Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/76603

TitleA real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem
Author(s)Ferreira, Carla
Parlett, Beresford
KeywordsLR
dqds
Unsymmetric tridiagonal matrices
Balanced form
Twisted factorizations
65F15
Issue date18-Jan-2022
PublisherSpringer
JournalNumerische Mathematik
Abstract(s)The paper discusses the following topics: attractions of the real tridiagonal case, relative eigenvalue condition number for matrices in factored form, dqds, triple dqds, error analysis, new criteria for splitting and deflation, eigenvectors of the balanced form, twisted factorizations and generalized Rayleigh quotient iteration. We present our fast real arithmetic algorithm and compare it with alternative published approaches.
TypeArticle
URIhttps://hdl.handle.net/1822/76603
DOI10.1007/s00211-021-01254-z
ISSN0029-599X
e-ISSN0945-3245
Publisher versionhttps://link.springer.com/article/10.1007/s00211-021-01254-z
Peer-Reviewedyes
AccessOpen access
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
Triple_dqds_NM_2022_CF_BNP.pdf973,12 kBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID