Please use this identifier to cite or link to this item: https://hdl.handle.net/1822/9724

Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues, José Francisco-
dc.contributor.authorSantos, Lisa-
dc.contributor.authorUrbano, J. M.-
dc.date.accessioned2009-11-12T17:52:06Z-
dc.date.available2009-11-12T17:52:06Z-
dc.date.issued2009-
dc.identifier.citation"Journal of Mathematical Sciences". ISSN 1072-3374. 159:4 (2009) 559-572.por
dc.identifier.issn1072-3374por
dc.identifier.issn1573-8795por
dc.identifier.urihttps://hdl.handle.net/1822/9724-
dc.description.abstractThe parabolic N-membranes problem for the p-Laplacian and the complete order constraint on the components of the solution is studied in what concerns the approximation, the regularity and the stability of the variational solutions. We extend to the evolutionary case the characterization of the Lagrange multipliers associated with the ordering constraint in terms of the characteristic functions of the coincidence sets. We give continuous dependence results, and study the asymptotic behavio,r as t tends to infinity, of the solution and the coincidence sets, showing that they converge to their stationary counterparts.por
dc.description.sponsorship(undefined)por
dc.language.isoengpor
dc.publisherSpringer por
dc.rightsopenAccesspor
dc.titleThe nonlinear N-membranes evolution problempor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionThe original publication is available at www.springerlink.compor
dc.relation.publisherversionhttp://www.springerlink.com/content/x23m13084481220q/-
sdum.number4por
sdum.pagination559-572por
sdum.publicationstatuspublishedpor
sdum.volume159por
oaire.citationStartPage559por
oaire.citationEndPage572por
oaire.citationIssue4por
oaire.citationVolume159por
dc.identifier.doi10.1007/s10958-009-9461-8por
sdum.journalJournal of Mathematical Sciencespor
Appears in Collections:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Files in This Item:
File Description SizeFormat 
RSU08.pdf1,23 MBAdobe PDFView/Open

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID