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1. Introduction

By definition, every two-sided ideal of a semigroup is one-sided, and several authors
have studied semigroups with the converse property: namely, every one-sided ideal
is two-sided (that is, so-called duo semigroups: see [1] and the references therein).
Likewise, it is worth studying semigroups with the BQ-property: namely, every bi-
ideal is a quasi-ideal. This idea first arose in [4] and it has been considered for various
transformation semigroups (see [6] for a brief survey). Indeed, the notions of ‘bi-
ideal” and ‘quasi-ideal’ date from over 30 years ago, and the significance of the latter
was documented in [10]. In this paper, we consider the BQ-property and the ideal
structure of certain linear transformation semigroups. However, to further explain the
background to our work, we need some notation.

Let X be an infinite set with cardinal p and let ¢ be a cardinal such that Xg < ¢ < p.
Let T'(X) denote the semigroup under composition of all (total) transformations from
X to X. If a € T(X), we write ran « for the range of a and define the rank of « to be
r(a) = |rana|. We also write

D(a) = X \rana, d(a) = |D(a)|,
Cla) =U{ya " : ya™'[ 22}, c(a) = |C(a)],

and refer to these cardinal numbers as the defect and the collapse of «, respectively.

A transformation o € T(X) is said to be almost one-to-one if c¢(«) is finite. By
an almost onto transformation of X we mean o € T(X) such that d(«) is finite.
In [5] Theorems 2.1 and 2.3, Kemprasit showed that AM(X), the semigroup of all
almost one-to-one transformations of X, and AE(X), the semigroup of all almost onto
transformations of X, do not belong to BQ, the class of all semigroups whose sets
of bi-ideals and quasi-ideals coincide (here, the notation ‘M’ signifies ‘mono’, and ‘E’
denotes ‘epi’).

Here, we examine related semigroups defined as follows. Let V' be a vector space over a
field F' with dimension p > W,. Let T'(V') denote the semigroup (under composition) of
all linear transformations from V into itself. Also, let M (V') denote the subsemigroup
of T(V') consisting of all one-to-one linear transformations, and let E(V') denote the
subsemigroup of T'(V') consisting of all onto linear transformations. If o € T'(V), we
write ker & and ran « for the kernel and the range of «, and put

n(a) = dimker o, r(a) = dimranc, d(«) = codimran a.

As usual, these are called the nullity, rank and defect of «, respectively. For cardinals
q < p, we write

AM(p,q) ={a e T(V) :n(a) < q}, and
AE(p,q) ={a e T(V) :d(a) < q}.

Clearly, M (V) C AM(p,q) and E(V) C AE(p, q). Because of Example 1 below, we will
be interested only in the case that ¢ is infinite. Namnak and Kemprasit showed in [8]
Theorems 2.2 and 2.3 that AM (p,Rg) and AE(p, Xg) do not belong to BQ. In section 2,



we generalise these results: we show that AM (p,q) and AE(p, q) are subsemigroups of
T(V'); and we also show that they do not belong to BQ. For each of the two semigroups,
we characterise its regular elements; and using this, we determine its unique maximal
regular subsemigroup. In section 3, we characterise the Green’s relations and ideals
in AM(p,q) and AE(p,q) and in section 4, we describe all the maximal right simple
subsemigroups of AM (p,q). In passing, we observe that Kemprasit and Namnak did
not study Green’s relations and ideals for any of the semigroups which they considered.

2. Basic properties

In what follows, Y = AU B means Y is a disjoint union of A and B, and we write idy
for the identity transformation on Y.

As an abbreviation, we write {e;} to denote a subset {e; : i € I} of V, taking as
understood that the subscript i belongs to some (unmentioned) index set I. The
subspace A of V generated by a linearly independent subset {e;} of V' is denoted by
(e;), and then dim A = |I].

We adopt the convention introduced in [9]. That is, often it is necessary to define
some « € T(V) by first choosing a basis {e;} for V and some {a;} C V, and then
letting e;a0 = a; for each ¢ and extending this action by linearity to the whole of V. To
abbreviate matters, we simply say, given {e;} and {a;} within context, that o € T'(V)

is defined by letting
()
o= .
Q;

Often our argument starts by choosing a basis for ker & and expanding it to one for
a subspace containing ker a: provided no confusion will arise, we use this expression
even if « is one-to-one (in which case, ker & = {0} and so it has basis the empty set).

For every a, B € T(V'), we have n(«a) < n(af) and d(3) < d(af), since ker o C ker(a3)
and ran(af) C ran 3. The fact that the sets AM(p,q) and AE(p, q) are semigroups
follows from parts (a) and (b), respectively, of the following result, and our assumption
that ¢ is infinite. In effect, this result was proved by Namnak and Kemprasit in [8] pp.
217-218, but we include a brief proof for completeness.

Lemma 1. If a, f € T(V) then

() n(0) < n(af) < n(a) +n(3), and

(b) d(8) < d(ef) < d(a) + d(f).

Proof. Let , § € T'(V') and recall that (ker(a/3))a = ker fNran a.. If ker(af) = ker a®
(e;) then (ker(af))a = (eja) C ker 3, so |J| < n(f) and hence n(af) = n(a) + |J| <
n(a) + n(f). Now suppose ran § = ran(af3) @ (e;). Then d(afB) = d(3) + |I|, where
|I| = dim(ran 5/ ran(a/3)). Clearly if V = (rana + ker §) & U, then d(a) > dim U and
ran § =ran(af) @ UG (for, if w = vaf = uf then va — u € ker 3, so u € ran o + ker
and this implies u = 0, so w = 0). Hence dim(ran 3/ ran(af)) = dim(Uf) < dimU <
dim(V/rana) = d(«), and the result follows. O

Example 1. We note that AM(p,q) and AE(p,q) are semigroups only when ¢ is
infinite (or 1). For, suppose ¢ is finite, ¢ # 1, and let {e;} U{u, us,...,u,} be a basis



for V', with |I| = p. Now define o, 3 € T'(V') by
. Uy U2 ... Ug € . Uy U2 ... Ug €
a—<0 Ug ... Ug €Z‘>7 ﬂ_<u1 0O ... 0 61').
Clearly, n(a) = d(a) =1 and n(8) = d(8) = q—1, and so o, 5 € AM(p,q) N AE(p, q).

It is easy to see that ker(af) = (uy,us,...,u,) and V = ran(af) & (uy, ug, ..., uy).
Therefore, n(af) = d(af) = q and hence a5 ¢ AM(p,q) U AE(p,q).

A subsemigroup () of a semigroup S is called a quasi-ideal of S if SQ N QS C Q.
A subsemigroup B of S is a bi-ideal of S if BSB C B. Note that every right and
every left ideal of S is a quasi-ideal, and every quasi-ideal () of a semigroup S is a
bi-ideal of S since QSQ C SQ N QS. Given a non-empty subset X of S, the quasi-
ideal and the bi-ideal generated by X will be denoted respectively by (X)g and (X)z.
If X = {x1,29,...,2,} then we write (x1,29,...,2,)¢ and (z1,22,...,2,)p instead
of ({x1,29,...,2,})g and ({1, 2,...,2,})p, respectively. By [2] Vol. 1, pp. 84-85,
Exercises 15 and 17, if X is a non-empty subset of a semigroup S, then

(X)o=5"XNXS'=(SXNXS)UX, and
(X)p = (XS'X)UX = XSXUXUX2

It is known that regular semigroups, right [left] simple semigroups and right [left] 0-
simple semigroups are in the class BQ of all semigroups whose sets of bi-ideals and
quasi-ideals coincide (see [8] Propositions 1.2 and 1.3 for references to these results). On
the other hand, by [8] Corollary 1.5, if (z)p # (x)¢ for some element x of a semigroup
S, then S ¢ BQ.

We now decide whether AM (p, q) belongs to BQ. For this, we follow the argument for
[8] Theorem 2.2, although the latter concerned only the case ¢ = N,.

Theorem 1. For any infinite cardinals p > ¢, the semigroup AM (p, q) does not belong
to BQ.

Proof. Suppose {¢;} is a basis for V' and write {e;} = {f;} U{f;} with |J| = ¢. Now
write {f,} = {a;} O {by} with || < g and {a;} = {g;} U {h;}. Put {h}O{bi} = {03}
and define o, f € T(V') by

=(hn) e (0 h)
Since n(a) = 0 = n(f), we have a, 3 € AM(p, q). Now define v € T(V') by
[ fi o9 hy bk
7—<f,~ ajo h; bk>'
Since {aja} C {fja} = {g;}, it follows that v is one-to-one and so v € AM(p,q).

Clearly, fa = a7y and hence fa € AM(p,q)a N aAM(p,q) = (g (the intersection
contains « since AM (p, q) contains idy ).

Suppose fa € (a)p. Then, fa € aAM(p,q)a U {a} (again, note that AM(p,q)
contains idy, so the first set in this union contains o?). If Sa = a then, since «
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is one-to-one, § = idy, a contradiction. Thus, there exists A € AM(p,q) such that
fa = ala. Since « is one-to-one, it follows that 5 = aA. Hence, (f;,a;) = ranf =
ran(al) = (rana)\ = (fi,g;)A and so V = (f;,a;,bx) = (fi, 9;)A + (br). For each
J, ¢jA € V, and so there exist u; € (f;,g;) and v; € (bg) such that c;A = u;\ + v;.
Then, (¢; — u;)\ = v; € (bg). Since {¢;} U{fi}U{g,;} is linearly independent, it
follows that {¢; — u;} is also linearly independent and ¢, — u, # ¢, — us if  # s. Let
C = (¢;—u;). Then, dim C' = ¢ and ran(A|C') C (b;). Hence, dim(ran(A|C')) < g. Since
q = dim C' = dim(ker(A|C)) + dim(ran(A|C)) by the Rank-Nullity Theorem, it follows
that dim(ker(A\|C)) = ¢. But ker(A|C') C ker A and so n(A) > n(A|C) = ¢, which
contradicts the fact that A\ € AM(p, q). Therefore, S ¢ (o) and so (a)g # («)p. By
[8] Corollary 1.5, AM(p, q) ¢ BQ. 0

From a remark before Theorem 1, it follows that the semigroup AM (p,q) is neither
regular nor right simple nor left simple, for any infinite cardinals p, ¢ such that p > q.
Hence, it is worth determining all regular elements in AM (p, q).

Theorem 2. Let a € AM(p,q). Then, « is regular if and only if « € AE(p,q).
Consequently, AM (p,q) N AE(p, q) is the largest regular subsemigroup of AM(p, q).

Proof. Suppose oo € AE(p,q). Let {e;} be a basis for ker v and expand it to a basis
{e;} U{e;} for V. Now write e;a = a; for each i. Since {a;} is a basis for ran «, it can
be expanded to a basis for V, say {a;} U{ax}. Define 8 € T(V) by

Qi Qg
()
Clearly, n(8) = d(«) < q and d() = n(a) < ¢, and hence § € AM(p,q) N AE(p,q).
Also, @ = afla and so « is regular in AM(p,q). Conversely, suppose o« = afa for
some 5 € AM(p,q). Then fa is an idempotent in T(V), so V = ker(fa) & ran(Ba)
and, since AM (p,q) is closed, it follows that ¢ > n(fa) = d(fa) > d(a). Therefore,
a € AE(p, q) as required.

Finally, given a regular subsemigroup S of AM(p,q), we know it is contained in
AE(p,q), and so S C AM(p,q) N AE(p,q). Thus, the latter is the largest regular
subsemigroup of AM (p, q). O

Similar results hold for the semigroup AFE(p,q), as we now proceed to show. In the
proof of our next theorem, we use an argument similar to the one used in [8] Theorem
2.3, but ours is complicated by the possibility that ¢ > N,.

Theorem 3. For any infinite cardinals p > ¢, the semigroup AFE(p, q) does not belong
to BQ.

Proof. Suppose {e;} is a basis for V and write {e;} = {f;} U{h}. Now write {f;} =
{a;} U{b;} and define o, 3 € T(V) by

““\V s o0 n) “\a b 0 )
Since d(«) = 0 and d(f) = dim(h) =1 < q, we have «, 5 € AE(p,q). Also, a # fa =

af and so aff € AE(p,q)aNaAE(p,q) = (a)g (note that the intersection contains «a,
since AE(p, q) contains idy/).



Now suppose aff € (a)p = aAE(p,q)a U {a} (again, note that AE(p,q) contains
idy, and so the first set in this union contains o). Then, since a8 # a, we know
af = ala for some A € AE(p,q) and the surjectivity of o implies 8 = Aa. Thus,
(hA)a = h(Aa) = hf3 = 0 and so hA € ker a. Hence, there exist a natural number n
and scalars xq, ..., x, such that

A=Y a,b;,. (1)
r=1

Put {b;} \ {bi,-..,b;,} = {ci}. We assert that {c; + ran A} is a linearly independent
subset of V/ran A. Suppose Y y;(¢; +ran \) = ran A for some scalars y;. Then, " y;c; €
ran A and so there exists some u € V such that 3 y;c; = u. Since V' = (a;) & (b;) B (h),
there exist scalars r; and s, and a vector v € (a;), such that w = v+ 3 r;b; + sh. Hence,

Thus,
Y vi(ca) =v(Aa) + Y ri(bda) + s(hia).

Since ker a = (b;), A = 3 and ker § = (h), it follows that 0 = v3 + > r;(b;3). That
is, v+ >_1;b; € ker # and, by our choice of bases, this implies v = 0 and r; = 0 for each
i. Thus, we can rewrite (2):

From (1),

n

> yici =Y (sz,)b;, .

r=1

Since {c;}U{b;,,...,b;,} is linearly independent, it follows that y; = 0 for each i.
Hence, {¢; + ran A} is linearly independent, and so ¢ > d(\) = dim(V/ran\) = p, a
contradiction. Therefore, af ¢ (a)p and so (a)p # (o). Hence, by [8] Corollary 1.5,
AE(p,q) ¢ BQ. o

From the previous Theorem, it follows that AE(p, q) is neither regular nor right simple
or left simple, for any infinite cardinals p and ¢ such that p > ¢. In the next result, we
determine all regular elements in AE(p, q).

Theorem 4. Let o € AE(p,q). Then, « is regular if and only if & € AM(p,q).
Consequently, AM (p,q) N AE(p, q) is the largest regular subsemigroup of AE(p, q).

Proof. By Theorem 2, if « € AM(p,q) then a = afa and § = pfaf for some § €
AM (p,q), and hence 8 € AE(p, q) (by Theorem 2 again). That is, every « € AM (p, q)N
AE(p,q) is a regular element of AE(p,q). Conversely, suppose a € AE(p,q) and
a = afa for some f € AE(p,q). Then af is an idempotent in 7'(V'), and hence
V = ker(aff) @ ran(af) and, since AE(p,q) is closed, it follows that ¢ > d(af) =
n(af) > n(a). Therefore, a € AM(p,q) as required. Finally, as in the last paragraph
of the proof of Theorem 2, AM (p,q) N AE(p, q) is the largest regular subsemigroup of
AE(p, q). O



3. Green’s relations and ideals

Green'’s relations on 7'(V) are well-known: if o, € T(V), then o £ ( if and only if
rana = ranf3; a« R (§ if and only if kera = ker 3; and D = J [2] Vol. 1, Exercise
2.2.6. Moreover, by Hall’s Theorem ([3], Proposition 11.4.5), any regular subsemi-
group of T'(V') inherits characterisations of its Green’s relations from those on T'(V).
From section 2, we know AM (p,q) and AE(p,q) are not regular, so it is surprising
that, nonetheless, the L-relation on AM (p, q) and the R-relation on AE(p, q) can be
described just like the corresponding ones on 7'(V'), and moreover D = J for both
semigroups. On the other hand, their ideal structure differs markedly from that of
T(V), as we eventually show in this section.

First, we characterise the £ relation on AM (p, q) and the R relation on AE(p, q).

Lemma 2. Let o, 5 € AM(p,q). Then o L (3 if and only if ran a = ran f3.

Proof. Suppose rana = ran § and let {e;} be a basis for ker 5. Expand {e;} to a basis
{e;} U{e;} for V and write e;8 = b; for each i. Then, {;} is a basis for ran § = ran «.

For every i, choose f; € bja™!. Clearly, {f;} is linearly independent. Now define
_ [ & G
- (3 %).

AeT(V) by

Since ker A = ker 3, it follows that A € AM(p, q). Also, § = Aa. Similarly, we conclude
that there exists u € AM(p, q) such that o = pf3, and so o £ (3. The converse involves
a standard argument, so we omit the details. O

Lemma 3. Let a, 3 € AE(p,q). Then a R [ if and only if ker o = ker 3.

Proof. Suppose ker a = ker # and let {e;} be a basis for this subspace. Expand {e;}
to a basis {e;} U{e;} for V and, for each 4, write ;o0 = a; and ¢;0 = b;. Clearly, {a;}
and {b;} are bases for ran a and ran (3, respectively. Now expand {b;} to a basis for V|
say {b;} U{b}, and define A € T(V) by

(b b
v (),

Since d(\) = d(«), it follows that A € AE(p, q). Also, « = SA. Similarly we conclude
that there exists u € AE(p, q) such that 8 = au. Hence a R (3. The converse involves
a standard argument, so we omit the details. O

We proceed to characterise the R relation on AM (p, q). For this, we need two prelim-
inary Lemmas.

Lemma 4. If o, 5, A € T(V) satisfy a« = S\ then
d(f) < n(\) + dim(ran A/ ran «).

In fact, if we also have ker a = ker 3, then d(3) = n(\) + dim(ran A/ ran o).

Proof. Since o = A implies ker 8 C ker o, we can write ker 3 = (e,.), kera = (e,., e)
and V = (e,) ® (es) ® (ej). Write eja0 = a;, e, = bs and e;5 = b;, and note that
a; = eja = (e;8)\ = b;\ for each j. In addition, {a;} and {bs,b;} are bases for ran «
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and ran (3, respectively. Now, if }~ x;b; € ker A for some scalars x;, then > x;a; = 0 and
so z; = 0 for each j: that is, (b;)Nker A = {0}. Hence we can write V' = (b;)@ker A®(ey)
and we assert that ran A = rana @ (exA). For, if Y x;a; = 3 yi(exA) for some scalars z;
and y, then > x;b; = yrey, € ker A and, by our choice of bases, this implies z; = 0 = y;
for all j and k. Clearly, {exA} is linearly independent. Since (b;) C ran 3, we have

d(f) < codim(b;) = n(X) + | K| = n(A\) + dim(ran A/ ran «v).

Finally, if we also have ker &« = ker § then, with the previous notation, ran 5 = (b;)
and V = (b;) @ ker A @ (e;,) and so d(5) = n(\) + | K. 0

Lemma 5. If o, € AM(p,q) and o R (3, then o € AE(p,q) if and only if § €
AE(p,q).

Proof. Suppose the conditions hold and o« € AE(p, q). By Theorem 2, « is a regular
element of AM(p, q), and so D,, the D-class of o in AM (p, q), is regular (by [2] Vol. 1,
Theorem 2.11). Now let R, denote the R-class of « in AM (p, q). Since 5 € R, C D,,,
this implies [ is a regular element of AM(p,q) and so € AE(p,q) by Theorem 2.
Similarly, if 5 € AE(p, q) then a € AE(p, q). O

Lemma 6. Let o € AM(p, q) and denote the R-class of AM (p, q) containing o by R,,.
Then,

(a) « € AE(p, q) implies R, = {5 € AM(p,q) : € AE(p,q) and ker 8 = ker a};
(b) a ¢ AE(p,q) implies R, = {# € AM(p,q) : ker f = kera and d(f) = d(a)}.

Proof. First suppose a € AE(p,q). If B € AM(p,q) is such that o R [, then, since
idy, € AM(p, q), there exist A\, u € AM(p, q) such that « = G\ and 3 = au. Therefore
ker v = ker 3. Also, we know 3 € AE(p, q), from Lemma 5.

Conversely, suppose 5 € AM(p,q) N AE(p,q) and ker 5 = kera. Since AM(p,q) N
AFE(p, q) is a regular subsemigroup of AE(p, q), Hall’s Theorem ([3], Proposition 11.4.5)
implies that the R relation on AM (p,q) N AE(p, q) is the restriction of the R relation
on AE(p,q) to AM(p,q) N AE(p,q). In other words, since «, 5 € AM (p,q) N AE(p, q)
and ker a = ker 3, we deduce from Lemma 3 that a R § in AM(p,q) N AE(p,q) and
hence @« R 3 in AM(p,q). That is, § € R, as required, and (a) holds.

Now, suppose a ¢ AE(p,q) and « R §in AM(p,q). Then ¢ AE(p,q) (by Lemma 5)
and oo = A, = au for some A\, u € AM(p, q). As we already know, the latter implies
ker v = ker 3. Moreover, since « = A, n(\) < ¢ and d(f) > ¢, by Lemma 4 we have
d(f) < dim(ran A/ rana) < dim(V/rana) = d(«). Similarly, since 8 = ap, n(u) < g
and d(«) > ¢, we deduce that d(a) < d(3) and equality follows.

Conversely, suppose 3 € AM(p,q) is such that ker 5 = ker o and d((3) = d(a). Let
{e;} be a basis for ker @ = ker 3, with |J| = n(a) = n(fF), and expand it to a basis
{e;} U{e;} for V. Now write e;a = a; and e;8 = b; for each i. Then, {a;} is a basis for
ran v and it can be expanded to a basis for V', say {a;} U{ax}, where |K| = d(a) > q.
Similarly, {b;} is a basis for ran 3 and we can expand it to a basis {b;} U{b.} for V
(note that d(3) = d(a) = |K]|). Since |K| > ¢, we can write {ax} as {ux}U{u,} and
{01} as {vi} U{v,.}, where |R| < q. Now define A\, u € T(V) by

N b v v, [ ap up Uy
o a; Uk 0 ’ = bl Vg 0 '
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Since n(\) = dim(v,) < ¢ and n(p) = dim(u,) < g, we have A\, u € AM(p,q). Also,
a = (X and 8 = apu. Hence, « R § and (b) holds. O

The next two results are crucial for the characterisation of the £ relation on AE(p, q).
Lemma 7. If o, 5, A € T(V) satisfy o = A3, then
n(B) < d(\) + dim(ker a/ ker \).

In fact, if rana = ran 3 then n(5) = d(\) + dim(ker o/ ker \).

Proof. Since a = A\, we can write ker A\ = (¢;), kera = (e;) ® (e;) and V = (¢;) @
(e;) @ (fr). Write fra = ap and fiA = uy for each k, and note that {a;} is a basis
for rana. In addition, ay = fra = upB. Clearly, the set {e;A\}U{uy} is linearly
independent, and hence ran A = (e;\) @ (ug). Moreover, if (3 zpug)s = 0 for some
scalars xy, then Y g (ug) = 0, and hence Y zrar, = 0 and so z = 0 for each k. Thus
ker 5N (uy) = {0}. Therefore,

n(B8) < codim(ug) = d(A) + |I| = d(A) + dim(ker o/ ker ).

Now suppose ranf = rana = (ag). If v € V, there exist scalars y; such that v =
Y yrar and so v = (X yrug)B. Hence, v — X yrup € ker f and thus v € ker 5 @
(ug). Therefore, V' = ker f & (ux) and, in this case, n(3) = codim(u;) = d(\) +
dim(ker v/ ker \). O

Lemma 8. If a,3 € AE(p,q) and a L (3, then o € AM(p,q) if and only if g €
AM (p, q).

Proof. This is identical to the proof of Lemma 5 using £ in place of R and Theorem
4 in place of Theorem 2. g

Lemma 9. Let o € AE(p, q) and denote the L-class of AE(p,q) containing « by L.
Then,

(a) a € AM(p,q) implies L, = {0 € AE(p,q) : p € AM(p,q) and ranf =rana};
(b) a ¢ AM(p, q) implies L, = {3 € AE(p,q) : ran =rana and n(f) = n(a)}.
Proof. Let 8 € AFE(p,q) be such that « £ 3. Then, there exist \,u € AFE(p,q)
such that @« = A3 and § = pa (since idy € AE(p,q)) and so rana = ranf. If
a € AM(p,q), then f € AM(p,q) (by Lemma 8). If « ¢ AM (p,q), then 5 ¢ AM(p,q)
(again, by Lemma 8) and so n(«) > ¢ and n(3) > ¢. From Lemma 7, we know that
n(B) < d(A) + n(«) and, similarly, n(a) < d(u) + n(5). Since d(A\) < ¢ < n(«) and
d(p) < g < n(f), it follows that d(A) + n(a) = n(a) and d(u) + n(5) = n(B). Hence,
n(f3) = n(a).

Conversely, suppose a € AM (p, q), 5 € AM(p,q) N AE(p, q) and ran 8 = ran . Then,

as in the proof of Lemma 6, Hall’s Theorem together with Lemma 2 imply that o £
in AM(p,q) N AE(p,q) and hence o £ 3 in AE(p,q). That is, § € L, as required.

On the other hand, suppose a ¢ AM(p,q), B € AE(p,q), ran 3 = ran« and n(f) =
n(a). Let rana = (e;), and choose a;,b; € V' such that a;a = e; and b;8 = e; for each
i. Clearly, {a;} is linearly independent. Moreover, if ker & = (ay,) then V' = (a;) ® (ay):

/\/‘\
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if w € V then ua = Y- x;e; = (X z;a;)a for some scalars z;, so u — Y x;a; € ker a; and
clearly {a;}U{a} is linearly independent. Similarly, V' = (b;) @ (bx) where ker 8 = (by.)
and |K| =n(8) = n(a). Now write

{an} = {wet U{w}, {0} = {v} U{v,},

where |R| < ¢, and define A\, u € T'(V') by

Vo [ @ o biove v
S \Ub v 0 BT a; ur 0 J°

Then d(\) = |R| < ¢, so A € AE(p, q) and likewise pn € AE(p, q). Moreover, o = \(3
and § = pa, so a L fin AE(p, q) as required. O

Next we describe the D and J relations on AM (p, q), and the characterisation of its
ideals follows from this.

Theorem 5. If a, 5 € AM(p,q) then o D 3 in AM(p,q) if and only if one of the
following occurs.

(a) o, B € AE(p, q),

(b) o, B ¢ AE(p, q) and d(a) = d(§3).

Proof. Suppose a L v R  in AM(p,q). If 5 € AE(p,q) then v € AE(p,q) (by
Lemma 5): that is, d(y) < ¢ and, since rana = ran-y, this implies d(a) < ¢. Hence

a € AE(p,q). On the other hand, if § ¢ AE(p, q) then, by Lemma 6(b), d(a) = d(v) =
d() > q and hence o ¢ AF(p,q). For the converse, we start by writing

_ [ €& & o fe S
O“(o a) ﬁ‘(ok bi>

(this is possible since a, 3 € AM (p, q) implies r(«) = () = p). Now define v € T'(V')

by
P
7= ( 0 a; ’
If o, 8 € AE(p,q), then n(y) = n(8) < ¢ and d(v) = d(a) < g, s0o v € AM(p,q) N
AE(p,q). In fact, rany = rana and kery = ker 3, so a £ v and v R [, and hence
a D fBin AM(p,q). However, if o, 5 ¢ AE(p,q) and d(a) = d(3), then v € AM (p, q)
(as before) and rany = rana, so a £ v by Lemma 2. Also, kery = ker # and d(v) =

d(a) = d(5), so v R f by Lemma 6(b). In other words, we have shown that o D [ in
AM(p, q). 0

Corollary 1. D =7 on AM(p, q).

Proof. We know D C J. Therefore, since D is universal on AM (p,q) N AE(p,q) by
Theorem 5(a), J is also. Now suppose a = A\Gu and 5 = Nay' for some A\, pu, N,y €
AM (p,q). By Lemma 4, we have

d(B) < d(AB) < n(u) + dim(ran p/ ran o) < n(p) + d(«).

Hence if § ¢ AE(p,q) then ¢ < d(B) < n(u) + d(«), and n(p) < ¢, so d(a) > ¢q and
thus o ¢ AE(p,q). Likewise, using § = Nay/, we find that a« ¢ AFE(p,q) implies
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8 ¢ AE(p,q). That is, if « J [ in AM(p,q) then either o, 38 € AM (p,q) N AE(p, q)
or a, ¢ AFE(p,q). In the latter case, we have d(3) < n(u) + d(a) = d(«) since
n(p) < g < d(a). Similarly, 5 = Nay' implies d(a) < d(f), and equality follows.
Thus, @ D 8 by Theorem 5(b). Hence, in both cases, a J (3 implies o D f3. O

Theorem 6. The proper ideals of AM(p, q) are precisely the sets
Me ={a € AM(p,q) : d(e) = ¢},

where ¢ < § < p. In fact, each M is a principal ideal of AM(p,q) generated by an
element with defect &.
Proof. Let ¢ be a cardinal such that ¢ < { < p. By Lemma 4, given o € M, and
A\ € AM(p, q), we have

¢ <d(a) <dMx) <n(p)+ dim(ran p/ ran(Aap)) < n(p) + d(dap).
Since n(p) < g and £ > ¢, we see that d(Aau) > &. Therefore, Aoy € M and so M is
an ideal of AM (p, q) (note that A and p can equal idy € AM (p,q)).

Conversely, let I be an ideal of AM(p,q). If there exists a« € I N AE(p,q) then
a € AM(p,q) N AE(p, q) and, since idy € AM(p,q) N AE(p, q), Theorem 5(a) implies
idy D «a. Consequently, by Corollary 1, we have idy € J(«), the principal ideal
of AM(p,q) generated by «, so idy € I and hence I = AM(p,q). Now suppose
INAE(p,q) =0 and choose v € I with minimal defect £&. Note that d(5) > d(v) = ¢
for every 8 € I and, clearly, ¢ < & < p. Hence,

AM(p,q)yAM (p,q) €1 C M;.

Given a € M, we have d(a) > £ = d(7). In the usual way, write

_( & G | fe i
a_<0 Cli), ’)/—<Ok bl>

(note that this is possible since a,y € AM(p,q) implies r(a) = r(y) = p). Since
{b;} is a basis for ran~, it can be expanded to a basis for V, say {b;} U{b,}, with
|L| = d(v) = £. Similarly, {a;} is a basis for ran« and it can be expanded to a basis
{a;}U{a,} U{a,} for V, where |R| + |L| = d(a) (note that d(«) > d(v) = |L|). Now

define A\, p € T'(V') by
. €; € . bl bg
(55 (i)

Clearly, n(\) = n(a) < q and n(p) = 0, and hence A\, u € AM(p,q). Also a = Ayu
and, since [ is an ideal, v € I implies a € I. Therefore, I = M, and, in effect, we have
shown that [ is a principal ideal generated by an element with defect &. O

Clearly, the proper ideals of AM (p,q) form a chain under C, with the smallest being
M, and the largest being M,.

Now we proceed to characterise the D and J relations on AE(p, ¢) and, using this, we
describe the ideal structure of AE(p,q).
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Theorem 7. If o, € AE(p,q) then o D [ in AE(p,q) if and only if one of the
following occurs.

(a) o, 3 € AM(p, q),

(b) a, 8 ¢ AM(p,q) and n(a) = n(3).

Proof. Suppose a L v R [ in AE(p,q). If « € AM(p,q) then v € AM(p,q) (by
Lemma 8) and hence n(y) < ¢. Since kery = ker 3, we have n(5) = n(y) < ¢ and so

B € AM(p,q). Conversely, if o, 5 € AM(p,q) N AE(p,q) then the same argument as
that used in the proof of Theorem 5(a) shows that « D 3 in AE(p, q).

Now assume o £ v R in AE(p,q) and o« ¢ AM(p,q). Then, ker § = ker~y and so,
by Lemma 9(b), n(8) = n(y) = n(a) > ¢, so 8 ¢ AM(p,q). Conversely, suppose
o, ¢ AM(p,q) and n(a) = n(F) and, in the usual way, write

[ € €& _ fj fi
(5 0) =80

(note that this is possible since d(a) < ¢ and d(f) < ¢ imply r(«) = r(3) = p). Now
define v € T'(V') by
(i fi
7= < 0 a; ’

Then, d(y) = d(a) < q, so v € AE(p,q). In fact, kery = ker § and so v R 5. Also,

rany = rana and n(y) = n(f) = n(a). Hence o £ 7. In other words, we have shown

aD [(in AE(p,q). O

Corollary 2. D =7 on AE(p, q).

Proof. Since D C J and D is universal on AM (p,q) N AE(p,q), so is J. Now suppose

a = ABu and B = Nay' for some \, u, N, ' € AE(p,q). By Lemma 7, it follows that
n(B) < n(Bu) < d(A\) + dim(ker a/ ker A) < d(X) + n(«).

Therefore, if 3 ¢ AM(p, q) then ¢ < n(8) < d(\) + n(«a), and d(\) < ¢, so n(a) > gq.
Hence o ¢ AM(p,q). Likewise, using 5 = Nay', we conclude that o ¢ AM (p,q)
implies 0 ¢ AM(p,q). Thus, if « J [ in AE(p,q), then a € AM(p,q) if and only if
B € AM(p,q). Moreover, if o, 3 ¢ AM(p,q) then n(5) < d(\) + n(a) = n(a) and
n(a) < d\N)+n(f) =n(B). Hence n(a) = n(f) and so a D (3 by Theorem 7(b). Thus
we have shown that J C D on AE(p,q). O

Theorem 8. The proper ideals of AE(p, q) are precisely the sets
Ee ={a € AE(p,q) : n(a) > £},

where ¢ < £ < p. In fact, each E is a principal ideal of AE(p,q) generated by an
element with nullity .

Proof. Let £ be an infinite cardinal such that ¢ < ¢ < p, and suppose a € E, and
A\ i€ AE(p, q). By Lemma 7, we have

¢ <n(a) <n(ap) < d(N) + dim(ker(Aap)/ ker A) < d(X) + n(Aap).
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Since A € AE(p,q), we know d(\) < ¢, and ¢ < & by supposition. Hence n(Aau) > &
and so Aap € Eg. Therefore, E¢ is an ideal of AE(p, q), since idy € AE(p, q).

Conversely, let I be an ideal of AFE(p,q). If there exists « € I N AM(p,q) then
a € AE(p,q) N AM (p, q) and, since idy € AE(p,q) N AM (p, q), Theorem 7(a) implies
idy D «a. Consequently, by Corollary 2, we have idy € J(«), the principal ideal
of AE(p,q) generated by «, so idy € I and hence I = AFE(p,q). Finally, suppose
INAM(p,q) = 0 and choose ¢ € I with minimal nullity £. Then, ¢ < £ < p and
n(B) > n(e) > & for every 3 € I. Therefore,

Let a € E¢. Then n(a) > € = n(e). Now let {f;} be a basis for kere, with |K| = ¢,
and expand it to a basis for V', say {fi} U{f:}. For every i, write f;e = b;. Clearly, {b;}
is a basis for rane, and € € AE(p, q) implies |I| = r(e) = p. Likewise, let {e;} U{ex}
be a basis for ker v, with |J| + |K| = n(a) > n(e) = |K], and expand it to a basis
{e;} U{er} U{e,} for V. For each r, write e,a = a,. Since oo € AF(p,q) and {a,} is
a basis for ran o, we know () = p, and hence we can write {e;} and {a;} instead of
{e,} and {a,}, respectively. Expand {b;} to a basis for V, say {b;} U{bs}, and define

A€ T(V) by
. €; € ¢ o bz bﬁ
)\_< 0 Jfr fi>7 'u_(ai 0>’
Clearly, d(A) =0 and d(u) = d(a) < ¢, and hence A\, u € AE(p, q). Also, o = Aep and

so o € I, since [ is an ideal of AE(p,q) and € € I. Therefore, I = E, and, in effect,
we have shown that [ is a principal ideal generated by an element with nullity £&. O

It is now easy to see that the proper ideals of AE(p, q) form a chain under C, with the
smallest being £, and the largest being .

