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Abstract. Algebraic topological methods have been used successfully in con-

currency theory, the domain of theoretical computer science that deals with
distributed computing. L. Fajstrup, E. Goubault, and M. Raussen have intro-

duced partially ordered spaces (pospaces) as a model for concurrent systems.

In this paper it is shown that the category of pospaces under a fixed pospace
is both a fibration and a cofibration category in the sense of H. Baues. The

homotopy notion in this fibration and cofibration category is relative directed

homotopy. It is also shown that the category of pospaces is a closed model
category such that the homotopy notion is directed homotopy.
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1. Introduction

It has turned out in the recent past that homotopy theoretical methods can be
employed efficiently to study problems in concurrency theory. This is the domain
of theoretical computer science that deals with parallel computing and distributed
databases. Various topological models have been introduced in order to describe
concurrent systems. Examples are partially ordered spaces [4], flows [5], globular
CW-complexes [7], and d-spaces [10]. The reader is referred to E. Goubault [9] for
a recent introduction to different topological models for concurrency.

In this paper we shall study the homotopy theory of partially ordered spaces
which have been introduced by L. Fajstrup, E. Goubault, and M. Raussen in [4]. A
partially ordered space (or pospace) is a topological spaceX equipped with a partial
order ≤. The space X is interpreted as the state space of a concurrent system. The
partial order ≤ represents the time flow. The idea here is that the execution of a
system is a process in time so that a system in each state x can only proceed to
subsequent states y ≥ x and not go back to preceding states y < x. A natural
question is whether a system in a given state x can reach another state y or, in
other words, whether there is an “execution path” from x to y. Such problems can
be formalized appropriately using the following notion of maps between pospaces.
A dimap (short for directed map) from a pospace (X,≤) to a pospace (Y,≤) is a
continuous map f : X → Y such that x ≤ y implies f(x) ≤ f(y). An execution
path from a state x of a pospace (X,≤) to a state y can now formally be defined
to be a dimap f from the unit interval I = [0, 1] with the natural order to (X,≤)
such that f(0) = x and f(1) = y.
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Consider a very simple concurrent system where two processes A and B modify
asynchronously a shared resource. This situation can be modeled by the pospace
(X,≤) where X = (I × I) \ (] 13 ,

2
3 [×] 13 ,

2
3 [) and ≤ is the componentwise natural

order. If in a state (x, y) ∈ X, x < 1
3 then A has not yet accessed the resource; if

x = 1
3 , A has accessed the resource and is ready to modify it, if 1

3 < x < 2
3 then A is

modifying the resource, and if x ≥ 2
3 then A has modified the resource. Similarly,

B has not yet accessed, has accessed, modifies, and has modified the resource if
y ∈ [0, 1

3 [, y = 1
3 , y ∈] 13 ,

2
3 [, and y ∈ [ 23 , 1] respectively. Since the processes cannot

modify the resource simultaneously, there are no possible states in ] 13 ,
2
3 [×] 13 ,

2
3 [.

The system has an initial state (0, 0) and a final state (1, 1) and there are infinitely
many execution paths from (0, 0) to (1, 1). There are two kinds of such paths:
those whose second coordinate is in [0, 1

3 ] when the first coordinate is in ] 13 ,
2
3 [ and

those whose second coordinate is in [ 23 , 1] when the first coordinate is in ] 13 ,
2
3 [.

The execution paths of the first kind correspond to executions where A modifies
the resource before B and the execution paths of the second kind correspond to
executions where B modifies the resource before A. From a computer scientific
point of view it makes therefore sense to regard execution paths of the same kind
as equivalent. The equivalence relation behind this is dihomotopy (short for directed
homotopy) relative to the initial and final states. As the name suggests, this is a
kind of homotopy and so homotopy theory becomes relevant to concurrency theory.

Before we define dihomotopy we note that for every topological space X the
diagonal ∆ ⊂ X × X is a partial order. We also note that the product of two
pospaces exists in the category theoretical sense and is the topological product
with the componentwise order. Two dimaps f, g : (X ≤) → (Y,≤) are said to
be dihomotopic if there exists a dimap H : (X,≤) × (I,∆) → (Y,≤) such that
H(x, 0) = f(x) and H(x, 1) = g(x). The example above shows that one also needs
a relative notion of dihomotopy. Indeed, in the absolute sense, any execution path
is dihomotopic to a constant dimap. As P. Bubenik [2] has pointed out, another
reason for considering a relative notion of dihomotopy is the fact that it depends
a lot on the context whether two pospaces can be interpreted as models of the
same concurrent system. In order to define relative dihomotopy we work in the
comma category of pospaces under a fixed pospace (C,≤). A (C,≤)-pospace is a
triple (X,≤, ξ) consisting of a pospace (X,≤) and a dimap ξ : (C,≤) → (X,≤).
A (C,≤)-dimap f : (X,≤, ξ) → (Y,≤, θ) is a dimap f : (X,≤) → (Y,≤) such that
f ◦ξ = θ. Two (C,≤)-dimaps f, g : (X,≤, ξ) → (Y,≤, θ) are said to be dihomotopic
relative to (C,≤) if there exists a dimap H : (X,≤) × (I,∆) → (Y,≤) such that
H(x, 0) = f(x), H(x, 1) = g(x) (x ∈ X), and H(ξ(c), t) = θ(c) (c ∈ C, t ∈ I). In
the above example let (C,≤) be the discrete space {0, 1} with the natural order
and consider the inclusion ι : {0, 1} ↪→ I and the dimap ξ : ({0, 1},≤) → (X,≤)
given by ξ(0) = (0, 0) and ξ(1) = (1, 1). Then two execution paths from (0, 0) to
(1, 1), i.e., two ({0, 1},≤)-dimaps f, g : (I,≤, ι) → (X,≤, ξ), are of the same kind
if and only if they are dihomotopic relative to ({0, 1},≤).

The best known framework for homotopy theory is certainly the one of closed
model categories in the sense of D. Quillen [11]. A closed model category is a
category with three classes of morphisms, called weak equivalences, fibrations, and
cofibrations, which are subject to certain axioms. The structure of a closed model
category splits up into two dual structures which are essentially the structure of
a cofibration category and the structure of a fibration category. Cofibration and
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fibration categories have been introduced by H. Baues [1] who has developed an
extensive homotopy theory for these categories. In this paper we show that the
category of (C,≤)-pospaces is both a fibration and a cofibration category (Theorems
5.6 and 7.2). We also show that the category of absolute pospaces is a closed
model category (Theorem 8.3). The main ingredient of the homotopy theory of a
cofibration, fibration, or closed model category is of course a notion of homotopy.
We show that this notion of homotopy in the cofibration and fibration category of
(C,≤)-pospaces is dihomotopy relative to (C,≤) (cf. 5.10 and 7.2). Similarly, the
homotopy notion of the closed model category of pospaces is dihomotopy (cf. 8.3).
The reader should note that the model structure on the category of pospaces induces
a model structure on the category of (C,≤)-pospaces. This means that some relative
dihomotopy theory is part of absolute dihomotopy theory. In contrast to what is
happening in ordinary homotopy theory, the relative dihomotopy theory coming
from the model structure on absolute pospaces is too restrictive. The reason for
this is that one cannot restrict oneself to (C,≤)-pospaces (X,≤, ξ) where the dimap
ξ is a dicofibration, i.e., a cofibration in the closed model category of pospaces. It is
therefore necessary to develop relative dihomotopy theory in an autonomous way.

Pospaces are a rather simple model for concurrency. L. Fajstrup, E. Goubault,
and M. Raussen [4] also introduce locally partially ordered spaces, or local pospaces,
which consitute a more advanced model for concurrency. There are dimaps of local
pospaces and there is a concept of dihomotopy. One can show that the category of
local pospaces is a fibration category such that the homotopy notion is dihomotopy.
It is, however, not known whether there are enough colimits for a cofibration or a
closed model category structure. Note that P. Bubenik and K. Worytkiewicz [3]
have constructed a closed model category containing the category of local pospaces
as a subcategory. Another more sophisticated model for concurrency is given by
flows [5]. Unfortunately, there seem to be serious problems in constructing a model
structure for dihomotopy on the category of flows (cf. [6]). Pospaces are probably
not suited to all aspects of concurrency but they allow a rather straightforward
extension of ordinary homotopy theory.

The paper is organized as follows. In section 2 we show that the category of
(C,≤)-pospaces is complete and cocomplete. Section 3 contains the fundamental
material about dihomotopy. In particular, we define dihomotopy equivalences rela-
tive to (C,≤) and the adjoint cylinder and path (C,≤)-pospace functors. In section
4 we define (C,≤)-difibrations and prove some fundamental facts about them. The
main result of section 5 is Theorem 5.6 which states that the category of (C,≤)-
pospaces is a fibration category where fibrations are (C,≤)-difibrations and weak
equivalences are dihomotopy equivalences relative to (C,≤). This result is a conse-
quence of the fact that the the category of (C,≤)-pospaces is a P-category in the
sense of [1] which is proved in 5.2. Proposition 5.10 contains the result that two
(C,≤)-dimaps are homotopic in the fibration category of (C,≤)-pospaces if and
only if they are dihomotopic relative to (C,≤). In section 6 we study cofibrations
in a fibration category and show in Theorem 6.8 that they induce under certain
conditions the structure of a cofibration category. We show that the homotopy
notions of the cofibration and fibration category structures coincide (cf. 6.11). The
internal cofibrations of the fibration category of (C,≤)-pospaces are called (C,≤)-
dicofibrations. In 7.2 we show that the conditions of 6.8 are satisfied so that the
category of (C,≤)-pospaces is a cofibration category in which the homotopy notion
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is dihomotopy relative to (C,≤). In the last section it is shown that the category
of absolute pospaces is a closed model category such that the homotopy notion is
dihomotopy.

2. Pospaces

Definition 2.1. A pospace (short for partially ordered space) is a pair (X,≤)
consisting of a space X and a partial order ≤ on X. If this is helpful we shall
write ≤X instead of ≤. A dimap (short for directed map) f : (X,≤) → (Y,≤) is a
continuous map f : X → Y such that for all x, x′ ∈ X, x ≤ x′ implies f(x) ≤ f(x′).
The category of pospaces will be denoted by poTop.

In the original definition (cf. [4]) the partial order of a pospace (X,≤) is required
to be closed as a subspace ofX×X. It is shown in [4] that a spaceX can be equipped
with such a closed partial order if and only if it is a Hausdorff space, and in some
sense pospaces with a closed partial order are for general pospaces what Hausdorff
spaces are for general topological spaces. An interesting topological space will of
course in general be a Hausdorff space. From the homotopy theoretical point of
view, however, a restriction to Hausdorff spaces is not necessary and it is indeed
easier to develop ordinary homotopy theory in the category of all topological spaces
than in the category of Hausdorff spaces. For the same reason of simplicity we shall
work with general pospaces rather than with pospaces having a closed partial order.

For every topological space X the diagonal ∆ ⊂ X ×X is a partial order. The
functor X 7→ (X,∆) from the category Top of topological spaces to poTop is left
adjoint to the forgetful functor poTop → Top.

Proposition 2.2. The category poTop is complete and cocomplete.

Proof. We show that poTop has arbitrary products, coproducts, equalizers, and
coequalizers. Let {(Xi,≤Xi

)}i∈I be a family of pospaces. The product of the
pospaces (Xi,≤Xi

) is the topological product
∏

i∈I Xi equipped with the compo-
nentwise partial order. The coproduct of the pospaces (Xi,≤Xi

) is the topological
coproduct

∐
i∈I Xi together with the partial order given by

x ≤ y ⇔ ∃ i ∈ I : x, y ∈ Xi and x ≤Xi
y.

Let f, g : (X,≤) → (Y,≤) be two dimaps. The equalizer of f and g is the topological
equalizer {x ∈ X | f(x) = g(x)} together with the restriction of ≤X .

Consider the coequalizer of f and g in in Top. This is the quotient space Y/ ∼
where ∼ is the equivalence relation given by f(x) ∼ g(x) (i.e., the equivalence
relation induced by the relation f(x) ∼ g(x)). Define a relation C on Y/ ∼ by

α C β ⇔ ∃ y1, . . . , yn ∈ Y : y1 ∈ α, yn ∈ β, and y1 ≤ y2 ∼ y3 ≤ · · · ∼ yn−1 ≤ yn.

The relation C is reflexive and transitive but not necessarily antisymmetric. Con-
sider the equivalence relation CB on Y/ ∼ defined by

α CB β ⇔ α C β and β C α.

Define a relation ≤ on the quotient space (Y/ ∼)/ CB by

A ≤ B ⇔ ∀α ∈ A, β ∈ B : α C β.

This is a partial order. Let p : Y → (Y/ ∼)/ CB be the identification map and
consider two elements y ≤ z ∈ Y . Then [y] C [z]. Let α ∈ [[y]] = p(y) and
β ∈ [[z]] = p(z). Then α C [y] C [z] C β and hence α C β. This implies that p is
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a dimap. We show that the pospace ((Y/ ∼)/ CB,≤) together with the dimap p
is the coequalizer of f and g in poTop. Let h : (Y,≤) → (Z,≤) be a dimap such
that h ◦ f = h ◦ g. Let h̄ : Y/ ∼→ Z be the continuous map indued by f and g, i.e.,
h̄([y]) = h(y). Let α, β ∈ Y/ ∼ such that α C β. Then there exist y1, . . . , yn ∈ Y
such that y1 ∈ α, yn ∈ β, and

y1 ≤ y2 ∼ y3 ≤ · · · ∼ yn−1 ≤ yn.

It follows that

h̄(α) = h(y1) ≤ h(y2) = h(y3) ≤ · · · = h(yn−1) ≤ h(yn) = h̄(β)

and hence that h̄(α) ≤ h̄(β). If α CB β we therefore have h̄(α) = h̄(β). There
hence exists a unique continuous map h̃ : (Y/ ∼)/ CB→ Z such that h̃([α]) = h̄(α).
We have h̃(p(y)) = h̄([y]) = h(y). Let α, β ∈ Y/ ∼ such that [α] ≤ [β]. Then α C β

and h̃([α]) = h̄(α) ≤ h̄(β) = h̃([β]). It follows that h̃ is a dimap ((Y/ ∼)/ CB,≤)
→ (Z,≤) satisfying h̃ ◦ p = h. Since p is surjective, h̃ is the only dimap with this
property. 2

Definition 2.3. Let (C,≤) be a pospace. A (C,≤)-pospace is a triple (X,≤, ξ)
consisting of a pospace (X,≤) and a dimap ξ : (C,≤) → (X,≤). A (C,≤)-dimap
from (X,≤, ξ) to (Y,≤, θ) is a dimap f : (X,≤) → (Y,≤) such that f ◦ ξ = θ. The
category of (C,≤)-pospaces is denoted by (C,≤)-poTop.

Proposition 2.4. For any pospace (C,≤) the category (C,≤)-poTop is complete
and cocomplete.

Proof. This follows from 2.2. 2

Remark 2.5. An absolute pospace is the same as a (∅,∆)-pospace.

3. Relative Dihomotopy

Throughout this section we work under a fixed pospace (C,≤). We define diho-
motopy relative to (C,≤), introduce the adjoint cylinder and path (C,≤)-pospace
functors, and give characterizations of relative dihomotopy by means of these con-
structions.

Definition 3.1. Two (C,≤)-dimaps f, g : (X,≤, ξ) → (Y,≤, θ) are said to be
dihomotopic relative to (C,≤), f ' g rel. (C,≤), if there exists a dihomotopy
relative to (C,≤) from f to g, i.e., a dimap H : (X,≤)× (I,∆) → (Y,≤) such that
H(x, 0) = f(x), H(x, 1) = g(x) (x ∈ X), and H(ξ(c), t) = θ(c) (c ∈ C, t ∈ I).
If C = ∅ we simply talk of dihomotopies and dihomotopic dimaps and we simply
write f ' g.

Proposition 3.2. Dihomotopy relative to (C,≤) is an equivalence relation on the
set of (C,≤)-dimaps from (X,≤, ξ) to (Y,≤, θ). Furthermore, dihomotopy relative
to (C,≤) is compatible with composition.

Proof. This is an easy exercise. 2
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Definition 3.3. The equivalence class of a (C,≤)-dimap with respect to diho-
motopy relative to (C,≤) is called its dihomotopy class relative to (C,≤). The
quotient category (C,≤)-poTop/ ' rel. (C,≤) is the dihomotopy category rel-
ative to (C,≤). A dihomotopy equivalence relative to (C,≤) is a (C,≤)-dimap
f : (X,≤, ξ) → (Y,≤, θ) such that there exists a dihomotopy inverse relative to
(C,≤), i.e., a (C,≤)-dimap g : (Y,≤, θ) → (X,≤, ξ) satisfying f ◦ g ' id(Y,≤,θ)

rel. (C,≤) and g ◦ f ' id(X,≤,ξ) rel. (C,≤). Two (C,≤)-pospaces (X,≤, ξ) and
(Y,≤, θ) are said to be dihomotopy equivalent relative to (C,≤) or of the same di-
homotopy type relative to (C,≤) if there exists a dihomotopy equivalence relative to
(C,≤) from (X,≤, ξ) to (Y,≤, θ). If C = ∅ we simply talk of dihomotopy classes,
the dihomotopy category, dihomotopy equivalences, and dihomotopy equivalent
pospaces.

Note that a (C,≤)-dimap is a dihomotopy equivalence relative to (C,≤) if and
only if its dihomotopy class relative to (C,≤) is an isomorphism in the dihomotopy
category relative to (C,≤). Similarly, two (C,≤)-pospaces are dihomotopy equiva-
lent relative to (C,≤) if and only if they are isomorphic in the dihomotopy category
relative to (C,≤).

Proposition 3.4. Any isomorphism of (C,≤)-pospaces is a dihomotopy equivalence
relative to (C,≤). Let f : (X,≤, ξ) → (Y,≤, θ) and g : (Y,≤, θ) → (Z,≤, ζ) be two
(C,≤)-dimaps. If two of f , g, and g ◦ f are dihomotopy equivalences relative to
(C,≤), so is the third. Any retract of a dihomotopy equivalence relative to (C,≤)
is a dihomotopy equivalence relative to (C,≤).

Proof. The first statement is obvious and the others follow from the corresponding
facts for isomorphisms. 2

Let (X,≤, ξ) be a (C,≤)-pospace and S be a space. Form the pushout diagram
of pospaces

(C,≤)× (S,∆)
prC //

ξ×idS

��

(C,≤)

ξ̄

��
(X,≤)× (S,∆) // (X2CS,≤).

The space X2CS is the pushout of the underlying diagram of spaces. If S = ∅,
(X2CS,≤) = (C,≤). If S 6= ∅, we may construct X2CS as the quotient space
(X × S)/ ∼ where

(x, s) ∼ (y, t) ⇔ (x, s) = (y, t) or ∃ c ∈ C : x = y = ξ(c).

The partial order on X2CS is then given by

[x, s] ≤ [x′, s′] ⇔ (x, s) ≤ (x′, s′) or ∃ c ∈ C : x ≤ ξ(c) ≤ x′.

We define a pospace under (C,≤) by setting

(X,≤, ξ)2(C,≤)S = (X2CS,≤, ξ̄).
It is clear that this construction is natural and defines a functor

2(C,≤) : (C,≤)-poTop×Top → (C,≤)-poTop.

Definition 3.5. The cylinder on a (C,≤)-pospace (X,≤, ξ) is the (C,≤)-pospace
(X,≤, ξ)2(C,≤)I.



RELATIVE DIRECTED HOMOTOPY THEORY OF PARTIALLY ORDERED SPACES 7

Note that if C = ∅ then the cylinder on a pospace (X,≤) is just the product
pospace (X,≤)× (I,∆).

Proposition 3.6. Two (C,≤)-dimaps f, g : (X,≤, ξ) → (Y,≤, θ) are dihomotopic
relative to (C,≤) if and only if there exists a (C,≤)-dimap H : (X,≤, ξ)2(C,≤)I →
(Y,≤, θ) such that H([x, 0]) = f(x) and H([x, 1]) = g(x).

Proof. This is straightforward. 2

Recall that the path space XI of a topological space X is the set of all continuous
maps ω : I → X with the compact-open topology.

Definition 3.7. Let (X,≤, ξ) be a (C,≤)-pospace. The path (C,≤)-pospace of
(X,≤, ξ) is the (C,≤)-pospace (XI ,≤, cξ) where the partial order is given by

ω ≤ ν ⇔ ∀ t ∈ I : ω(t) ≤ ν(t)

and the dimap cξ : (C,≤) → (XI ,≤) is given by cξ(c)(t) = ξ(c) (c ∈ C, t ∈ I).

The path (C,≤)-pospace is obviously functorial. Note also that for each t ∈ I the
evaluation map evt : XI → X, ω 7→ ω(t) is a (C,≤)-dimap (XI ,≤, cξ) → (X,≤, ξ).

Proposition 3.8. The path (C,≤)-pospace functor is right adjoint to the cylinder
functor −2(C,≤)I.

Proof. The natural correspondence between the (C,≤)-dimaps h : (X,≤, ξ) →
(Y I ,≤, cθ) and the (C,≤)-dimaps H : (X,≤, ξ)2(C,≤)I → (Y,≤, θ) is given by the
formula h(x)(t) = H([x, t]). 2

Using this adjunction one easily establishes the following characterization of
dihomotopy relative to (C,≤):

Proposition 3.9. Two (C,≤)-dimaps f, g : (X,≤, ξ) → (Y,≤, θ) are dihomo-
topic relative to (C,≤) if and only if there exists a (C,≤)-dimap h : (X,≤, ξ) →
(Y I ,≤, cθ) such that f = ev0 ◦ h and g = ev1 ◦ h.

4. (C,≤)-Difibrations

As in the preceding section we work under a fixed pospace (C,≤). Recall the
following terminology:

Definition 4.1. Let C be a category and A be a class of morphisms. A morphism
f : X → Y is said to have the right lifting property with respect to A if for every
morphism a : A → B of A and for all morphisms g : A → X and h : B → Y
satisfying f ◦ g = h ◦ a there exists a morphism λ : B → X such that f ◦ λ = h and
λ ◦ a = g. Similarly, a morphism f : X → Y is said to have the left lifting property
with respect to A if for every morphism a : A → B of A and for all morphisms
g : X → A and h : Y → B satisfying a◦g = h◦f there exists a morphism λ : Y → A
such that a ◦ λ = h and λ ◦ f = g.

Definition 4.2. A (C,≤)-difibration is a (C,≤)-dimap having the right lifting
property with respect to the (C,≤)-dimaps of the form

i0 : (X,≤, ξ) → (X,≤, ξ)2(C,≤)I, i0(x) = [x, 0].

If C = ∅ we simply talk of difibrations.
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It is a general fact that any class of morphisms in a category which is defined
by having the right (resp. left) lifting property with respect to another class of
morphisms contains all isomorphisms and is closed under base change (resp. cobase
change), composition, and retracts. We therefore have

Proposition 4.3. The class of (C,≤)-difibrations is closed under composition,
retracts, and base change. Every isomorphism of (C,≤)-pospaces is a (C,≤)-
difibration.

We leave it to the reader to check the following 2-free characterization of (C,≤)-
difibrations:

Proposition 4.4. A (C,≤)-dimap p : (E,≤, ε) → (B,≤, β) is a (C,≤)-difibration
if and only if for every (C,≤)-dimap f : (X,≤, ξ) → (E,≤, ε) and every dimap
H : (X,≤) × (I,∆) → (B,≤) satisfying H(x, 0) = (p ◦ f)(x) (x ∈ X) and
H(ξ(c), t) = β(c) (c ∈ C) there exists a dimap G : (X,≤) × (I,∆) → (E,≤)
such that G(x, 0) = f(x) (x ∈ X), p ◦G = H, and G(ξ(c), t) = ε(c) (c ∈ C, t ∈ I).

Proposition 4.5. For every (C,≤)-pospace (X,≤, ξ) the final (C,≤)-dimap
∗ : (X,≤, ξ) → (∗,∆, ∗) is a (C,≤)-difibration.

Proof. Let f : (W,≤, ψ) → (X,≤, ξ) be a (C,≤)-dimap and F : (W,≤)× (I,∆) →
(∗,∆) be a (the only) dimap. Define a dimap H : (W,≤) × (I,∆) → (X,≤) by
H(w, t) = f(w). Then H(w, 0) = f(w), ∗ ◦H = F , and H(ψ(c), t) = ξ(c). 2

It is a very useful fact in ordinary homotopy theory (due to A. Strøm [12])
that fibrations have a much stronger lifting property than the defining homotopy
lifting property. The last point of this section is an adaptation of this result to
(C,≤)-difibrations. We shall need the following lemma:

Lemma 4.6. Let (X,≤, ξ) be a pospace and S be a space. Then

(X,≤, ξ)2(C,≤)(S × I) = ((X,≤, ξ)2(C,≤)S)2(C,≤)I.

Proof. Consider the defining pushout of (X,≤, ξ)2(C,≤)S:

(C,≤)× (S,∆)
prC //

ξ×idS

��

(C,≤)

ξ̄

��
(X,≤)× (S,∆) // (X2CS,≤).

Since the functor − × (I,∆) : poTop → poTop is a left adjoint, it preserves
colimits. It follows that both squares in the following diagram of pospaces are
pushouts:

(C,≤)× (S,∆)× (I,∆)
prC×idI //

ξ×idS×idI

��

(C,≤)× (I,∆)

ξ̄×idI

��

prC // (C,≤)

¯̄ξ

��
(X,≤)× (S,∆)× (I,∆) // (X2CS,≤)× (I,∆) // ((X2CS)2CI,≤).

This implies that the whole diagram is the defining pushout of (X,≤, ξ)2(C,≤)(S×I)
and thus that (X,≤, ξ)2(C,≤)(S × I) = ((X,≤, ξ)2(C,≤)S)2(C,≤)I. 2
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Recall that a trivial cofibration of spaces is a closed cofibration which also is a
homotopy equivalence. The following characterization of (C,≤)-difibrations is of
fundamental importance:

Proposition 4.7. A (C,≤)-dimap p : (E,≤, ε) → (B,≤, β) is a (C,≤)-difibration
if and only if for every (C,≤)-pospace (Z,≤, ζ), every trivial cofibration of spaces
i : A → X, every dimap f : (Z,≤) × (A,∆) → (E,≤) satisfying f(ζ(c), a) =
ε(c) (c ∈ C, a ∈ A), and every dimap g : (Z,≤) × (X,∆) → (B,≤) satisfying
g(z, i(a)) = p(f(z, a)) (z ∈ Z, a ∈ A) and g(ζ(c), x) = β(c) (c ∈ C, x ∈ X) there
exists a dimap λ : (Z,≤) × (X,∆) → (E,≤) such that λ(z, i(a)) = f(z, a) (z ∈ Z,
a ∈ A), p ◦ λ = g, and λ(ζ(c), x) = ε(c) (c ∈ C, x ∈ X).

Proof. If p has this lifting property, it is a (C,≤)-difibration: it suffices to con-
sider the trivial cofibration {0} ↪→ I. Suppose that p is a (C,≤)-difibration and
consider a (C,≤)-pospace (Z,≤, ζ), a trivial cofibration of spaces i : A → X, a
dimap f : (Z,≤) × (A,∆) → (E,≤) satisfying f(ζ(c), a) = ε(c), and a dimap
g : (Z,≤)×(X,∆) → (B,≤) satisfying g(z, i(a)) = p(f(z, a)) and g(ζ(c), x) = β(c).
Since i is a trivial cofibration, i is a closed inclusion and A is a strong deformation
retract of X. There hence exist a retraction r : X → A of i and a homotopy
H : X × I → X such that H(x, 0) = r(x), H(x, 1) = x (x ∈ X), and H(a, t) = a
(a ∈ A, t ∈ I). There also exists a continuous map φ : X → I such that A = φ−1(0).
Consider the map G : X × I → X defined by

G(x, t) =
{
H(x, t

φ(x) ) t < φ(x),
x t ≥ φ(x).

As in [14, 7.15] one shows that G is continuous. We have G(x, 0) = (i ◦ r)(x) for
all x ∈ X. Consider the following commutative diagram of (C,≤)-pospaces where
f̄ and ḡ are given by f̄([z, x]) = f(z, r(x)) and ḡ([z, x, t]) = g(z,G(x, t)):

(Z,≤, ζ)2(C,≤)X
f̄ //

idZ2Ci0

��

(E,≤, ε)

p

��
(Z,≤, ζ)2(C,≤)(X × I)

ḡ
// (B,≤, β).

By 4.6, we may identify the (C,≤)-dimap idZ2Ci0 with the (C,≤)-dimap

(Z,≤, ζ)2(C,≤)X → ((Z,≤, ζ)2(C,≤)X)2(C,≤)I, [z, x] 7→ [[z, x], 0].

Since p is a (C,≤)-difibration, there exists a (C,≤)-dimap

F : (Z,≤, ζ)2(C,≤)(X × I) → (E,≤, ε)

such that F ◦ (idZ2Ci0) = f̄ and p ◦ F = ḡ. Consider the dimap
λ : (Z,≤)× (X,∆) → (E,≤) defined by λ(z, x) = F ([z, x, φ(x)]). We have

(p ◦ λ)(z, x) = p(F ([z, x, φ(x)])) = ḡ([z, x, φ(x)]) = g(z,G(x, φ(x))) = g(z, x),

λ(z, i(a)) = λ(z, a) = F ([z, a, φ(a)]) = F ([z, a, 0]) = f̄([z, a]) = f(z, r(a)) = f(z, a),

and λ(ζ(c), x) = F ([ζ(c), x, φ(x)]) = ε(c). This shows that p has the required lifting
property. 2
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5. The fibration category structure

The first result of this section is the fact that the category of (C,≤)-pospaces is a
P-category in the sense of the following definition:

Definition 5.1. [1, I.3] A category C equipped with a class of morphisms, called
fibrations, and a path object functor P : C → C, X 7→ XI , f 7→ f I is said to be a
P-category if it has a final object ∗ and if the following axioms are satisfied:

P1 There are natural transformations q0, q1 : P → idC, c : idC → P such that
q0 ◦ c = q1 ◦ c = id.

P2 The pullback of two morphisms one of which is a fibration exists. The
functor P carries such a pullback into a pullback and preserves the final
object. The fibrations are closed under base change.

P3 The composite of two fibrations is a fibration. Every isomorphism is a
fibration and every final morphism X → ∗ is a fibration. Every fibration
p : E → B has the homotopy lifting property, i.e., given morphisms h : X →
BI and f : X → E such that p ◦ f = qτ ◦ h (τ = 0 or τ = 1), there exists a
morphism H : X → EI such that qτ ◦H = f and pI ◦H = h.

P4 For every fibration p : E → B the morphism

(q0, q1, pI) : EI → (E × E)×B×B BI

is a fibration. Here, the target object is the fibered product of the mor-
phisms p× p and (q0, q1) : BI → B ×B.

P5 For each object X there exists a morphism T : (XI)I → (XI)I such that
qI
τ ◦ T = qτ and qτ ◦ T = qI

τ (τ = 0, 1).

Theorem 5.2. Let (C,≤) be a pospace. The category (C,≤)-poTop is a P-cat-
egory. The fibrations are the (C,≤)-difibrations and the functor P is the path
(C,≤)-pospace functor.

Proof. The natural transformations q0 and q1 are the evaluation maps ev0 and ev1.
The natural transformation c : (X,≤, ξ) → (XI ,≤, cξ) is given by c(x) = cx. By
2.4, (C,≤)-poTop is complete. Since P has a left adjoint (cf. 3.8), it preserves
all limits. By 4.3, the class of (C,≤)-difibrations contains all isomorphisms and
is closed under base change and composition. By 4.5, every final morphism is a
(C,≤)-difibration. Using the adjunction between P and the cylinder functor (cf.
3.8) one easily sees that the homotopy lifting property is equivalent to the defining
property of (C,≤)-difibrations. For a (C,≤)-pospace (X,≤, ξ) the (C,≤)-dimap
T : ((XI)I ,≤, ccξ

) → ((XI)I ,≤, ccξ
) is given by T (ω)(s)(t) = ω(t)(s). It remains

to check P4. Let p : (E,≤, ε) → (B,≤, β) be a (C,≤)-difibration. We have to show
that the (C,≤)-dimap

(ev0, ev1, pI) : (EI ,≤, cε) → ((E × E)×B×B BI ,≤, (ε, ε, cβ))

is a (C,≤)-difibration. Consider a (C,≤)-dimap f : (X,≤, ξ) → (EI ,≤, cε) and a
dimap F : (X,≤)×(I,∆) → ((E×E)×B×BB

I ,≤) such that ((ev0, ev1, pI)◦f)(x) =
F (x, 0) and F (ξ(c), t) = (ε(c), ε(c), cβ(c)). Write F = (F0, F1, F2) and consider the
following commutative diagram of spaces where j is the obvious inclusion and φ
and G are given by φ(x, t, 0) = f(x)(t), φ(x, 0, s) = F0(x, s), φ(x, 1, s) = F1(x, s),
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and G(x, t, s) = F2(x, s)(t):

X × (I × {0} ∪ {0, 1} × I)
φ //

idX×j

��

E

p

��
X × I × I

G
// B.

Let (x, t, s), (x′, t′, s′) ∈ X × (I × {0} ∪ {0, 1} × I) such that (x, t, s) ≤ (x′, t′, s′)
in (X,≤) × (I × {0} ∪ {0, 1} × I,∆). Then x ≤ x′, t = t′, and s = s′. It fol-
lows that s = 0 ⇒ s′ = 0, t = 0 ⇒ t′ = 0, and t = 1 ⇒ t′ = 1. Since f
and F are dimaps, we obtain that φ(x, t, s) ≤ φ(x′, t′, s′) and hence that φ is a
dimap (X,≤) × (I × {0} ∪ {0, 1} × I,∆) → (E,≤). Moreover, φ(ξ(c), t, s) = ε(c).
Since F2 is a dimap, G is a dimap (X,≤) × (I × I,∆) → (B,≤). Moreover,
G(ξ(c), t, s) = β(c). Since j is a trivial cofibration in Top, there exists, by 4.7, a
dimap H : (X,≤) × (I × I,∆) → (E,≤) such that p ◦H = G, H ◦ (idX × j) = φ,
and H(ξ(c), t, s) = ε(c). Consider the dimap λ : (X,≤)× (I,∆) → (EI ,≤) defined
by λ(x, s)(t) = H(x, t, s). We have (ev0, ev1, pI) ◦ λ = F , λ(x, 0) = f(x), and
λ(ξ(c), s) = cε(c). This shows that (ev0, ev1, pI) is a (C,≤)-difibration. 2

Definition 5.3. [1, I.3a] Let C be a P-category. Two morphisms f, g : X → Y
are said to be homotopic, f ' g, if there exists a morphism h : X → Y I such that
q0 ◦h = f and q1 ◦h = g. A morphism f : X → Y is called a homotopy equivalence
if there exists a morphism g : Y → X such that g ◦ f ' idX and f ◦ g ' idY .

By 3.9, two (C,≤)-dimaps are homotopic in the P-category (C,≤)-poTop if
and only if they are dihomotopic relative to (C,≤). A (C,≤)-dimap is a homo-
topy equivalence in the P-category (C,≤)-poTop if and only if it is a dihomotopy
equivalence relative to (C,≤).

The main result of the homotopy theory of a P-category is that it is a fibration
category. There is an extensive homotopy theory available for fibration categories
(cf. [1]).

Definition 5.4. [1, I.1a] A category F equipped with two classes of morphisms,
weak equivalences and fibrations, is a fibration category if it has a final object ∗ and
if the following axioms are satisfied:

F1 An isomorphism is a trivial fibration, i.e., a morphism which is both a
fibration and a weak equivalence. The composite of two fibrations is a
fibration. If two of the morphisms f : X → Y , g : Y → Z, and g◦f : X → Z
are weak equivalences, so is the third.

F2 The pullback of two morphisms one of which is a fibration exists. The
fibrations are stable under base change. The base extension of a weak
equivalence along a fibration is a weak equivalence.

F3 Every morphism f admits a factorization f = p ◦ j where p is a fibration
and j is weak equivalence.

F4 For each object X there exists a trivial fibration Y → X such that Y is
cofibrant, i.e., every trivial fibration E → Y admits a section.

An object X is said to be ∗-fibrant if the final morphism X → ∗ is a fibration.

Note that in [1] a fibration category is not required to have a final object.
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Theorem 5.5. [1, I.3a.4] Let C be a P-category. Then C is a fibration category.
The fibrations are those of the P-category C and the weak equivalences are the
homotopy equivalences. All objects are ∗-fibrant and cofibrant.

As a consequence of 5.5 and 5.2 we obtain

Theorem 5.6. Let (C,≤) be a pospace. The category (C,≤)-poTop of (C,≤)-
pospaces is a fibration category. The weak equivalences are the dihomotopy equiv-
alences relative to (C,≤) and the fibrations are the (C,≤)-difibrations. All objects
are ∗-fibrant and cofibrant.

Remark 5.7. Let C be a P-category. By F3, every morphism f : X → Y admits
a factorization f = p ◦ j where p : W → Y is a fibration and j : X → W is a
homotopy equivalence. By [1, I.3], the object W can be chosen to be the mapping
path object of f , i.e., the fibered product W = X ×Y Y I of the morphisms f and
q0. The homotopy equivalence j is then the morphism (idX , c◦f) and the fibration
p is the composite q1 ◦ prY I .

Definition 5.8. [1, I.1a] Let F be a fibration category, p : E → B be a fibration,
and X be a cofibrant object. Two morphisms f, g : X → E are said to be homotopic
over B if for some factorization of the morphism (idE , idE) : E → E ×B E in a
weak equivalence E → P and a fibration q : P → E ×B E there exists a morphism
h : X → P such that q ◦ h = (f, g). Two morphisms f, g : X → Y from a cofibrant
object to a ∗-fibrant object are said to be homotopic, f ' g, if they are homotopic
over the final object. A morphism f : X → Y between ∗-fibrant and cofibrant
objects is said to be a homotopy equivalence if there exists a morphism g : Y → X
such that g ◦ f ' idX and f ◦ g ' idY .

Proposition 5.9. Let C be a P-category and p : E → B be a fibration. Two
morphisms f, g : X → E satisfying p ◦ f = p ◦ g are homotopic over B in the
fibration category C if and only if there exists a morphism h : X → EI such that
q0 ◦ h = f , q1 ◦ h = g and pI ◦ h = c ◦ p ◦ f = c ◦ p ◦ g.

Proof. We first construct a factorization of the morphism (idE , idE) : E → E×B E
in a weak equivalence and a fibration. Consider the following commutative diagram:

B
c //

idB

��

BI

(q0,q1)

��

EI
pI

oo

(q0,q1)

��
B

(idB ,idB)
// B ×B E × E.

p×p
oo

By the dual of the gluing lemma [1, II.1.2], p×p is a fibration. By P4 and P2, pI is
a fibration. We can therefore form the pullbacks of the lines of the above diagram.
Applying P4 to the final morphisms E → ∗ and B → ∗ we obtain that the vertical
morphisms are fibrations. Since, again by P4, (q0, q1, pI) : EI → (E×E)×B×B B

I

is a fibration, we may apply the dual of the gluing lemma to deduce that the
morphism

idB ×(q0,q1) (q0, q1) : B ×BI EI → B ×B×B (E × E) = E ×B E
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is a fibration. Consider now the following commutative diagram:

B
idB //

idB

��

B

c

��

E
poo

c

��
B c

// BI EI .
pI

oo

For any object X the natural morphism c : X → XI is the weak equivalence of
the mapping path factorization of idX . Therefore the vertical morphisms in the
diagram are weak equivalences and we may apply the dual of the gluing lemma to
deduce that the morphism

idB ×c c : E = B ×B E → B ×BI EI

is a weak equivalence. The composite

(idB ×(q0,q1) (q0, q1)) ◦ (idB ×c c) : B ×B E → B ×B×B (E × E)

is precisely the morphism (idE , idE) : E → E ×B E.
Let f, g : X → E be two morphisms such that p ◦ f = p ◦ g. It follows from [1,

II.2.2] that f and g are homotopic over B if and only if there exists a morphism
H : X → B ×BI EI such that the following diagram is commutative:

X
H //

(f,g)

��

B ×BI EI

idB×(q0,q1)(q0,q1)

��
E ×B E

id
// B ×B×B (E × E).

This is the case if and only if there exists a morphism h : X → EI such that
q0 ◦ h = f , q1 ◦ h = g and pI ◦ h = c ◦ p ◦ f = c ◦ p ◦ g. The correspondance between
H and h is given by H = (p ◦ f, h). 2

Proposition 5.10. Let (C,≤) be a pospace, p : (E,≤, ε) → (B,≤, β) be a (C,≤)-
difibration, and f, g : (X,≤, ξ) → (E,≤, ε) be two (C,≤)-dimaps such that
p ◦ f = p ◦ g. Then f and g are homotopic over (B,≤) in the fibration cat-
egory (C,≤)-poTop if and only if there exists a dihomotopy relative to (C,≤)
H : (X,≤)× (I,∆) → (E,≤) from f to g such that p(H(x, s)) = p(f(x)) = p(g(x))
(x ∈ X, s ∈ I). In particular, two (C,≤)-dimaps are homotopic in the fibration
category (C,≤)-poTop if and only if they are dihomotopic relative to (C,≤) and a
(C,≤)-dimap is a homotopy equivalence in the fibration category (C,≤)-poTop if
and only if it is a dihomotopy equivalence relative to (C,≤).

Proof. This follows from 5.9. 2

6. Cofibrations in a fibration category

Throughout this section we work in a fibration category F. We suppose that all
objects are cofibrant and ∗-fibrant and that a morphism is a weak equivalence if
and only if it is a homotopy equivalence.

Definition 6.1. A cofibration is a morphism having the left lifting property with
respect to the trivial fibrations.



14 THOMAS KAHL

For general reasons we have

Proposition 6.2. The class of cofibrations is closed under composition, retracts,
and cobase change. Every isomorphism is a cofibration.

Definition 6.3. A trivial cofibration is a cofibration which is also a weak equiva-
lence.

Proposition 6.4. A morphism is a trivial cofibration if and only if it has the left
lifting property with respect to the fibrations.

Proof. Let i : A → X be a morphism. Suppose first that i has the left lifting
property with respect to the fibrations. Then i is a cofibration. Choose a fac-
torization i = p ◦ h where h : A → E is a weak equivalence and p : E → X is
a fibration. Thanks to our hypothesis there exists a morphism λ : X → E such
that p ◦ λ = idX and λ ◦ i = h. The weak equivalence h is a homotopy equiva-
lence. Let g be a homotopy inverse of h. We have g ◦ λ ◦ i = g ◦ h ' idA and
i ◦ g ◦ λ = p ◦ h ◦ g ◦ λ ' p ◦ λ = idX . Thus, i is a homotopy equivalence. Thanks
to our general hypothesis, i is a weak equivalence.

Now suppose that i is a trivial cofibration and consider a commutative diagram

A
f //

i

��

E

p

��
X g

// B

where p is a fibration. Form the pullback

X ×B E
prE //

prX

��

E

p

��
X g

// B

and choose a factorization of the induced morphism (i, f) : A→ X ×B E in a weak
equivalence h : A→ Y and a fibration q : Y → X ×B E. Since fibrations are stable
under base change and composition, prX ◦ q is a fibration. By F1, prX ◦ q is a weak
equivalence. Consider the following commutative diagram:

A
h //

i

��

Y

prX◦q
��

X
idX

// X.

Since i is a cofibration, there exists a morphism λ : X → Y such that λ ◦ i = h
and prX ◦ q ◦ λ = idX . We have (prE ◦ q ◦ λ) ◦ i = prE ◦ q ◦ h = f and
p ◦ (prE ◦ q ◦ λ) = g ◦ prX ◦ q ◦ λ = g. This shows that i has the required lift-
ing property. 2

Corollary 6.5. The class of trivial cofibrations is closed under cobase change,
composition, and retracts. Every isomorphism is a trivial cofibration.
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Proposition 6.6. Suppose that F has an initial object ∅. For each object X the
initial morphism ∅ → X is a cofibration.

Proof. Let X be any object. Consider a commutative diagram

∅ //

��

E

p

��
X

f
// B

where p is a trivial fibration. Form the pullback

X ×B E
prE //

prX

��

E

p

��
X

f
// B.

By [1, I.1.4], prX is a trivial fibration. Since X is cofibrant, prX admits a section
s. We have p◦prE◦s = f . This implies that the morphism ∅ → X is a cofibration. 2

The following concept of a cofibration category is formally dual to the one of a
fibration category. For every result on fibration categories there is a dual result on
cofibration categories and vice versa.

Definition 6.7. [1, I.1] A category C equipped with two classes of morphisms, weak
equivalences and cofibrations, is a cofibration category if it has an initial object ∅
and if the following axioms are satisfied:

C1 An isomorphism is a trivial cofibration, i.e., a morphism which is both a
cofibration and a weak equivalence. The composite of two cofibrations is
a cofibration. If two of the morphisms f : X → Y , g : Y → Z, and
g ◦ f : X → Z are weak equivalences, so is the third.

C2 The pushout of two morphisms one of which is a cofibration exists. The
cofibrations are stable under cobase change. The cobase extension of a
weak equivalence along a cofibration is a weak equivalence.

C3 Every morphism f admits a factorization f = r ◦ i where i is a cofibration
and r is weak equivalence.

C4 For each object X there exists a trivial cofibration X → Y such that Y is
fibrant, i.e., every trivial cofibration Y → Z admits a retraction.

An object X is said to be ∅-cofibrant if the initial morphism ∅ → X is a cofibration.

Theorem 6.8. Suppose that F has an initial object ∅, that the pushout of two
morphisms one of which is a cofibration exists, and that for every object X the
morphism (idX , idX) : X

∐
X → X admits a factorization in a cofibration followed

by a weak equivalence. Then F is a cofibration category. All objects are ∅-cofibrant
and fibrant.

Proof. C1 follows from 6.5, 6.2, and F1. By 6.6, all objects are ∅-cofibrant. By
6.4, all objects are fibrant and C4 holds. We next prove C3. Let f : X → Y be
a morphism. Choose a factorization of the morphism (idX , idX) : X

∐
X → X in

a cofibration j : X
∐
X → IX and a weak equivalence p : IX → X. Note that

X
∐
X exists since all objects are ∅-cofibrant. Denote the canonical morphisms
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X → X
∐
X by i0 and i1. By 6.2, i0 and i1 are cofibrations. By 6.2 and C1, both

composites j ◦ i0 and j ◦ i1 are trivial cofibrations. Form the pushout

X
f //

j◦i1
��

Y

ι

��
IX

f̄

// Z.

By 6.5, ι is a trivial cofibration. Let r : Z → Y be the morphism induced by the
morphisms f ◦ p : IX → Y and idY . Since r ◦ ι = idY and ι and idY are weak
equivalences, r is a weak equivalence. Let i be the composite of the morphisms
j ◦ i0 : X → IX and f̄ : IX → Z. Consider the following pushout diagram:

X
∐
X

idX

∐
f//

j

��

X
∐
Y

(i,ι)

��
IX

f̄

// Z.

Since j is a cofibration, (i, ι) is a cofibration. Since the initial morphism ∅ → Y
is a cofibration and cofibrations are closed under cobase change (cf. 6.2), the
canonical morphism φ : X → X

∐
Y is a cofibration. Since the composite of

cofibrations is a cofibration (cf. 6.2), i = (i, ι) ◦ φ is a cofibration. We have
r ◦ i = r ◦ f̄ ◦ j ◦ i0 = f ◦ p ◦ j ◦ i0 = f . This shows that C3 holds. C2 follows from
6.2, 6.5, C1, C3, and [1, I.1.4]. 2

Remark 6.9. The factorization f = r ◦ i constructed in the above proof is the
mapping cylinder factorization of f which is dual to the mapping path factorization
of 5.7.

Definition 6.10. [1, I.1] Let C be a cofibration category. Two morphisms f, g :
X → Y from a ∅-cofibrant object to a fibrant object are said to be homotopic if
for some factorization of the morphism (idX , idX) : X

∐
X → X in a cofibration

i : X
∐
X → IX and a weak equivalence r : IX → X there exists a morphism

H : IX → Y such that H ◦ i = (f, g) : X
∐
X → Y .

Proposition 6.11. Two morphisms of F are homotopic in the cofibration category
F if and only if they are homotopic in the fibration category F.

Proof. Let ' denote the homotopy relation of the fibration category F and ∼
denote the homotopy relation of the cofibration category F. Both relations are nat-
ural equivalence relations (c.f. [1, II.3.2]) and we can form the quotient categories
F/ ' and F/ ∼. By [1, II.3.6], both quotient categories have the universal property
of the localization of F with respect to the weak equivalences. This implies that
there is an isomorphism of categories F/ '→ F/ ∼ which is the identity on ob-
jects and which sends the '-class of a morphism to its ∼-class. The result follows. 2
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7. (C,≤)-Dicofibrations

Definition 7.1. Let (C,≤) be a pospace. A (C,≤)-dicofibration is a (C,≤)-dimap
having the left lifting property with respect to the trivial (C,≤)-difibrations. If
C = ∅ we simply talk of dicofibrations.

Theorem 7.2. Let (C,≤) be a pospace. The category (C,≤)-poTop is a cofibration
category. The cofibrations are the (C,≤)-dicofibrations and the weak equivalences
are the dihomotopy equivalences relative to (C,≤). All objects are fibrant and ∅-
cofibrant. Two (C,≤)-dimaps are homotopic in the cofibration category (C,≤)-
poTop if and only if they are dihomotopic relative to (C,≤).

Proof. Thanks to 2.4, 5.6, 5.10, 6.8, and 6.11 it is enough to show that for ev-
ery (C,≤)-pospace (X,≤, ξ) the (C,≤)-dimap (idX , idX) : (X,≤, ξ)

∐
(X,≤, ξ) →

(X,≤, ξ) admits a factorization in a (C,≤)-dicofibration and a dihomotopy equiv-
alence relative to (C,≤). Let (X,≤, ξ) be a (C,≤)-pospace. We have

(X,≤, ξ)
∐

(X,≤, ξ) = (X,≤, ξ)2(C,≤){0, 1}

and (idX , idX) is the (C,≤)-dimap (X,≤, ξ)2(C,≤){0, 1} → (X,≤, ξ), [x, t] 7→ x.
Let ι : {0, 1} ↪→ I be the inclusion. We show that

(X,≤, ξ)2(C,≤)ι : (X,≤, ξ)2(C,≤){0, 1} → (X,≤, ξ)2(C,≤)I

is a (C,≤)-dicofibration and that the projection r : (X,≤, ξ)2(C,≤)I → (X,≤, ξ),
r([x, t]) = x is a dihomotopy equivalence relative to (C,≤). The (C,≤)-dimap
σ : (X,≤, ξ) → (X,≤, ξ)2(C,≤)I given by σ(x) = [x, 0] is a dihomotopy inverse
relative to (C,≤) of r. Indeed, r ◦ σ = idX and a dihomotopy relative to (C,≤)
from σ ◦ r to idX2CI is given by F ([x, t], s) = [x, st].

We now show that (X,≤, ξ)2(C,≤)ι is a (C,≤)-dicofibration. Consider a com-
mutative diagram of (C,≤)-pospaces

(X,≤, ξ)2(C,≤){0, 1}
f //

X2Cι

��

(E,≤, ε)

p

��
(X,≤, ξ)2(C,≤)I g

// (B,≤, β)

where p is a trivial (C,≤)-difibration. By the dual of the lifting lemma [1, II.1.11],
there exists a section s of p such that s ◦ p is homotopic to id(E,≤,ε) over
(B,≤, β) in the fibration category (C,≤)-poTop. By 5.10, there exists a diho-
motopy relative to (C,≤) H : (E,≤)× (I,∆) → (E,≤) from s ◦ p to id(E,≤,ε) such
that p(H(x, τ)) = p(x). Consider the following commutative diagram of spaces
where j is the obvious inclusion and φ and Φ are given by φ(x, t, 0) = s(g([x, t])),
φ(x, 0, τ) = H(f([x, 0]), τ), φ(x, 1, τ) = H(f([x, 1]), τ), and Φ(x, t, τ) = g([x, t]):

X × (I × {0} ∪ {0, 1} × I)
φ //

idX×j

��

E

p

��
X × I × I

Φ
// B.

Since g is a dimap, Φ is a dimap (X,≤) × (I × I,∆) → (B,≤). Moreover,
Φ(ξ(c), t, τ) = g(ξ̄(c)) = β(c). Let (x, t, τ), (x′, t′, τ ′) ∈ X × (I × {0} ∪ {0, 1} × I)
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such that (x, t, τ) ≤ (x′, t′, τ ′) in (X,≤) × (I × {0} ∪ {0, 1} × I,∆). Then x ≤ x′,
t = t′, and τ = τ ′. It follows that t = 0 ⇒ t′ = 0, t = 1 ⇒ t′ = 1, and
τ = 0 ⇒ τ ′ = 0. We obtain that φ(x, t, τ) ≤ φ(x′, t′, τ ′). Thus φ is a dimap
(X,≤)×(I×{0}∪{0, 1}×I,∆) → (E,≤). Moreover, φ(ξ(c), t, τ) = ε(c). Since j is
a trivial cofibration in Top, there exists, by 4.7, a dimap G : (X,≤)× (I × I,∆) →
(E,≤) such that G ◦ (idX × j) = φ, p ◦ G = Φ, and G(ξ(c), t, τ) = ε(c). Let
λ : (X,≤, ξ)2(C,≤)I → (E,≤, ε) be the (C,≤)-dimap given by λ([x, t]) = G(x, t, 1).
We have

λ([x, 0]) = G(x, 0, 1) = φ(x, 0, 1) = H(f([x, 0]), 1) = f([x, 0]),

λ([x, 1]) = G(x, 1, 1) = φ(x, 1, 1) = H(f([x, 1]), 1) = f([x, 1]),

and
(p ◦ λ)([x, t]) = (p ◦G)(x, t, 1) = Φ(x, t, 1) = g([x, t]).

This shows that (X,≤, ξ)2(C,≤)ι is a (C,≤)-dicofibration. 2

8. The closed model category of pospaces

In this section we show that absolute pospaces form a closed model category.
Closed model categories have been introduced by D. Quillen [11]. The definition
below can for instance be found in the book [8] by P. Goerss and J.F. Jardine.

