-like proteins: DIVARICATA (DIV), RADIALIS (RAD), and DIV-and-RAD-Interacting Factor (DRIF). The DIV and DRIF proteins form a transcriptional complex that is disrupted in the presence of RAD, a small interfering peptide, due to the formation of RAD-DRIF dimers. This dynamic interaction result in a molecular switch mechanism responsible for the control of distinct developmental processes in plants. Here, we have determined how the DDR regulatory module was established by analyzing the origin and evolution of the DIV, DRIF, and RAD protein families and the evolutionary history of their interactions. We show that duplications of a pre-existing MYB domain originated the DIV and DRIF protein families in the ancestral lineage of green algae, and, later, the RAD family in seed plants. Intraspecies interactions between the MYB domains of DIV and DRIF proteins are detected in green algae, whereas the earliest evidence of an interaction between DRIF and RAD proteins occurs in the gymnosperms, coincident with the establishment of the RAD family. Therefore, the DDR module evolved in a stepwise progression with the DIV-DRIF transcription complex evolving prior to the antagonistic RAD-DRIF interaction that established the molecular switch mechanism. Our results suggest that the successive rearrangement and divergence of a single protein domain can be an effective evolutionary mechanism driving new protein interactions and the establishment of novel regulatory modules.por
dc.description.sponsorship- We are grateful to Pamela Soltis for providing cDNA from Amborella trichopoda, Jorg Becker for providing cDNA from Physcomitrella patens, Celia Miguel for some of the Pinus pinaster RNA samples, and John Bowman for the Marchantia polymorpha sequences. We also thank Filipa Pereira for the help with the gap-repair cloning and Paul Bailey for helping with the phylogenetic analysis. This work was supported by Fundacao para a Ciencia e Tecnologia/Ministerio da Ciencia, Tecnologia e Ensino Superior through national funds (Programa de Investimento e Despesas de Desenvolvimento da Administracao Central) with a project grant (PTDC/BIA-PLA/1402/2014). J.R., R.S., and M.M.R.C. were supported by funding from FCT (ref. SFRH/BD/75050/2010, SFRH/BD/84365/2012, and SFRH/BSAB/113781/2015, respectively). The authors have no conflict of interest to declare.por
dc.language.isoengpor
dc.publisherOxford University Presspor
dc.rightsrestrictedAccesspor
dc.subjectMYBpor
dc.subjectRADIALISpor
dc.subjectDIVARICATApor
dc.subjectDRIFpor
dc.subjectProtein evolutionpor
dc.subjectProtein-protein interactionpor
dc.subjectDomain earrangementpor
dc.subjectMolecular antagonismpor
dc.subjectSmall interfering peptidepor
dc.subjectFlower asymmetrypor
dc.subjectAntirrhinum majuspor
dc.subjectDomain rearrangementpor
dc.titleSuccessive domain rearrangements underlie the evolution of a regulatory module controlled by a small interfering peptidepor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttps://academic.oup.com/mbe/article/35/12/2873/5092475?login=truepor
oaire.citationStartPage2873por
oaire.citationEndPage2885por
oaire.citationIssue12por
oaire.citationVolume35por
dc.date.updated2021-05-19T15:10:19Z-
dc.identifier.doi10.1093/molbev/msy178por
dc.date.embargo10000-01-01-
dc.identifier.pmid30203071-
dc.subject.fosEngenharia e Tecnologia::Biotecnologia Industrialpor
dc.subject.wosScience & Technology-
sdum.export.identifier10715-
sdum.journalMolecular Biology and Evolutionpor
Aparece nas coleções:CBFP - Artigos/Papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
msy178.pdf
Acesso restrito!
1,2 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID