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The construction of dynamic metabolic models at reaction network level requires the use of mechanis-
tic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on
these equations and the difficulty in the experimental identification of their associated parameters, rep-
resent nowadays the limiting factor in the construction of such models. In this study, we compare four
alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and
ynamic modeling
scherichia coli metabolic network
pproximate rate equations
arameter optimization

different types of simplified rate equations for the remaining reactions (generalized mass action, conve-
nience kinetics, lin-log and power-law). Using the mechanistic model for Escherichia coli central carbon
metabolism as a benchmark, we investigate the alternative modeling approaches through comparative
simulations analyses. The good dynamic behavior and the powerful predictive capabilities obtained using
the hybrid model composed of Michaelis–Menten and the approximate lin-log kinetics indicate that this
is a possible suitable approach to model complex large-scale networks where the exact rate laws are

unknown.

. Introduction

One of the great challenges in the post-genomic era is to
nderstand the dynamic behavior of a living cell. For that pur-
ose, quantitative models describing metabolic network dynamics
re a powerful tool to explain properties of complex biological
ystems and to guide experimentation (Kitano, 2002). In this con-
ext, dynamic changes in metabolite concentration over time are
redominantly simulated using non-linear ordinary differential
quations (Bakker et al., 1999; Klipp et al., 2007) that require a
revious knowledge on the network structure and a large amount
f experimental information, such as initial concentrations of
etabolites, kinetic parameters and detailed kinetic rate laws.
echanistic kinetic rate expressions have been the usual approach

n metabolic networks modeling. In the last years, several dynamic
odels have been developed and examples include the tricar-

oxylic acid cycle in Dictyostelium discoideum (Wright et al., 1992),

he threonine synthesis pathway in Escherichia coli (Chassagnole
t al., 2001), and the glycolysis in Trypanosoma brucei (Bakker et
l., 1997). A major challenge with such models, however, is that
hey often possess many kinetic parameters. While information
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on network structure can be compiled from public databases (for
example Karp et al., 2000; Ren and Paulsen, 2007), there are cur-
rently few methods for estimating kinetic parameters. In addition,
kinetic parameter values measured in vitro may originate signifi-
cant differences between simulated and experimental data because
the conditions at which in vitro assays are performed are often
different from those inside the cell (such as buffering conditions,
temperature, intracellular pH, etc.) (Richey et al., 1987; Teusink
et al., 2000). A common approach to address this issue has been
the use of time course in vivo data in response to a stimulus
(Theobald et al., 1997; Vaseghi et al., 1999; Wahl et al., 2006)
for kinetic parameter estimation by minimizing a cost function
(Mendes and Kell, 1998; Moles et al., 2003). However, despite a
number of successful applications, this approach has several lim-
itations due to parameter identifiability problems on mechanistic
models. On the other hand, the true mechanistic kinetic rate law
for a specific reaction is frequently not known for most of the
enzymes.

For these reasons, the application of these approaches to kinetic
models requires a large amount of experimental data and has been
limited to biochemical networks of limited size (Ishii et al., 2007),
with the exception of the human red blood cell model (Jamshidi et

al., 2001). Alternatively, large-scale metabolic models can be con-
structed based on stoichiometry without large fitted parameter
sets. Although these models can be used to predict steady-state
behavior using flux analysis, they fail to capture the transient
behaviors of metabolism. Recently, a great effort has been car-
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ied out by researchers to develop alternative approaches to build
arge-scale models with incorporation of some dynamic phenom-
na. Dynamic flux balance analysis (DFBA) has been proposed for
ituations where there is kinetic knowledge available for part of
he model (Mahadevan et al., 2002). Another hybrid approach was
eveloped by Yugi et al. (2005). The proposed method aims to
educe the number of enzyme kinetic assays necessary to build

dynamic model, by considering a dynamic and a static part.
he static module is simulated by metabolic flux analysis (MFA)
onstrained by the information obtained from the dynamic mod-
le. There are some limitations to be considered for accurate
imulations, such as the need to know the elasticity coefficients
t boundary reactions between modules and inconsistencies in
he static module caused by the inclusion of irreversible reac-
ions.

Another approach to overcome some of the difficulties in
arge-scale dynamic modeling is to use different alternative rate
quations like linear-logarithmic (lin-log), logarithmic-linear (log-
in), or power-law kinetics (Hatzimanikatis and Bailey, 1996;
avageau, 1970; Visser and Heijnen, 2002), where the kinetic
arameter values can be estimated from time course and/or steady-
tate experimental data (Nikerel et al., 2006; Vilela et al., 2008).
arameters of such alternative kinetics expressions can be also
nferred from the stoichiometry of the reactions (Smallbone et
l., 2007). The most important advantage of approximate rate
quations is the relative small number of parameters, which con-
equently reduces the number of experimental assays necessary
or their identification, while still giving a reasonable description
f the in vivo system. These approximated kinetic expressions also
ave a uniform format and therefore reduced mathematical com-
lexity.

A number of dynamic simulation studies of biochemical sys-
ems with simplified enzyme kinetic equations have been reported
n the literature. Spieth et al. (2006) applied linear weight matrices,
-systems and H-systems models, and also different optimiza-
ion algorithms to model a non-linear dynamic system. Wang et
l. (2007) compared S-Sytems and lin-log models to represent
n aspartase-overproducing E. coli strain in batch fermentations.
urthermore, Voit et al. (2006) combined in vivo metabolite data
btained with NMR techniques and Biochemical Systems Theory
s modeling framework to analyze the dynamic behavior in Lac-
ococcus lactis. However, the applicability of multiple kinetic rate
ypes for modeling large-scale biochemical networks has rarely
een investigated.

In this work, we explore alternative approaches based on
echanistic (Michaelis–Menten) and simplified alternative kinet-

cs to the large-scale E. coli network (Chassagnole et al., 2002).
e constructed four hybrid models where the mechanisms for

eactions with one substrate have been consider to follow the
ichaelis–Menten kinetics, while approximated kinetics have been

sed for the other reactions, such as, generalized mass action, con-
enience kinetics, power-law, and lin-log. These models were then
ompared with the full mechanistic reference model (Chassagnole
t al., 2002). Finally, analysis of stability and prediction power
as been performed to evaluate the best alternative modeling
pproach.

. Methods

Dynamic modeling of biochemical networks has evolved substantially in recent
imes, aided by the arrival of completely sequenced genomes (Blattner et al., 1997),

he development of high-throughput technologies to rapidly obtain quantitative

easurements for multiple metabolites (Theobald et al., 1993; Visser et al., 2002),
nd the completion of publicly-available metabolic databases (Ji et al., 2003; Karp
t al., 2000; Schomburg et al., 2002; Sundararaj et al., 2004; Rojas et al., 2007).
on-linear ordinary differential equations (ODEs) systems are the most commonly
pplied technique to model quantitatively a biochemical network. If we consider n
100 (2010) 150–157 151

species, the generic form will come (Conrad and Tyson, 2006):

dCi

dt
=

m∑
j=1

Nijrj − �Ci (1)

where Ci is the concentration of metabolite i, Nij is the stoichiometric coefficient
of metabolite i in reaction j. The reaction rate rj of the jth reaction is given by
non-linear expressions, which depend on the metabolite concentrations and kinetic
parameters, � is the specific growth rate and m is the number of reactions in the
network.

2.1. Reference Model

In this contribution, the full mechanistic model representing the central car-
bon metabolism of E. coli formulated by Chassagnole et al. (2002), available in
SBML curated format at BioModels online database (Le Novere et al., 2006), was
selected as a benchmark. The model integrates the reactions of glycolysis, pentose
phosphate pathway, the phosphotransferase system (PTS), and several compound-
synthesis systems connected with these pathways that lead for biomass formation.
The details of the metabolic network, the mass balances, the initial concentrations
of the metabolites, and the list of mathematical mechanistic rate equations of the
model can be found in the original paper (Chassagnole et al., 2002). The model
accounts for 30 reaction rates, outlined in Table 1, with a total of 116 kinetic param-
eters and 18 metabolites. The co-metabolites were represented by time-dependent
non-linear functions (Chassagnole et al., 2002). The model simulations using the
deterministic LSODA solver (Petzold, 1983) were conducted during 40 s after a glu-
cose impulse of 1.67 mM.

2.2. Kinetic Rate Equations for Dynamic Analysis

2.2.1. Michaelis–Menten
The Michaelis–Menten kinetics assumes that the rate at which an enzyme binds

to its substrate is much faster than the rate of the product formation, and that the
intermediate reaction is therefore at steady-state (see for example Lauffenburger
and Linderman, 1993). The reaction rate is dependent on the rate constants –
Michaelis constant, KM, and forward rate constant, rmax. The Michaelis–Menten rate
expression can be applied to reactions with one substrate and one product (bi-
molecular reactions), and the more complex expression considering inhibition and
reversibility (Cornish-Bowden, 1995; Heinrich and Schuster, 1996) can be written
as:

r = (r+
max/KS

M)S − (r−
max/KP

M)P

1 + IKa
I + ((S/KS

M) + (P/KP
M))(1 + IKb

I )
(2)

where KS
M and KP

M
are the Michaelis–Menten constants for the substrate and prod-

uct, respectively. Ka
I and Kb

I are the inhibition constants. r+
max is the maximal forward

reaction rate and r−
max the maximal reverse reaction rate. S, P and I denote the concen-

trations of the substrate, product, and inhibitor, respectively. To describe the three
inhibition effects the following limits are often used (Heinrich and Schuster, 1996):
for uncompetitive inhibition (Ka

I → +∞ and 0 < Kb
I < +∞), competitive inhibition

(Kb
I → +∞ and 0 < Ka

I < +∞) and non-competitive inhibition (0 < Ka
I = Kb

I < +∞).
If the mechanism of the reaction is not affected by an inhibitor and the thermo-

dynamic equilibrium constant (Keq = r+
maxKP

M/r−
maxKS

M) is known, then the rate law
can be reduced to the following equation:

r = rmax(S − (P/Keq))

KS
M(1 + (P/KP

M)) + S
(3)

2.2.2. Approximate Kinetics Representation
In general, the precise enzyme kinetic rate laws are not known for all the

enzymes and membrane transporters. The approximated kinetic representations
that we propose are the generalized mass action (Horn and Jackson, 1972; Schauer
and Heinrich, 1979), lin-log kinetics (Hatzimanikatis and Bailey, 1997; Visser and
Heijnen, 2003), power-law models (Savageau and Voit, 1982), and the more recently
developed convenience rate law (Liebermeister and Klipp, 2006).

2.2.2.1. Generalized mass action. The generalized mass action (GMA) represents the
simplest rate law, in which the enzymes effects are hidden. This rate law requires
the specification of only two rate constants, the forward rate constant (k) and
the thermodynamic equilibrium constant (Keq). The value of the constant k takes
into account all unknown effects influencing the enzyme, like the allosteric effec-
tors or molecular crowding. If inhibition and/or activation are involved, a positive
pre-function has to be applied, as suggested by Schauer and Heinrich (1983) and

Liebermeister and Klipp (2006). Therefore, the rate equation takes the following
form:

r = k

nA∏
l′=1

(
Al′

Al′ + Kl′
A

)W+
l′

nI∏
l=1

(
1

1 + Kl
I Il

)Wl
−
(

nS∏
i=1

Si
gi − 1

Keq

nP∏
j=1

Pj
hj

)
(4)
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Table 1
Reaction system and kinetic type from the original metabolic E. coli network (Chassagnole et al., 2002). Abbreviations: PTS, phoshotransferase system; PGI, phospho-
glucoisomerase; PFK, phosphofrutokinase; ALDO. Aldolase; TIS, triosephosphate isomerise; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phsphoglycerate
kinase; PGluMu, phosphoglycerate mutate; ENO, enolase; PK, pyruvate dehydrogenase; PDH, pyruvate dehydrogenase; PEPCxylase, PEP carboxylase; PGM, phosphogluco-
muatse; G1PAT, glucose-1-phosphate adenyltransferase; RPPK, ribose phosphate pyrophoskinase; G3PDH, glycerol-3-phosphate dehydrogenase; SerSynth, serine synthesis;
MurSynth, murine synthesis; DAHPS, DHAP synthase; TrpSynth, tryptophan synthesis; MetSynth, methionine synthesis; G6PDH, glucose-6-phosphate dehydrogenase; PGDH,
6-phosphogluconate dehydrogenase; Ru5p, ribulose phosphate epimerase; R5P1, ribose phosphate isomerise; TKA, transketolase A; TKb, transketolase B; TA, transaldolase;
Synth 1, synthesis 1; Synth 2, synthesis 2.

Reaction (EC number) Reaction mechanisma Inhibitors Activators Kinetic mechanism (no. of parameters)

PTS (−) PEP + GLCEX → G6P + PYR G6P PTS rate equation fromb (6)
PGI (5.3.1.9) G6P ↔ F6P 6PG Reversible MM (6)
PFK (2.7.1.11) F6P + ATP → FDP + ADP PEP AMP, ADP Four state allosteric model (11)
ALDO (4.1.2.13) FDP ↔ GAP + DHAP Ordered uni-bi reaction (7)
TIS (5.3.1.1) DHAP ↔ GAP Reversible MM (4)
GAPDH (1.2.1.12) GAP + NAD ↔ PGP + NADH Two substrate reversible MM (6)
PGK (2.7.2.3) PGP + ADP ↔ 3PG + ATP Two substrate reversible MM (6)
PGluMu (5.4.2.1) 3PG ↔ 2PG Reversible MM (4)
ENO (4.2.1.11) 2PG ↔ PEP + H20 Reversible MM (4)
PK (2.7.1.40) PEP + ADP → PYR + ATP ATP FDP, AMP Allosteric regulation based onc (8)
PDH (1.2.4.1) PYR + NAD+ + COA →∅ Hill equation (3)
PEPCxylase (4.1.1.31) PEP + H20 + C02 →∅ FDP Empirical equation based ond (4)
PGM (5.4.2.2) G6P ↔ G1P Reversible MM (4)
G1PAT (2.7.7.27) G1P + ATP →∅ FDP Empirical two substrate eq.e (5)
RPPK (2.7.6.1) RIB5P + ATP →∅ Irreversible MM (2)
G3PDH (1.1.1.94) DHAP + NADPH →∅ Irreversible MM (2)
SerSynth (−) PG3 →∅ Irreversible MM (2)
MurSynth (−) 2 F6P →∅ Constant level (steady-state flux) (1)
DAHPS (2.5.1.54) PEP + E4P + H20 →∅ Two substrate Hill equation (5)
TrpSynth (−) ∅→ PYR + GAP Constant level (steady-state flux) (1)
MetSynth (−) ∅→ PYR Constant level (steady-state flux) (1)
G6PDH (1.1.1.49) G6P + NADP → 6PG + NADPH NADPH Two substrate equation based onf without ATP inhibition (5)
PGDH (1.1.1.44) 6PG + NADP → RIBU5P + CO2 + NADPH NADPH, ATP Two substrate eq. based onf (5)
Ru5p (5.1.3.1) RIBU5P ↔ XYL5P Reversible mass action (2)
R5P1 (5.3.1.6) RIBU5P ↔ RIB5P Reversible mass action (2)
TKa (2.2.1.1) XYL5P + RIB5P ↔ GAP + SED7P Reversible mass action (2)
TKb (2.2.1.1) E4P + XYL5P ↔ F6P + GAP Reversible mass action (2)
TA (2.2.1.2) SED7P + GAP ↔ F6P + E4P Reversible mass action (2)
Synth 1 (−) PEP →∅ Irreversible MM (2)
Synth 2 (−) PYR →∅ Irreversible MM (2)

MM denotes Michaelis–Menten kinetic and the symbol∅ represent contribution for biomass synthesis.
a Chassagnole et al. (2002).
b Liao et al. (1996).
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here the positive integer constants W+
l′ and W−

l′ are defined as the connectivity of
he activator (A) or inhibitor (I) metabolites. The constants gi and hj are the stoichio-

etric coefficients with which the ith substrate and jth product enter the reaction.
l′
A and Kl

I denote the activation and inhibition constants for the lth inhibitor and
′th activator, respectively. nA, nI, nS and nP are respectively the total number of
ctivators, inhibitors, substrates, and products.

.2.2.2. Lin-Log. The non-mechanistic lin-log representation (Visser and Heijnen,
003) is based on the notion that the rate of reaction and the thermodynamic driving
orce are proportional. The rate laws of all reactions have the same mathematical
tructure with linearity in the parameters called elasticities (ε0

S and ε0
P) and the effect

f metabolite levels on the reaction rates being described as a sum of logarithmic
oncentration terms, represented by:

= r0 e

e0

(
1 +

nS∑
i=1

ε0
Si

ln

(
Si

S0
i

)
+

nP∑
j=1

ε0
Pj

ln

(
Pj

P0
j

))
(5)

here the superscripts (0) denote the reference state (e.g. wild type at steady-state),
0 is the reference reaction rate value, e/e0 represent the relative enzyme activi-
ies, Si/S0

i
and Pj/P0

j
are the relative concentrations that influence the kinetics of the
eaction. The elasticities are defined as the scaled local partial derivatives of the jth
eaction rate with the metabolite i:

i,j =
C0

i

r0
j

ırj

ıCi
(6)
The inclusion of inhibition and activation effects and transformation of Eq. (5)
to facilitate parameter fitting originates:

r = e

e0

(
r0 +

nS∑
i=1

ai ln

(
Si

S0
i

)
+

nP∑
j=1

bj ln

(
Pj

P0
j

)
+

nI∏
l=1

cl ln

(
Il
I0
l

)

+
nA∏

l′=1

dl′ ln

(
Al′

A0
l′

))
(7)

with the empirical constants ai for the substrates and bj for the products being now
the semi-scaled elasticities at the reference state. The empirical constants cl and dl′

are for the inhibitors and activators, respectively. In our study, the e/e0 is set to 1
assuming that the enzyme level remains constant during the simulation. The initial
concentrations of the metabolites of the full mechanistic model were taken as our
reference state.

2.2.2.3. Power-Law. The power-law representation was originally proposed by
Savageau (1969). In this modeling framework, each reaction rate is represented
as products of power-law functions that include all variables that affect the process.
The generic rate equation structure is given by:

nS nP ( )wj
r = r

i=1
S0

i
j=1

P0
j

(8)

where vi and wj are non-dimensional constants and r0 is the reaction rate at the
reference state. Also, S0 and P0 are the concentrations of substrates and products at
a reference state.
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Table 2
Summary of the total number of parameters in the approximated models generated in this study and the original model.

Model name
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Original GMA

Total number of parameters 116 77

.2.2.4. Convenience kinetics. The most recently developed semi-mechanistic rate
aw was formulated from a simple random-order enzyme mechanism and can
e applied to any reaction catalyzed by an enzyme. This rate law is a particular
ase of the generalized mass action kinetics (for details on the equation derivation
ee Liebermeister and Klipp, 2006). The general representation of this equation is
escribed by:

= E

nA∏
l′=1

(
Al′

Al′ + Kl′
A

)Wl′ + nI∏
l=1

(
1

1 + Kl
I Il

)Wl
−

×
k+

cat

∏nS

i=1

(
Si

Ki
M,S

)˛i

− k−
cat

∏nP

j=1

(
Pj

Kj
M,P

)ˇj

∏nS

i=1

(∑˛i

m=0

(
Si

Ki
M,S

)m)
+
∏nP

j=1

(∑ˇj

m=0

(
Pj

Kj
M,P

)m)
− 1

(9)

here k+
cat and k−

cat are the turnover constants, Ki
M,S and Ki

M,P are constants analogous
o the Michaelis constant for the substrates and products, respectively; ˛ and ˇ are
he stoichiometric coefficients. Assuming that the enzyme concentration E remains
onstant during the simulation time, the products Ek+

cat and Ek−
cat are replaced by

+
max and r−

max. Evidently, this kinetics requires comparatively more parameters than
ther approximated approaches.

.3. Parameter Estimation and Stability Analysis

Given a set of experimental data and a model structure, the aim of parame-
er estimation is to calibrate the model by solving an optimization problem where
he objective function represents the distance between the model and experi-

ental data. The calibration of the models to the noise-free pseudo-experimental
ime series data sets generated by simulation using the full mechanistic E. coli

odel (reference model) after glucose impulse was performed using the Com-
lex Pathway Simulator (Copasi) software tool v. 4.4 (Hoops et al., 2006). The
etabolite concentration time series data sets were obtained at sampling interval

f 0.5 s. Parameter estimation was performed by using the evolutionary program-
ing (EP) and the Hooke and Jeeves methods (Fogel et al., 1966; Hooke and

eeves, 1961). We have considered the EP method for parameter estimation because
volutionary algorithms have proven to have key advantages in large inverse prob-
ems of quantitative mathematical models (Mendes, 2001). The goodness of fit for
ach set of estimated parameter values was quantified by the following fitness
unction:

val(p) =
s∑

i=1

t∑
j=1

ωi(xi,j − yi,j(p))2 (10)

here yi,j(p) and xi,j are time course points obtained using each of the four alter-
ative models and the reference model, respectively. p is the tested parameter

et and s and t are the number of metabolites and data points, respectively. In
ddition, ωi correspond to the different weights used to normalize the contri-

utions of each term. In this study, we use the mean square, ωi = 1/
√

〈x2
i
〉, to

ssure that columns with small values contribute in the same order of magni-
ude to Eq. (10). The estimation of kinetic parameters was performed separately
or each of the four models formed by 18 ODEs and 30 reactions. As routine, the EP

ethod was used to obtain an initial set of parameters and this solution was then
efined using the local optimization method Hooke and Jeeves to yield the refined
stimates.

The stability of the models was evaluated by calculating the eigenvalues of
he Jacobian matrix for all parameters computed by Copasi. The kinetic model
s stable if all the real parts of the eigenvalues are negative. The stiffness of
he models was evaluated by calculating the ratio of the largest over the small-
st eigenvalue, which evaluates the time step sizes needed to achieve a stable
olution.
Convenience Lin-log Power-law

115 96 110

2.4. Model Ranking and Selection

The mean relative error (MRE) was used to evaluate the performance of each
alternative modeling approach, defined as (Kitayama et al., 2006):

MRE (%) =
(∑s

i=1

∑t

i=1
|xi,j − yi,j/xi,j |
st

)
100 (11)

where xi,j is the pseudo-experimental data of a given (i) metabolite concentration
and yi,j is the concentration given by the model at the jth sampling point (t) and s is
the number of metabolites. Each distance is normalized to overcome the different
orders of magnitude of the metabolite concentrations.

2.5. Parameter Sensitivity

The sensitivity of the kinetic parameters with respect to the reaction rates was
calculated using the SBML-SAT software (Zi et al., 2008). A time-dependent normal-
ized sensitivity response is defined by the following equation:

Sij(r(t), p) = ∂rj(t)pi

∂pirj(t)
(12)

where rj(t) is the jth rate law and pi is the ith parameter.

3. Results and Discussion

For large-scale kinetic models we need extensive knowledge on
the stoichiometry of the metabolic network, the kinetic parame-
ters and detailed rate laws. An integration of these three types of
information will in principle allow to describe the rate of change
for each metabolite. However, it is often very difficult to deter-
mine the functional form of the rate equations for the majority of
the biochemical reactions and their associated kinetic parameters.
A general principle when building kinetic models is to make the
model as simple as possible, while capturing the realistic dynamic
behavior (Dano et al., 2006). As such, some alternative strategies
have been proposed (Famili et al., 2005; Yugi et al., 2005). The
motivation for this work is to evaluate alternative kinetic model-
ing approaches containing fewer kinetic parameters in a large-scale
network. For this purpose, we compare four hybrid models com-
bining Michaelis–Menten for bi-molecular enzyme reactions rate
laws and approximate rate equations with the full mechanistic ref-
erence model for the central carbon metabolism of E. coli proposed
in Chassagnole et al. (2002). By developing these kinetic models it
was possible to simulate the entire E. coli network.

3.1. Comparison of the Modeling Approaches

The reactions, number of parameters, and the type of kinetic
mechanism for each biochemical reaction in the reference
model are summarized in Table 1. Due to the approximation
assumptions of the alternative rate equations we have applied
Michaelis–Menten equations whenever this was possible, in other
words, to reactions with only one substrate. Moreover, the mul-
timolecular reactions (with more than one substrate or product)
assumed to exhibit Michaelis–Menten kinetics in the reference
model (RPPK and G3PDH) are left unchanged in the alternative

models. All other multimolecular reactions are replaced with sim-
plified kinetics. The reactions MurSynth, TrpSynth, and MetSynth
were considered at steady-state (Chassagnole et al., 2002) and
therefore the corresponding kinetic laws were not replaced in
the alternative models. Among all the alternative models, the one
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can be achieved if all the eigenvalues of the Jacobian matrix for all
ig. 1. Objective functions – (a) fval and (b) mean relative error (MRE) – obtained
uring parameter identification for each alternative model from 10 independent
stimation runs for each case.

here multimolecular reactions have been described by the conve-
ience kinetics contains the highest number of kinetic parameters
115 as compared with 116 of the original model). This is followed
y the model based on power-law rate laws that contains 110
arameters, the lin-log system with 96 and the GMA model with
nly 77 kinetic parameters (Table 2).

Parameter estimation can be performed through local and/or
lobal methods (Mendes and Kell, 1998; Rodriguez-Fernandez et
l., 2006). However, one of the major challenges in modeling large-
cale dynamic systems is the existence of several local minima in
he space of solutions. In this paper, we used an evolutionary pro-
ramming method and its solution is then used as the starting point
or a local search method (“Hooke and Jeeves”). To make sure that
his method does not converge to a sub-optimal local minimum, 10
ptimizations runs were performed with different random initial
uesses.

After parameter estimation, we checked whether the alternative
odels are able to reproduce the same pseudo-experimental data

sed for parameter estimation. There exist a number of criteria to
elect among alternative candidate models. Here the f (Eq. (10))
val
nd MRE (Eq. (11)) methods were used as measures of the quality
f the fit for an estimated parameter set, which allows comparisons
mong different data sets and models. The results are summarized
n Fig. 1. The mean and standard deviation of fval were calculated
100 (2010) 150–157

and among the four models, the lin-log (fval = 0.0341 ± 0.00357)
achieved the best fits to the data followed by the convenience
model (fval = 0.272 ± 0.138), the GMA model (fval = 0.591 ± 0.288),
and the power-law model (fval = 0.862 ± 0.242). Similar conclusions
can be drawn from analysis of MRE (Fig. 1b).

To obtain time series data, the reference steady-state model
was perturbed by increasing the extracellular glucose concen-
tration at time zero from 0.0556 mM to 1.67 mM. The simulated
time course data of the best fit solution for extracellular glucose,
glyceraldehhyde-3-phosphate, glucose-1-phosphate, fructose-1,6-
bisphosphate, phosphoenolpyruvate, and pyruvate concentrations
are shown in Fig. 2. In this figure we can observe that the discrepan-
cies between the reference and alternative models were relatively
small for most of the models in response to glucose addition, con-
firming also that the lin-log model gives the most accurate results
and that it can successfully replace the full mechanistic model to
represent the time course data along the 40 s. For all the remaining
metabolites, there is also a good agreement between the reference
and the lin-log model (data not shown).

The average deviation (MRE) of the lin-log and convenience
models to the reference simulated data for all metabolites was
6.37 ± 0.87% and 18.21 ± 2.71%, respectively. For the GMA it was
19.36 ± 1.83% and for power-law 24.42 ± 3.30%. The highest per-
formance of the lin-log model for approximating enzyme kinetics
is in line with a previous work from Heijnen (2005) for the sin-
gle reaction level. In this work the authors describe the validity
of lin-log kinetics for a single reaction and a higher performance
was obtained when compared with other enzyme kinetics, such
as the power-law formalism. Previous in silico and experimental
studies have also shown a satisfactory performance of this non-
linear kinetics upon large changes in metabolites concentrations
and fluxes (Visser and Heijnen, 2003). More importantly, the lin-
log model represents an option to simulate the dynamic behavior
of the metabolic network with a lower number of kinetic parame-
ters (96) compared with most of the other alternatives. Thus, the
set-up of large-scale kinetic models based on this simplified model
seems a promising approach to overcome the above-mentioned
limitations.

A known limitation of the lin-log kinetics is that, for very
small metabolite concentrations, it runs towards negative and the
reaction rate is undefined. However, considering the homeostatic
condition (i.e. steady-state) in the interior of the cell, this condi-
tion is unlikely to occur for metabolites in the E. coli central carbon
metabolism. Another possible difficulty is the low sampling inter-
vals of the metabolites required for parameter identification, but
this is also a challenge of all the other kinetic models. For the
parameter estimation, we assumed also that all the 18 metabo-
lites are measurable. Even though this might be relevant at the
present moment, the recent developments in high-throughput
metabolomic methods that can be applied for such measurements
will hopefully allow overcoming this issue (Buchholz et al., 2001;
Soga et al., 2003). Finally, since lin-log models are obtained by a
local approximation to a steady-state, it is likely that the quality of
the results achieved in simulations deteriorates as we move away
from this reference state. Taken these results together, the best per-
formance of the lin-log model from a set of plausible candidates
implied its selection for further analysis in this paper.

3.2. Performance of the Lin-Log Model

A requirement for a useful dynamic model is its stability. This
parameter sets have negative real parts (Murray, 2002). To com-
pare the stability of the lin-log model and the reference mechanistic
model, we first computed the Jacobian matrix to determine all the
eigenvalues for each complete ODEs system. If the real parts of the
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ig. 2. Comparison of simulated metabolite concentrations over time for extracellu
ructose-1,6-bisphosphate (FDP), phosphoenolpyruvate (PEP) and pyruvate (PYR)
onvenience, gray dotted line; lin-log, black dotted line and power-law, gray dashe
xperimental data for each metabolite.

igenvalues of both systems are negative than these models are
table and are able to return to the equilibrium after a perturbation
n metabolite concentrations. The largest eigenvalue observed was
0.0629 s−1 for the lin-log model and −0.00853 s−1 for the refer-
nce model. Moreover, two complex eigenvalues were found for
ach model, indicating that the systems are able to oscillate, which
orresponds to what can happen in real systems, as it has been
hown experimentally (Buchholz et al., 2002).

