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ABSTRACT. Varieties of algebras are characterized by identities, where
an identity is a formal equality of two terms (i.e., operations defined
by means of the underlying operations). Analogously, pseudovarieties of
(finite) algebras are defined by pseudo-identities, these being formal
equalities of so-called implicit operations (briefly , functions compa-
tible with all homomorphisms). To further explore this analogy to yield
results on finite algebras, it is necessary to obtain clear descriptions
of implicit operations. This work 1s a contribution to this project in
the area of semigroup theory. All unary implicit operations on semi-
groups are described, and the implicit operations on certain pseudo-
varieties of semigroups are given in terms of '"'generating' operations.
The existence of some unusual implicit operations 1s established based
on classical combinatorial theorems about words.

1. INTRODUCTION

This paper 1s concerned with a new way of looking at pseudovarie-
ties of semigroups : via implicit operations. Roughly put, an implicit
operation 1s a new operation which 1s preserved by all functions that
preserve the old operations (i.e., homomorphisms). Reiterman [8] showed
that implicit operations on finite algebras of a finite finitary type
form a compact metric space in which the subset of finite composites of
old operations is dense. He also showed that pseudovarieties are defi-
ned by pseudoidentities, i.e., by formal equalities of implicit opera-
tions, thus providing a suitable analog to the classical Birkhoff
theorem on varieties.

We start here a systematic study of implicit operations on finite
semigroups. Our first positive result 1s a full constructive descrip-
tion of unary implicit operations. This already allows us to show
there is a vast unexplored world of implicit operations compared with

what can be found in the literature on pseudovarieties (cf. Eilenberg
[4] and Pin [7]).
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We then proceed to show there 1s apparently more and more compli-
cation as the arity n of implicit operations increases. For n=2,3,
this is based on classical results on avoidable regularities in words
on two and three-letter alphabets.

Finally, we restrict our attention to the class ZE of all finite
semigroups in which idempotents are central. We show that implicit
operations on finite groups and explicit operations suffice to obtain
all implicit operations on ZE . This is based on a careful study of
sequences of words depending on some simple algebraic and combinatorial
lemmas.

For basic notation on semigroups and pseudovarietiles, the reader
is referred to Lallement [5].

2. BACKGROUND AND NOTATION

A class V of finite algebras of a given type is said to be a
pseudovariety if it is closed under homomorphic images, subalgebras and
finitary direct products. We say V is equational if there is a set X
of identities such that V is the class of all finite algebras of the
civen type which satisfy all the identitiles in X .

EXAMPLE 2.1. The pseudovariety N of all finite nilpotent semigroups
is not equational since N satisfies no nontrivial semigroup 1ldentitiles,
i.e., the least equational pseudovariety containing N is the class S
of all finite semigroups. Thus, identities do not suffice to define
pseudovarieties.

Let C be any class of algebras of a given type. An n-ary implicit
operation M on C associates with each A € C an n-ary operation
mMytADl —— A in such a way that if A,B € C and @:A——B is a homo-
morphism then nB(¢(a1),...,¢Kaﬂ)) = @(mpag,...,ap)) for all
a1,...5an € A. The class of all n-ary implicit operations on C 1is
denoted by Q,C

For A€ C and m,p € QpC, we write AET =p to mean Ty = OA;
we call 1w = p a pseudoidentity for C and we then say A satisfies this
pseudoidentity. If X is a set of pseudoidentities for C, AEX means
A satisfies all the pseudoidentities in ¥ and [[ X J] denotes the class
of all A € C such that AEZX.

If t(xq,...,x,) 1is a term of a given type T in the variables
Xqs+++3Xp, then t defines an n-ary implicit operation on any class C of
algebras of type T by letting t, be the induced n-ary operation on A€C(
(where tp(aq,...,an) is obtained by "substituting" a; € A for
x; (i=1,...,0)). An implicit operation of this type is said to be expli-
cit. The set of all n-ary explicit operations on C is represented by Q,C.

In 8,C it 1s possible to define a metric distance in the case
~ which we assume in the following - C 1s "essentially countable",
l.e., up to isomorphism, there are only a countable number of algebras
in C. This is the case, for instance, when C consists of finite alge-
bras and the underlying type is finite and finitary. We will not
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describe here this distance function but rather the convergence of se-
quences in {pC since this is what will be used in the sequel. A se-
quence (pp), converges in OpC to m if, for every integer k, there is

[T e

an integer 0, such that AFm=ppn for all nink and all A € C with
[A| = k, where \A| denotes the cardinality of A.

Next, we quote two important results of Reiterman [8]

y——

THEOREM 2.2. QpC 1is a compact metric space in which Q,C  1s dense.

HHWMWW;mmﬂﬂ:-..r - .

THEOREM 2.3. Let V be a class of finite algebras of type T . Then \
1s a pseudovariety if and only if there is a set X of pseudoidentities
for the class of all finite algebras of type T such that V = [[Z ]]

In view of Theorem 2.3, it is natural to study pseudoidentities
and 1mplicit operations in order to achieve a better understanding of
pseudovarieties.

From here on, we restrict our attention to classes of finite semi-
groups. For finite semigroups there is one more very natural implicit
operation found in the literature besides the explicit operations : the
idempotent unary operation x® . For an element s of a finite semi-
group, the value s of x¥ on s is the idempotent in the subsemigroup
generated by s. There is, however, a need for more implicit operations
1n order to be able to define all pseudovarieties in terms of pseudoi-"
dentities.

EXAMPLE 2.4. Let ébp denote the class of all finite abelian p-groups,
and let AbP denote the class of all finite abelian groups without
elements of order p, where p 1is any prime. We claim éPp and_éhp cannot
be defined by pseudoidentities in which all implicit operations are
composites of x® and explicit operations.

For, suppose Abp = [[x*¥ = 1, ¥ ]] where £ is a set of such pseudoi-
dentities. (In general, mw=1 1is an abbreviation of
ﬂ(x1,...,xn)y=y=yﬂ(x1,...,Xn).) Then, every T=p in X can be replaced
by an identity of the form v=1 or v=w. Thus, we may assume X 1is a
set of identities.

Let [X] denote the class of all semigroups satisfying the
identities in X . Of course, [X] is a variety and the class [Z]¥ of
all finite members of [X] is precisely [X J. But Z € [Z] since [[ Z]]
contains cyclic groups of arbitrarily large order and [X] is a variety.
Hence ZQJE [Z1F N [xW=1 ] = Abp for all q, contradicting the defini-

tion Of.é@p . A similar argument works for é@p

3. UNARY IMPLICIT OPERATIONS

In a cyclic semigroup < a ; al = altk > , we call n the index of
a and k the period of a ; we also denote by K its maximal subgroup.
Let S denote the class of all finite semigroups.

LEMMA 3.1.
and a € A. Then 1

be such that mwp(a) € Ky for some A € S
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PROOF . By Theorem 2.3, there is a sequence (x™ n), of words such that
lim x*0 = m in 4S8 . Now, 1f an_lAl then "A(a) € K; , so that the
T1—> O

set of exponents {ap : n = 1,2,...} must be bounded. Hence, there is a
2 constant sequence (x®), converging to m in 0S8 , that is

S Em =x0 , whence mE {5 .

LEMMA 3.2, Let m €'§L§ . Then, for A€ S and a € A,

a) wa(aS) = (my(a))®  for all positive integers s, and
b) TTA(E].("J) = gW
PROOF. (a) Just note that b+— bS defines an endomorphism of any

cyclic semlgroup.
(b) This follows from (a) noting that there is an integer s such that

HW = bS for all b € A .

Let G denote the class of all finite groups.

PROPOSITION 3.3 Let m € ©4S . Then, either ™ € {45 , Or
n(x) = m(x¥x) so that m 1is completely determined by its restriction

to E;.

PROOF. Suppose m € 045« Then, by Lemma 3.1, 'A(a) € K, for all
A€S and a € A. Thus, mp(a) = nma(a)a® since a¥ 1s the “neutral
element of K,, whence my(a) = ma(a)mp(a¥) = ma(a¥a) applying
Lemma 3.2 twice. Hence m(x) = m(xWx) as claimed.

We now study the unary implicit operations on G . Let 1 € Q4G .
Then, for A€ G and a & A, mala) = a®(1)  for some function

o : IN — IN, where n=ord a is the order of a (since mp(a) = <a>(a)).

The f0110w1ng Lemma gives the arithmetic conditions on such a
function o which insure that the formula nA(a) 20 () defines an
lmplicit operation on G . We write mln in case m divides n .

We denote by IN the set of all positive integers and we let INO=INU{O}.

LEMMA 3.4. The following are equivalent for a function a : IN-— IN,
1) oo defines an implicit operation on G .
11) dln implies dlo(n) - a(d).

PROOF . (i) means, for every A,B € G , every homomorphism h : A - B,
and every a € A, h(my(a)) = ng(h(a)), i.e.,

n® @y o (h(a))*

where n=ord a and d = ord h(a). Since h 1s a

homomorphism, dln, whence (h(a))&(n) = (h(a))&(d) if and only 1if
d‘ oa(n)-o(d). This proves (ii) = (i). For the converse,

just use the above cyclic groups A and B of orders n and d and genera-
rors a and b, respectively, and the homomorphism h : A - B sending a

to b.

Let IP denote the set of all primes.
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THEOREM 3.5. Let A; : IP » N (i=0,1,...) be given functions and

k [ :
define a(p ) = ki(p)pl . Then, there 1s one and only one

1= O
extension of oo to IN (with a(n) defined up to congruence modulo n)
such that o defines an implicit operation on G . Moreover, every

m € 24G can be obtained in this way .

PROOF. Let m €‘§}§; and let oo : IN » IN, be any function defining ™.
Then, by Lemma 3.4, for each p € 1P, pla(pz) - o(p) and so we may
assume a(p2) = a(p) + A{(p)p for some Xq(p) € W, (since adding any
multiple of p2 to a(p2) does not change W ). An easy induction gives
that we may assume o(p™®) = a(p) + Aq(p)p +...+ ?\1,]___1(};:')pn"'1 with

A (p) € INg (i=1,...,n=-1) independent of n. Finally, take

AO(P) = l:3"5(13)

Next we show there 1s a unique extension f ¢ IN -» IN, of any «
defined by a sequence (Ai); of functions on prime powers as 1n the
statement of the Theorem so that B defines an implicit operation on G
(where uniqueness of B(n) is again up to congruence modulo n). Indeed,
suppose B is such an extension. Let n€IN and let

K1 kr : : : . :
n =P, ..ePy be a factorization of n i1into powers of distinct primes.

Then, by Lemma 3.4, B(n) is a solution to the system of congruences
k. k.
X = a(p. l) (mod P. l) (i=1,...,¥) . By the Chinese Remainder

Theorem, this solution always exists and is unique modulo n. This
establishes uniqueness and gives a way to define B to establish

existence . Thus, it remains to show that B, defined in this way,
defines in turn an implicit operation on G . Now, if dln , then
31 Er
d = P, --:P for some Ei < ki (i=1,...,r). Hence
k. L. L.

B(n) = a(p. l) and B(d) = oa(p.1 ) both mod p.l .  Since

k. L L. 2. . k.
a(pil) o {p ) (mod pil) by the definition of u(pil), it

L.

follows that pilIB(n) _ B(d) for i=1,...,r and so d|B(n) - B(d).

By Lemma 3.4, P defines an implicit operation on G .

COROLLARY 3.6. Every pseudo?iyiety of abelian groups 1s of the form
[ m=1, xy=yx ]| for some m € {45

PROOF. Let V be any pseudovariety of abelian groups. Define

. D ™ _ ' —
A, P oo W by ki(p) = 0 1if Zzpi+4 € V and A.(P)

otherwise. Let o be as in Theorem 3.5 and T € Q-§_ be the implicit

operation determined by «. We claim E;=-Eﬂ=1, xy=yx ]} .
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Let A€V and a € A be an element of order n. Let

k k
n=7p, ---P be a factorization of n into products of distinct
k k

primes. Then (n) = a(pil) (mod pil) (i=1,...,r) and so o{n)=0(mod n)

o1
-0 ky 7

Py

}\j (p)p3=0 as /L € V . Hence,

+()_ 1. Whence V Em = 1.

HA(a) = a
Conversely, let A € [[m=1, xy=yx ]]. Then A is an abelian group

since, if a € A, then ms(a) = a° por some s =z 1 and aS 1is an

identity element in A because AgkEw = 1. Thus, A 1is isomorphlc to a

direct product Z KX [/ " of cyclic groups (where the P,

py 1 P, S

are not necessarily distinct primes). If A € V , then some // kiﬁji
1

and so, if f=min { m : Z HLE V} and a € A is an element of

Py

£ L-1
order P: then HA(a) = 3 = a = 1A , Whence A E = 1.
Hence A € V .
Using Corollary 3.6 , Almeida [2] has observed that there are
finite sets X of pseudoidentities such that there is no algorithm to

decide whether a given finite semigroup S lies in the pseudovariety

[Z ]

XN
— 0
COROLLARY 3.7.  |@,8| = 2
PROOF . This follows easily from Corollary 3.6 since there are that

many pseudovarieties of abelian groups.

L

4, SOME UNUSUAL BINARY AND TERNARY OPERATIONS

In this section we use some classical results of the combinatorial
theory of words to produce, for the values 2 and 3 of n, n-ary iImplicit
operations which are not composites of (n-1)-ary implicit operations
and explicit operations.

THEOREM 4.1. Let LJ denoﬁ? the class of all finite semigroups S all
of whose submonoids .eSe (e " =e £ S) are semilattices. Then, for

every pseudovariety V containing LJq{ , there exist binary implicit ope-
rations on V which are not finite composites of explicit and unary

implicit operations.
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PROOF. Let A ={ a,b} be a two-letter alphabet and consider the
endomorphism p of the free semigroup A%t on A defined by
p(a) = ab , u(b) = ba . Consider the sequence (w,)_  of the words
wn = u®(a) obtained by iteration of p on a. This  sequence of words
was first studied by Thue and Morse and it is known to consist of
cube~free words, i.e., no wy has a factor of the form u3 with u € At
(see Lothaire [6, Chapter 2 ] for details).

Since QoV  is compact by Theorem 2.2, (wp), admits a conver-
cent subsequence. We show no subsequence (WQCH))n can converge 1in

@9 S to an implicit operation which 1s a finite composite of explicit
and unary implicit operations. Suppose, on the contrary, that

lim w m) = T where m(a,b) is such an implicit operation. Notice
N—> <o
that © cannot be an explicit operation.
Then T = lim v where v_ € At 1is given, for all n, by the
1)—> 0O

same finite expression in a,b using the operations (x,y) b xy and
operations of the form x> x9(n)  where 6 is a given strictly increa-
sing function from 1IN 1into itself (non-strictly increasing © leads
to explicit x> x0(n)), In particular, if (v,), 1s not constant
(which is the case since 7 € Q,8), v, has a factor u3 for all nz3
where u €AY is independent of n.

Here, we recall that there exists a finite semigroup Skﬁfég4 cV
such that an identity v=w holds 1in Sy 1f and only if the
words v and w have the same initial and terminal segments of length
k-1 and the same factors of length k (cf. Almeida [1]) . Let k=3|u|
and let K=[Sk‘. Then, by definition of convergence of sequences

iV

1n 922;, there exists n, 2

and all S €V with |S|

3 such that SkEwWw = M = V for all
©(n) n

iV
-
|7

n £. 1In particular, Skk=w¢(n)= v_ SO

0

that u3 is a factor of WQ(H) , which is impossible since wm(n) 1s

cube~free. B
Hence, no accumulation point of the sequence (wp) —1n &,V can
be a finite composite of explicit and unary implicit operations.

THEOREM 4.2.  For each pseudovariety V containing LJ, there exist
ternary implicit operations on V which are not finite composites of
explicit and binary implicit operations.

PROOF. Let A = {a,b,c} be a three-letter alphabet. The proot
proceeds along the same lines as the proof of Theorem 4.1 working with
any infinite sequence of square-free words 1in A* (see also Lothaire

[6, Chapter 2] for the existence of such sequences). The only other
ingredient is the observation that there are no square-free words of
length 4 on a two-letter alphabet. We leave the details to the reader.

In view of Theorems 4.1 and 4.2, it is natural to ask whether in
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ceneral there are n-ary implicit operations on V 2 LJj4 which are not
composites of explicit and (n-1)-ary implicit operations. If the same
type of argument as the one used above is going to be applied, omne 1s
apparently still lacking theorems on avoidable regularities 1n words on

n-letter alphabets.

5. FINITE SEMIGROUPS IN WHICH IDEMPOTENTS ARE CENTRAL

In spite of the apparent chaos otf implicit operations discovered
in the previons section, we proceed to clarify their structure. Here,
we restrict our attention to the pseudovariety ZE = [[ xWy = yxW]] of
all finite semigroups in which all idempotents are central.

Let ™€ Q,ZE . We say that T has the kernel property 1f, for
every S € ZE and S1ss e85y € S, HS(S1,...,SB) belongs to the mini-
mal ideal of the subsemigroup of S generated by S¢q,...,5n-

LEMMA 5.1. ZE I==(xy){JJ = waw.

PROOFE. Let S € EE_ and let n be such that Sh=xw = xn . Then

sk (xy)™ = xyGy) T Gey) M) ™

= x(xy)ny(xy)x_1(xy)n since idempotents are central
= quz(xy)n where u, = y(xy)n_1y(xy)n_1
= Xkuk(xy)n for some uk , by induction on k
= annun(xy)n since Sk=xw g
= Xn(xy)n by the above.
n n n
Analogously, Sk (xy) = (xy) y .  Furthermore,
S+=xnyn _ XXn—1 yn Xn yn
n-1 n-1 n n
=Xyy X X ¥
n-1 n-1 n-1 n n
= XYXX y X X
_ (xy)z(yn_1xn—1)2 Xn yn
= (Xy)k(yn-1xn_1)k X yn by induction on k

-1 n-1 .
(Xy)n(xy)n(yn )T g yn since SEx. = x

(xy)" % yn by the above.

Hence SkEX yn = (xy)Il X yn = (Xy)Il yn = (Xy)n.
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PROPOSITION 5.2. Let mw € Qy ZE . Then 7 has the kernel property
if and only if w(xq,...xy) = p(exq,...,exp) where e=(xq...xp)¥ for
some p € ﬁﬁ G .

PROOF: Suppose T has the kernel property and let p be the restriction

ﬂ

of m to G . Then ﬁ(x1,...,xn) = T(Xq15...5Xple since, for each SEZE
and each S{,...,80€ S, f = (sq...sp)% 1is the neutral element of
the kernel of the subsemigroup generated by sq,...,55 by Lemma >.1.
On the other hand, since idempotents are central, the mapping s> sf is
an endomorphism of S. Since m is an implicit operation on ZE , it
follows that T(xX{,...,Xp)e = M(exq,...,exy) = p(exq,...,exp) . Hence,

m is of the required form. The converse is obvilous.

LEMMA 5.3. Let S € ZE and let n=lSl. Then, for each word w with a

number lw}x of occurrences of a variable x at least n, Skw = x%w .

PROOF. Let s € S and tg,tq,...,ty € S1. Let a, = t. st,s...L s

k 0 1 k
(k=0,...,n-1). If the a, (k=0,...,n-1) are all distinct, then
a, = sm for some k and so a t = swa t . Otherwise, let k < XL
k n n nn
with a, = a, . Then
a, =3, = ak(tk+1s...t£s)
(W : :

= ak(tk+1s...t£s) by the preceding line

= (t S t S){JJ “ by Lemma 5.1

—-ak ka1 +eLyp 5 Y L .

= s ay by the above

W
Hence a t = s a t
n n n n

We are now ready for the main result of this section .

ﬂ

THEOREM 5.4. Every implicit operation on ZE 1s of the form

W 01(ey1,.,.,eyn) Woee s pk(ey1,...,eyn) W

where each W, is a word not involving the variables YqseeesY (with

el

. | - N
Wiy s Wy possibly empty), e —(y1...yn) , and each p. € 8 G .

PROOF. Let mw€&€ & ZE . By Theorem 2.2, there 1s a sequence (vk)k of

words on an m-letter alphabet {X1,...,Xm} such that 1im.vk= .
= oo

1,2,...} is unbounded } .

A

Let J = {3 : 1

i £ m, {Ivklx. . k
J
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Then, by considering a subsequence of (vi)k 1f necessary, we may assume

that the word u obtained from.vk by removing all Xj with j € J 1s the

>k for all j € J. Write

same for all k and |v

k!x.
J
W.eoeV, W whetre W. W.eooeW = 1U .

k- Y0 Ykl 1T ke x 0 17 r
Given £ € IN, there exists kp such that SET = v, for all k.E-Zkfi

7

L4

and all S € Z]

with ISIE £ . In particular, for k 2 maxiZl, k@} .

SET = W, = ij W, (7 € J) by Lemma 5.3.
Let Ops = Vg ﬂ - ij (i=1,...,r) and let 0k=w00k1w1...ckrwr .
By the above, lim ;k =7 . Since s“z‘__m ZE 1s compact, we may assume
k- oo |
each sequence (Gki)k converges, say to T. . Clearly each O 5 has
the kernel property and, therefore, so does each s s To complete

the proof, it suffices to quote Proposition 5.2.

COROLLARY 5.5 (Almeida and Reilly [3]) Every pseudovariety VS N 1is
of the form [[ x*® = 0, ]J] for some set I of identities.
PROOF. Since V k xw - 0, we see that every implicit operation on V
with the kernel property is constant with value O on each S € V. -
Thus, if V = [[xW = 0, Z£]] where X 1s a set of pseudoidentities, then
each element of ¥ may be replaced by an identity of one of the forms
v=0 or v=w in view of Theorem 5.4. Hence, we may assume 2 1S a set
of identities, as claimed.

For the pseudovariety Com of all finite commutative semigroups,
we can give a complete description of the implicit operations on Com.

THEOREM 5.6. Every n-ary implicit operation on Com 1s a product of
unary implicit operations (these being viewed as n-ary operations
depending on only one variable).

PROOF. Let m € Qy Com . Then, by Theorem 2.2, there is a sequence

(w.). of words in {x.,...,x }* such that lim w, = T . Since we are
k'k 1 n s co K
- - » + {:Ir u
working with commutative semigroups, we may take wy = X1 k1...xn kn
for k=1,2,... . Since ﬁﬁ Com is compact, we may assume each sequence
ki k1
* 1 —r
(Xi )k converges, say T. = lim x, . Then m, € 91 Com

k= o0

(i=1,...,n) and M=T, ..M .

. Theorems 3.5 and 5.6 are, so far, rare complete characterizations
of certain sets of implicit operations. In general, it should be more
feasible to obtain results like Theorem 5.4 in which implicit opera-
tions on a pseudovariety are described modulo the knowledge of implicit
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operations of some special kind. In this direction, we propose the
following conjecture : every implicit operation on S is a finite compo-
site of explicit operations and implicit operations which assume only
regular values.
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