4. Maximal right simple subsemigroups

In [7] Theorem 7, the author proved that if ¢ < ¢ < p, then the linear Baer-Levi
SeEMIGroups

GS(p,&) ={aeT(V):n(a) =0, dlo) = &},

are precisely the maximal right simple subsemigroups of KN(p,q) = {a € T'(V) :
n(a) = 0, d(a) > g} when ¢ < p. It is not difficult to show that each GS(p,¢) is
a maximal right simple subsemigroup of AM (p,q) (even if p = ¢). In fact, we will
determine all maximal right simple subsemigroups of AM(p,q). To do this, we need
two preliminary results.

Lemma 10. For each infinite cardinal £ such that & < p, and for each subspace A of
V with dim A < ¢, the set

M(A ) ={aeT (V) :kera=A, ranaNA={0}, dimV/(rana ® A) =&}

is a maximal right simple subsemigroup of AM (p,q).

Proof. Clearly, M(A,§&) C AM(p,q) and it is non-empty. For example, if V' = (a;) &
(a;) where A = (a;) and |I| = p (possible since dimA < ¢ < p), we can write
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{a;} = {b;} U{b} where |K| = & and define w7 € M (A, &) by

I )
”‘(0 b)

Let o, 3 € M(A,£). Then, (ker(af))a = rana Nker 8 = {0} and so ker(af) C ker a.
Since ker v C ker(af) always, it follows that ker(af) = A. Also ran(af) C ranf
implies ran(a5) N A C {0}, and equality follows. Now suppose {a;} is a basis for A
and expand it to a basis {a;} U{a;} for V, with |I| = codim A = p. For each ¢, write
a;a = e;. Then {e;} is a basis for ran v, and ran aNA = {0} implies V' = (a;)®(e;) B (ex)
for some linearly independent {ex} C V, where |K| = dimV/(rana & A) = £. Now
write e;0 = f; and ey3 = fi for every i and every k, respectively. Since ker 3 = A, we
know that {f;} U{fx} is a basis for ran 3, and hence it can be expanded to a basis for
V,say {fi} U{fe} U{cr} U{a;} (recall that ran 5N A = {0} and dim V/(ran 5 ® A) =

¢ = |K|). Clearly, we have
_ [ 4 G
aﬁ—( b )

Hence dim V/(ran(af) @& A) = dim(fy, cx) = £ + & = £ (since £ is infinite). Therefore,
aff € M(A, &) and so M(A,€) is a subsemigroup of AM(p, q).

Next we show that M (A, ¢) is right simple. To do this, write a;5 = ¢; for every i. Since
ker § = A, we know {¢;} is a basis for ran /3, and hence it can be expanded to a basis for
V,say {¢;} U{gr}U{a;} (note that ran SN A = {0} and dim V/(ran BD A) = £ = | K]).
Now write {gr} = {ux} U{vi} (possible since |K| = £ > 8y) and define X in T'(V') by

. a; €; €
)\_<0 i uk>

Then, ker A = A, ran AN A = {0} and dim V/(ran A & A) = &, so A € M(A,¢£). Also
B = a), and we have shown M (A, ¢) is right simple.

Next suppose M(A,&) C M C AM(p,q) where M is a right simple subsemigroup of
AM (p,q). Since AM(p,q) is not right simple (see the remark before Theorem 2), it
follows that M # AM(p,q). Let « € M and v € M(A,§). If « =~ then o € M(A,¢).
Suppose a # 7. Both a and v are elements of M and, since this semigroup is right
simple, there exist A\, u € M such that « = v\ and v = au: that is, « R v in M, and
hence in AM (p, q) also. By Lemma 6 we have ker « = kery = A. Now suppose there
exists a non-zero v = uaw € ranaw N A. Then u ¢ A = kerav and so kery G A& (u) C
ker(ay). From Lemma 6, we deduce that v and oy are not R-related in AM (p, q), and
hence ay ¢ M since M is right simple. But this contradicts the fact that M is closed,
sorana N A = {0}. Next, we claim that dim V/(rana @& A) = dim V/(rany & A).

First, since A\, u € M, an argument similar to the one above shows that ker A = A =
ker p and ran AN A = {0} = ranu N A. Next, we adopt the same notation as in the
second paragraph of this proof, albeit for a different . Now write a; 7 = g; for each
i. Then {g;} is a basis for ran~y (since kery = A = (a;)) and it can be expanded
to a basis for V, say {¢;} U{a;} U{gs}, where |L| = dimV/(rany ® A) = & since
v € M(A,€). Clearly, e; = a;o0 = g;A for each i and, since ker A = A, we deduce that
ran A = (e;) @ (g¢A). Consequently, since rana = (¢;) and ran AN A = {0}, we obtain

dimV/(rana @ A) = codim(e;, a;) = | K| > |L|.
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Likewise, 7 = ap implies |K| < |L|. Thus, our claim is valid. Hence « belongs
to M(A,§), and so M(A,§) = M. Therefore, M(A,£) is a maximal right simple
subsemigroup of AM(p, q). O

Note that for each cardinal £ such that ¢ < & < p, we have GS(p, &) = M({0},¢), and
hence each GS(p,§) is a maximal right simple subsemigroup of AM (p, q), as observed
before.