In addition, the difference found in model stiffness (4.0 × 105 for
he reference model and 4.4 × 105 for the lin-log model) means that
or the lin-log model the numerical methods used for simulation

equire slightly smaller time steps to obtain stable solutions of the
ystem.

To validate the lin-log model, experiments with data sets differ-
nt from the ones used for parameter estimation were performed.
redictions under new conditions were made with the best param-

ig. 3. Comparison of model predictions for several metabolites obtained with the re
nd after an impulse of extracellular glucose of 3.5 mM at time 0 s. Gluc. Ext., glucose e
ructose-6-phosphate; 6PG, 6-phosphogluconate; xyl5p, xlulose-5-phosphate.
cose (Gluc. Ext.), glyceraldehhyde-3-phosphate (GAP), glucose-1-phosphate (G1P),
e reference model (black solid line) and alternative models (GMA, gray solid line;
) before and after a glucose impulse of 1.67 mM at time 0 s. Markers represent the

eter set fixed. Thus, after a glucose impulse of 3.5 mM and 10 mM,
the MRE index was calculated and values of 10.19% and 15.96% were
obtained, respectively. The time series results for some metabolites
from the glycolysis and pentose phosphate pathways after a glu-
cose impulse of 3.5 mM are shown in Fig. 3. The behavior results
indicate that the lin-log model, when compared with the reference
model, has very good prediction levels during the 40 s time course
for all the metabolites.

3.3. Sensitivity Analysis of the Model
Sensitivity analysis is also a tool for model validation and a
measure of biological adequacy. This analysis quantified the effect
that an infinitesimal change in the value of a parameter has on
the steady-state values of the model, using usually methods of
metabolic control analysis. In this study, however, we have focused

ference model (black solid line) and the lin-log model (gray dotted line) before
xtracellular; G1P, glucose-1-phosphate; sed7p, sedoheptulose-7-phosphate; F6P,
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Fig. 4. Time-dependent sensitivity analysis of the kinetic parameters (a G

n time-dependent sensitivity analysis, according to Eq. (12). High
arameter sensitivities are often indicative that some parts of the
ystem have not been adequately described. Here, we performed
s example this analysis on the flux through the GAPDH reaction,
ne of the main reactions of glycolysis, for the period of 40 s. The
ime course results are presented in Fig. 4.

It is interesting to note the larger sensitivity with respect to a
APDH parameter for the first 20 s and the relatively smaller effect
f the other parameters. It is therefore interesting to focus on exper-
ments on this period for fitting the kinetic parameters. Hence, with
he sensitivity analysis we identified the most sensitive param-
ters and sampling time intervals, providing directions to future
xperimental design aimed at model refinement.

. Conclusions

One of the major problems of setting-up large-scale dynamic
odels is the lack of kinetic data. The kinetic parameters are usually

nknown, as well as the specific kinetic rate laws. Moreover, for a
arge number of reactions, the kinetic parameters are available in
he literature only as general values obtained in in vitro conditions.
here is therefore a need for alternative modeling approaches.

In this contribution we have build four alternative models
ombining Michaelis–Menten kinetics and approximated kinetic
xpressions, such as generalized mass action, convenience, lin-log,
nd power-law and the performance of these new models has been
ompared with a reference mechanistic model representing the E.
oli central carbon metabolism.

Considering the good behavior performance obtained with the
inetic model composed of Michaelis–Menten and lin-log kinetics
n comparison with the others, we conclude that this is a suitable
pproach for complex large-scale models where the exact rate laws
re unknown. In combination with recent developments in time
eries data measurements, this approach should facilitate mod-

ling of large-scale networks. As discussed above, care should be
aken, however, if the conditions where the model is to be applied
re far away from the reference state, as lin-log models are based
n a local approximation assumption, and also when metabolite
oncentrations are close to zero.
, b GAPDH, c GAPDH and d GAPDH) on the flux through GAPDH reaction.
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