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Abstract

It is known that the existence of the group inverse a# of a ring element a is equivalent
to the invertibility of a2a™ + 1 — aa™, independently of the choice of the von Neumann
inverse a~ of a. In this paper, we relate the Drazin index of a with the Drazin index of
a’a” +1—aa~. We give an alternative characterization when considering matrices over
an algebraically closed field. We close with some questions and remarks.

1 Introduction

Let R denote a ring with unity 1. We say a € R is regular provided a € aRa. We shall
also denote a{l1} = {x € R|axa = a}, whose elements are called von Neumann inverses of
a. As usual, a~ is an element of a{l1}. If some power of a is regular then a is said to be
weak-regular. As an example, 2 € Zg is not regular and still it is weak-regular.

In this paper, we will consider Drazin invertibility ([3]) on general associative rings with
unity 1. An element a is said to be Drazin invertible provided there is a common solution to
the equations

d*zra = d¥, xax = z, ar = za,

for some k > 0. It is well known the uniqueness of the solution, if it exists. As usual, it
will be denoted by a”. The smallest k for which the equations have a common solution is
called the Drazin indez of a, and denoted by i(a). Two special cases deserve our attention:
when i(a) = 0 means a is a unit, and when i(a) < 1 defines the so called group invertible
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elements. In the former case, the Drazin inverse will be denoted by a#. That is to say, group
invertibility is a special case of Drazin invertibility. However, it can be proved that a has a
Drazin inverse provided it has a power which is group invertible. Furthermore, the smallest k&
for which (ak)# exists equals the Drazin index i(a) of a, and a? = a*~! (ak)# = (ak)# ab1.

We will make use of left and right ideals generated by a power of a. In fact, i(a) = k
if and only if k is the smallest for which a*R = a**'R and Ra* = Ra**!, or equivalently,
a® € d**'R N RaF*!. This implies, for any n > k, the relation a” € a"t'R N Ra"t!'. As
a special case, a™ exists if and only if @ € a?R N Ra? if and only if aR = a®>R, Ra = Rad?.
The left [resp. right] index of a is the smallest value p [resp. ¢] for which a?™'R = aPR
[resp. Ra?t! = Ra4]. Tt was shown in [3] (cf. [7, page 11]) that if p and ¢ are finite then
p=q=i(a). ,

R. Cline showed in [2] how to relate (ab)? with (ba)?, namely (ab)” = a ((ba)D> b. This
equality is known as Cline’s formula. According to [7, page 16|, the indices i(ab) and i(ba)
differ at most by unity. That is to say, |i(ab) — i(ba)| < 1. When considering matrices over a
field IF, this corresponds to ¥ ap(A) = A%Flg4(N), where 145 and ¥4 denote, respectively,
the minimal polynomial of AB and BA. If, in addition, F is algebraically closed, then every
matrix is similar to a diagonal block matrix with Jordan blocks, known as the Jordan canonical
(or normal) form. This gives, in particular, the core-nilpotent decomposition: given a matrix
A over F, there are (possibly absent) matrices U invertible and N nilpotent with nilpotency

. . U 0 C .
index, say, k, for which A ~ N | where ~ denotes matrix similarity. In this case, AP ~
u-t o o e e -
o ol Note that Drazin invertibility is invariant to matrix similarity, and recall similar

matrices have the same minimal polynomial. Therefore, this means ¢4 = lem(Yy,¥n). As
U is invertible and N is nilpotent with nilpotency index k then 1 (0) # 0 and ¥y (\) = AF,
and hence ¥4(\) = A9()). As a conclusion, the Drazin index of A equals the algebraic
multiplicity (possibly zero) of 0 as a root of the minimal polynomial ¥4 of A. With no
surprise, the multiplicity of the root 0 (if any) of the minimal polynomial of a matrix over a
field is usually called the index of the matrix.

A ring R is said to be Dedekind finite if xy = 1 implies yz = 1. An important property
of these rings is that, given e? = e, f2 = f € R, then, as in [4, Theorem 1], the equivalence of
the following hold:

1. R is Dedekind finite;
2. eRC fR and e ~ f imply eR = fR,
3. Re C Rf and e ~ f imply Re = Rf;

where e ~ f means eR = fR as right R-modules, or equivalently, Re = Rf as left R-modules.

As a consequence (cf. [4, Theorem 2]), if a* is regular (that is, a is weak-regular) then
the equality a*R = a**!R is equivalent to the existence of the Drazin inverse of a, with
i(a) < k, provided R is Dedekind finite. In this case, the equality a*R = o*T'R implies



Ra* = Ra**! as left R-modules by taking p(ya”®) = ya**! as the desired isomorphism. Since
trivially Ra**! C Ra”* then Ra**! = Ra*, and therefore i(a) < k.

If R is not Dedekind finite, then such an outcome cannot be expected. Indeed, if uv =
1 # vu then u” does not exist and still u/R = R = v R, for any natural .

2 Main results

The Puystjens-Hartwig Theorem ([10]) characterizes the group invertibility of a regular el-
ement in terms of units. We may rewrite it as the equivalences (1) < (2) < (4) in the
proposition below. We add two more simpler equivalences.

Proposition 2.1. Given a reqular a € R, the following conditions are equivalent:

1. i(a) < 1;

2. i(a?a” +1—aa~) =0 for one and hence all choices of a= € a{l};
3. i(a+1—aa”) =0 for one and hence all choices of a= € a{l};

4. i(a=a®>+1—a~a) =0 for one and hence all choices of a~ € a{l};
5. i(a+1—a"a) =0 for one and hence all choices of a~ € a{l}.

Proof. Note that 1+ aa™(a — 1) is a unit if and only if 1+ (a — 1)aa™ = a?a™ +1—aa™ is a
unit, and so (2) < (3). The equivalence (4) < (5) is obtained similarly. O

Recently [13], the existence of the group inverse of a regular element was characterized by
means of another unit. We give a proof for the sake of completeness.

Proposition 2.2 (Schmoeger). Given a reqular a € R theni(a) <1 if and only if i(1—aa™ —
a~a) =0, for some a~ € a{l}.

Proof. Setting w =1 — aa™ — a~a then obviously ua = —a~a? and au = —a?a~, which lead
to a € a?R N Ra?.
Conversely, taking a~ = a¥ one can show that (1 —aa” — aa#)2 =1 O

Using the same reasoning of the previous result, we may state the following:

Proposition 2.3. Let a € R be a reqular element, and consider the following conditions:
(A) i(a) <1
(B) i(aa~ +1—a"a) =0, for some a~ € a{l}.
(C) i(aa+1—aa")=0, for some a~ € a{l}.
(D) R is Dedekind-finite.

Then



1. (A) & ((B) A (C)).
2. (D)= (((B) v (C)) = (4)).

Proof. (1). (A) means a” exists, and so (B) and (C) both hold by taking a~ = a®. Conversely
if both aa™ +1 —a"a and a~a + 1 — aa™ are units for some a=,a~ € a{l} , and since
a(aa” +1—a"a) =a%a™ and (a=a + 1 — aa™)a = a~a?, then a € a? RN Ra?, which in turn
means i(a) < 1.

(2). If R is Dedekind finite, and as in (1), (B) shows a € a?R and therefore a € Ra? (see

[4]), or (C) implies a € Ra? and therefore a € a?R. In either case, a” exists. O

Condition (2) is the best possible, as if R is not Dedekind finite, it is possible to exist a
regular ¢ € R which has no group inverse, and still aa™ +1—a"a or a“a+ 1 —aa™ are units
for some a~ € a{l}. Take R = B(f?), and the usual orthonormal basis (e;);2; in ¢%. Define
a € R as a(e;) = e;41, which is regular and a~ defined as a™ (e;) = ci-p iz 2,
0 otherwise
is a von Neumann inverse of a. Note aa™ # 1 = a"a, aa~ +1 — a"a is not a unit and

z ifi =1
a"a+1—aa” =2 —aa” is invertible. In fact, (2 — aa™)"(e;) = é1 1t L.
e otherwise

In the next result, we extend Proposition 2.1.

Theorem 2.4. Let a € R be a reqular non-invertible element. The following conditions are
equivalent:

1. i(a) =k + 1.
2. i(a%?a” +1—aa~) =k, for some a~ € a{l}.
3. i(a"a*+1—a"a) =k, for some a~ € a{l}.

Proof. (1) < (2). When k = 0 we get Proposition 2.1. So we may consider k£ > 1.

Firstly, note that a*T'a~ = (a?a™)*, for k > 1, and secondly a?a~ € eRe, where ¢ = aa™,
from which (a?a™)P € eRe with index k if and only if i(a?a™ + 1 — aa™) = k (see [9]).
Alternatively, = + y with xy = 0 = yz has Drazin index k if and only if z,y have Drazin
inverses in which case k = max{i(z),i(y)}.

If i(a’?a™ + 1 — aa™) = k then i(a®?a™) = k. This means (a?a™)*"'R = (a’?a")*R and
R(a?a™)**1 = R(a?a™)*, which in turn gives a**?R = a**'R and Ra**? = Ra**!. Hence,
i(a) < k+1. Now, if i(a) = I < k then a"*'a™R = ¢"*'R = 'R = d'a™ R, from which
(a®?a™)'R = (a®a™)!"'R, and therefore k = i(a?a™) <1 —1 < k.

Conversely, if i(a) = k+1 then a**2a~ R = a**'a~ R and Ra**2a~ = Ra*T'a~, which give
(a’a™)*'R = (a®a™)*R and R(a*a™)*"! = R(a?a™)*. Therefore, i (a’a™) < k. Assuming
i (a®a™) =1 < k then this would give a'™?R = (a?a™)""'R = (a®a™)'R = a'*! and therefore
i(a) <1+ 1< k+ 1. Hence, i(a®a™) = k, which in turn implies i(a’?a™ + 1 — aa™) = k.

The equivalence (1) < (3) is similar to (1) < (2). O



We remark the index of the elements in the Theorem is independent of the choice of the
von Neumann inverse of a. Therefore, we may state the following result:

Corollary 2.5. Given a regqular a € R and a~ € a{l}, if i(a®a™ + 1 — aa™) = k then
i(a?a™ +1—aa™) =k for any a= € a{1}.

When k = 0, this gives the known fact that the invertibility of a?a~™+1—aa ™ is independent
of the choice of a™, as in Proposition 2.1.

Lemma 2.6. Given a requlart € R and a natural k,

k

(t+1—t) =143 (i),

i=1

Proof. The proof is done by induction. The result holds trivially for k = 1.
Note that (t+1— tt_)]Cle =@t+1—-tt7)(t+1—- tt‘)k which equals, by the induction
step,

(t+1-1) (1 + g (" - t’f‘)) :

k+1 k k
Hence, (t+1—tt7)" =t + S (¢ —¢t7) + 1+ > ((—tt7) —ot= =Y (F—t't7) =
k+1 i:2k+l = =

Lt —tt+ Y (=) =1+ (£ —tt7). 0
=2 i=1

Lemma 2.7. Given a regular nilpotent n € R with n*T1 =0 # nk,

(n +1-— nn_)kJrl = (n +1-— nn_)k
k+1
Proof. By the previous Lemma, (n +1-— mf)kJrl =1+ Z (n’ — n"n*) . Since n*+1 = 0,
i=1
k
we have, (n +1-— nn_)k+1 =1+ Z (nz — nin_) = (n +1- nn_)k. ]

i=1
Theorem 2.8. Given a regular nilpotent 0 # n € R then n**t1 = 0 # n* if and only if

iln+1—nn") =k, for somen™.

Proof. From Lemma 2.7, i(n + 1 — nn~) < k. Note that since the nilpotency index of n is
k + 1 then also i(n) = k + 1.

1—nn— 1-—
We may write n+1—nn" as [ 1 n } [ 1nn . Using [2], [ 1 n ] [ ;m has
1—nn~ 1—nn~
a Drazin inverse if and only if M = 17m [ 1 n } = 17m 0 has a Drazin
n

inverse, and |i(n +1 —nn~) —i(M)| < 1. From [7, Theorem 1], and since i(1 —nn~) = 1
then i(n) <i(M) <i(n)+1, that is tosay, k+1 <i(M) < k+2. Recall i(n+1—nn") < k.



Now ¢(M) = k + 1 implies the possible values for i(n + 1 — nn~) are k,k + 1,k + 2. If
i(M) = k + 2 then the possible values for i(n +1—nn~) are k+ 1,k + 2,k + 3. We are left
with i(n+1—nn") = k.

Conversely, suppose i(n + 1 —nn~) = k and i(n) = £, or equivalently, n‘ = 0 # n’~!. We
want to show £ =k+1. If { < k theni(n+1—nn") </—1 < k from Lemma 2.7. Therefore

1—nn~ 1—nn~
¢ > k. Now suppose £ > k + 1. Setting M = o [1 n] = 0

= [ ] then
1 1 n
i(M) € {k — 1,k,k+ 1} and £ = i(n) < i(M) < i(n) +1 = ¢+ 1. These inequalities do
not hold for the possible values k — 1,k,k + 1 of i(M). Therefore, and since n is nilpotent,

C=i(n)=k+1. O

Corollary 2.9. Given a regular nilpotent 0 # n € R, i(n) = k+ 1 if and only if i(n + 1 —
nn~) =k, for some n”.

Corollary 2.10. Given a regular nilpotent 0 # n € R and n~ € n{1} such that i(n + 1 —
nn~) =k theni(n+1—nn~) =k, for all n= € n{1}.

Theorem 2.11. Let A be a singular square matrixz over an algebraically closed field. Then
i(A) =k+1ifand only if i(A+1— AA™) =k for some A™.

Proof. The case k = 0 follows from Proposition 2.1. So we may consider k£ > 1. For every
Cc 0

matrix A there is C invertible and N nilpotent for which A ~ o N | where ~ denotes

matrix similarity. Recall this form is know as the core-nilpotent decomposition. Without loss

of generalization, we may consider A to be in its core-nilpotent decomposition. Note that

-1
i(N) =1i(A) > 2, and therefore N # 0. Setting A~ = CO ]\?_ and U=A+1—-AA",
then U/ = | ¢ 0 Now i(A) = k+1 4 i(N) = k+1 4 i(N+1 - NN-) =
| 0 N+I-NN- | B B B
k < i(U) = k, which proves the theorem. O

3 Concluding remarks

We close this paper with some remarks and questions:

1. Cline’s formula provides an alternative proof of the main results of [13], as |i(ab) —
i(ba)] < 1. This implies if ab is a unit then i(ba) < 1, or equivalently, (ba)?” exists.
Also if ((ab)™)* exists then i(ab) < n, which implies i(ba) < n + 1, and therefore the
existence of ((ba)"+1)#.

2. In this paper, we considered Drazin invertibility of regular elements. Still we must
stress that a Drazin invertible element might not be regular. In this paper, we clearly
addressed to the case where the element in regular.



3. When considering Drazin invertibility of a ring element, a usefull reasoning is by consid-
ering powers. The elements of the form ¢+ 1 — ¢t~ have powers with a special structure,
as in Lemma 2.6:
Given a regular t € R and a natural k,

(t+1—tt ) =t (1 —tt) 1wt

The proof is done by induction. Simple calculations show the result holds for £ = 1.

Note that (t+ 1 — tt_)kJrl =(t+1- tt_)k (t + 1 — ¢t~ ) which equals, by the induction

step,
(t+1—u) T v 1—w) 1 -0,

We obtain ¢ (t +1 — tt7)" +1 — ¢t~

4. The invertibility of a?a=+1—aa",a"a’+1—a"a,a+1—aa",a+1—a"a is independent
of the choice of a=. What can be said when considering the units in Proposition 2.2
and in Proposition 2.37

5. We have shown that i(a) = k+ 1 if and only i(a?a™ +1—aa~) = k, for k > 1. We have
also proved i(A) = k+ 1 if and only i(A+1— AA™) =k, for k > 1, if A is a square
matrix over an algebraically closed field. Is the result also valid for, say, regular rings?

6. A positive answer for the previous item would provide the equivalence between i(a?a™ +
l1—aa”)=kandi(a+1—aa") =k, and in this case it is independent of the choice of

a .

7. The previous question is part of a more vast and structural one: does i(1 — zy) = k
imply i(1 — yz) = k? When k = 0 it is a well known result.
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