Clearly, the general linear group G(V) is a right simple subsemigroup of AM (p, q). In
fact, it is maximal under these conditions. For, suppose G(V) C M C AM((p,q) for
some right simple subsemigroup M of AM(p,q). Then, given « € M and v € G(V),
we have a R~y in M and hence also in AM (p, q), so ker &« = kery = {0} by Lemma 6.
In fact, if @« = v\ and v = au for some A\, u € M then, since M is right simple, A\ and
w are R-related to v € M and so ker A = {0} = ker i as before. Therefore, by Lemma
4,
d(y) < n(A) +d(e) = d(a) < n(p) +d(v) = d(7).

Hence, d(a) = 0 = n(a) and o € G(V). In fact, the next result gives a class of maximal
right simple subsemigroups of AM (p, ¢) which contains G(V') (with a slight abuse of
terminology, we observe that G(V') = N(B, () precisely when ¢ = 0 and B = {0}).

Lemma 11. For every cardinal ¢ < ¢ and every subspace B of V' with dimension (,
the set
N(B,() ={ae€T(V) :kera=B, V=rana @ B}

is a maximal right simple subsemigroup of AM (p,q).

Proof. Clearly, N(B, () C AM(p, q) and it is non-empty. For example, if V' = (b;) & (b;)
where B = (b;), |J| = ( and |I| = codim B, we can define a € N(B, () by

(b b
(5 h)
Let o, € N(B,(). Then, rana N B = {0} implies (ker(af))a = {0}, and hence
ker(af) C B. Since B = ker a C ker(af3), we have ker(af) = B. Clearly ran(af) C
ran 3. Now, if v € V, then v = a + b for some a € keraw = ker 3 and b € rana.

Therefore, there exists u € V such that b = ua and vG = aff + b = u(af). Hence,
ran(af) = ran 3 and so aff € N(B, ().

Now suppose {b;} is a basis for B and expand it to a basis {b;} U{b;} for V. For
each i, write b;a = e; and b;8 = f;. Since {e;} and {f;} are bases for ran @ and ran 3,
respectively, we have V = (e;) ® (b;) = (fi) ® (b;). Define A € T(V') by

Clearly, A € N(B,() and 3 = a\. In other words, N (B, () is right simple.

We have just proved that N(B,() is a right simple subsemigroup of AM (p,q): next
we show it is maximal under these conditions. To do this, suppose N(B,() C M C
AM (p,q), where M is a right simple subsemigroup of AM(p,q). As before, M #
AM (p, q) since the latter is not right simple. Now let « € M and v € N(B,(). If
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a = 7 then o € N(B, (). Now suppose a # . Clearly, a,7 € M and so a = v\ and
v = au for some A\, € M. Since d(v) = ¢ < q, we have v € AFE(p,q), and hence
Lemma 6(a) implies d(a) < g and ker & = kery = B. As in the proof of Lemma 10, if
ran N B # {0} then v and oy are not R-related in AM (p, q), which implies oy ¢ M,
a contradiction. Therefore rana N B = {0}. Likewise, by considering A,y € M and
i,y € M, we deduce that ker A\ = B = ker y and ran A\N B = {0} = ran uN B. Suppose
rana® B C V and write V = (e;) @ (b;) ® (vs), where {b;} is a basis for B, {b;} U{b;}
is a basis for V and e; = b;a for each i. Since by = (ba)pu = e;u and V = (b;y) & (b;),
we have V' = (e;u) ® (b;) & (e;u) & (vsp) ® (b;) € V, a contradiction since S # ()
and (vs) Nker u = {0}. Hence rana @ B = V. Thus, « € N(B,() and M = N(B,().
Therefore, N(B, () is a maximal right simple subsemigroup of AM (p, q). O

Theorem 9. The maximal right simple subsemigroups of AM(p,q) are exactly the
sets M(A, &), where A is a subspace of V' with dim A < ¢ and £ is an infinite cardinal
such that £ < p, and the sets N(B, (), where ( is a cardinal such that ( < ¢ and B is
a subspace of V' with dim B = (.

Proof. By Lemma 10, each M(A,§) is a maximal right simple subsemigroup of
AM (p, q); and by Lemma 11, so is each N(B, (). Now suppose M is a maximal right
simple subsemigroup of AM (p,q) and let « € M. For every 5 € M, a and (3 are R-
related in AM (p, q), and hence ker o = ker 3. Let A = ker @. As in the proof of Lemma
10, if ran SN A # {0} for some 3 € M, then A G ker(fa) and so fa ¢ M, a contradic-
tion. Therefore, ran SN A = {0} for every § € M: in particular, we have d(3) > dim A.
Suppose 3 # «. Since M is right simple, there exist A\, u € M such that a = G\ and
B = ap. Since \, u € M, we have ker A = A = ker yp and ran AN A = {0} = ran N A.
In fact, using an argument similar to that in the proof of Lemma 10, we can show that
dimV/(rana®A) = dim V/(ran D A). Let £ = dim V/(rana@® A) and suppose £ > Ny.
Then, M C M(A, &) and, by the maximality of M, it follows that M = M(A,¢).

On the other hand, if ¢ is finite then it must be 0: that is, we claim that in this case
V =ran 3 ® A for every 3 € M. For, suppose rana @ A & V' and write, in the usual

way,
(% W
“= ( 0 €; ) '
Now expand {e;} to a basis {e;} U{a;}U{er} for V, with |K| = £ < Ro. Write
e;a = v; and epa = vy for every ¢ and every k. Since {v;} U{v;} is a basis for ran a,
it can be expanded to a basis for V, say {v;} U{vx}U{a;} U{fx} (this is possible
since rana N A = {0} and dim V/(rana ¢ A) = |K]|). Clearly, dim V/(rana? ¢ A) =
dim(wvg, fr) = 26 # &, a contradiction. Therefore, V =rana ® A and V/(rana @ A) =
{0}. Hence, V/(ran @ A) = {0} for every § € M, and this implies V' = ran§ @ A.
Thus, M C N(A,dim A) and by the maximality of M, we have M = N(A,dim A), and
the result follows. O
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