Definition 8.1. A category C equipped with three classes of morphisms, weak
equivalences, fibrations and cofibrations, is a closed model category if the following
axioms are satisfied:

CM1 The category C is finitely complete and cocomplete.
CM2 If two of the morphisms f : X → Y , g : Y → Z, and g ◦ f : X → Z are

weak equivalences, so is the third.
CM3 Weak equivalences, fibrations, and cofibrations are closed under retracts.
CM4 The fibrations have the right lifting property with respect to the trivial cofi-

brations, i.e. the morphisms which are both cofibrations and weak equiv-
alences. The cofibrations have the left lifting property with respect to the
trivial fibrations, i.e. the morphisms which are both fibrations and weak
equivalences.

CM5 Every morphism f admits a factorization f = p◦i where p is a fibration and
i is a trivial cofibration. Every morphism f admits a factorization f = q ◦ j
where j is a cofibration and q is a trivial fibration.

An object is said to be fibrant if its final morphism is a fibration. An object
is said to be cofibrant if its initial morphism is a cofibration. Two morphisms
f, g : X → Y from a cofibrant object to a fibrant object are said to be homotopic
if for some factorization of the morphism (idX , idX) : X

∐
X → X in a cofibration

i : X
∐
X → IX and a weak equivalence r : IX → X there exists a morphism

H : IX → Y such that H ◦ i = (f, g) : X
∐
X → Y .

Lemma 8.2. Let i : (A,≤) → (X,≤) be an inclusion of pospaces such that there
exist a dihomotopy H : (X,≤)× (I,∆) → (X,≤) and a dimap φ : (X,≤) → (I,∆)
such that A = φ−1(0), H(x, 1) = x (x ∈ X), H(a, t) = a (a ∈ A, t ∈ I), and
H(x, 0) ∈ A (x ∈ X). Then i is a trivial dicofibration.



RELATIVE DIRECTED HOMOTOPY THEORY OF PARTIALLY ORDERED SPACES 19

Proof. The proof is similar to the one of 4.7. Consider a difibration p : (E,≤) →
(B,≤), a dimap f : (A,≤) → (E,≤), and a dimap g : (X,≤) → (B,≤) such that
g(a) = p(f(a)). Write r(x) = H(x, 0). Consider the map G : X × I → X defined
by

G(x, t) =
{
H(x, t

φ(x) ) t < φ(x),
x t ≥ φ(x).

As in [14, I.7.15] one shows that G is continuous. We have G(x, 0) = (i ◦ r)(x)
for all x ∈ X. Let (x, t), (x′, t′) ∈ X × I such that (x, t) ≤ (x′, t′). Then x ≤ x′

and t = t′. Since φ is a dimap, φ(x) ≤ φ(x′) and hence φ(x) = φ(x′). It follows
that G(x, t) ≤ G(x′, t′) and hence that G is a dimap. Consider the following
commutative diagram of pospaces:

(X,≤)
f◦r //

i0

��

(E,≤)

p

��
(X,≤)× (I,∆)

g◦G
// (B,≤).

Since p is a difibration, there exists a dimap F : (X,≤)× (I,∆) → (E,≤) such that
F ◦ i0 = f ◦ r and p ◦ F = g ◦G. Consider the dimap λ : (X,≤) → (E,≤) defined
by λ(x) = F (x, φ(x)). We have

(p ◦ λ)(x) = p(F (x, φ(x))) = g(G(x, φ(x))) = g(x)

and
λ(a) = F (a, φ(a)) = F (a, 0) = f(r(a)) = f(a).

By 6.4, this shows that i is a trivial dicofibration. 2

Theorem 8.3. The category poTop of pospaces is a closed model category where
weak equivalences are dihomotopy equivalences, fibrations are difibrations, and cofi-
brations are dicofibrations. All pospaces are fibrant and cofibrant. Two dimaps are
homotopic in the closed model category poTop if and only if they are dihomotopic.

Proof. By 2.2, poTop is complete and cocomplete. CM2 is part of 3.4. CM3
follows from 3.4, 4.3, and 6.2. CM4 follows from the definition of dicofibrations and
6.4. We now show CM5. Let f : (X,≤) → (Y,≤) be a dimap. We show first that f
admits a factorization f = p ◦ i where p is a fibration and i is a trivial cofibration.
We proceed as in [13]. Consider the mapping path factorization f = q ◦ j of 5.7;
j : (X,≤) → (X×Y Y

I ,≤) is the dihomotopy equivalence given by j(x) = (x, cf(x))
and q is the difibration (X ×Y Y I ,≤) → (Y,≤), (x, ω) 7→ ω(1). Let (E,≤) be the
subpospace of (X×Y Y

I ,≤)×(I,∆) defined by E = j(X)×I∪(X×Y Y
I)×]0, 1]. Let

i : (X,≤) → (E,≤) be the dimap defined by i(x) = (j(x), 0). Let p : (E,≤) →
(Y,≤) be the composite

(E,≤) ↪→ (X ×Y Y I ,≤)× (I,∆)
prX×Y Y I

−→ (X ×Y Y I ,≤)
q→ (Y,≤).

We have p ◦ i = f . We show that i is a trivial dicofibration. Consider the
dimap H : (E,≤) × (I,∆) → (E,≤) defined by H(x, ω, s, t) = (x, ωt, st) where
ωt(τ) = ω(tτ). We have H(x, ω, s, 1) = (x, ω, s), H(x, cf(x), 0, t) = (x, cf(x), 0), and
H(x, ω, s, 0) = (x, cf(x), 0) ∈ i(X). Moreover, i(X) = φ−1(0) where φ : (E,≤) →
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(I,∆) is the dimap (x, ω, t) 7→ t. By 8.2, the inclusion (i(X),≤) ↪→ (E,≤) is a triv-
ial dicofibration. The dimap i : (X,≤) → (i(X),≤) is an isomorphism of pospaces;
the inverse the composite

(i(X),≤) ↪→ (E,≤) ↪→ (X ×Y Y I ,≤)× (I,∆)
prX×Y Y I

−→ (X ×Y Y I ,≤)
prX→ (X,≤).

By 6.5, it follows that i is a trivial dicofibration.
We now show that p is a difibration. Since the composite of two difibrations is

a difibration and q is a difibration, it suffices to show that the composite

π : (E,≤) ↪→ (X ×Y Y I ,≤)× (I,∆)
prX×Y Y I

−→ (X ×Y Y I ,≤)

is a difibration. Consider a commutative diagram of pospaces

(Z,≤)
g //

i0

��

(E,≤)

π

��
(Z,≤)× (I,∆)

G
// (X ×Y Y I ,≤).

Consider the continuous map F : Z × I → E defined by

F (z, t) = (G(z, t), t+ (1− t)φ(g(z))).

If t+ (1− t)φ(g(z)) = 0 then t = 0 and φ(g(z)) = 0. Therefore g(z) ∈ i(X) and

F (z, t) = (G(z, 0), 0) = (π(g(z)), 0) = g(z) ∈ i(X) ⊂ E.

This shows that F is well-defined. Let (z, t) ≤ (z′, t′) ∈ Z × I. Then z ≤ z′ and
t = t′. Since φ and g are dimaps, φ(g(z)) ≤ φ(g(z′)), i.e., φ(g(z)) = φ(g(z′)). It
follows that F (z, t) ≤ F (z′, t′) and hence that F is a dimap. We have

F (z, 0) = (G(z, 0), φ(g(z))) = (π(g(z)), φ(g(z))) = g(z)

and π ◦ F = G. It follows that π is a difibration. This terminates the proof of the
first part of CM5. For the second part of CM5 we use 7.2 to obtain a factorization
f = r ◦ j where j is a dicofibration and r is a dihomotopy equivalence. As we
have seen, r admits a factorization r = p ◦ ι where ι is a trivial dicofibration and
p is a difibration. By CM2, p is a dihomotopy equivalence. Since the composite
of two dicofibrations is a dicofibration, i = ι ◦ j is a dicofibration. Thus, f = p ◦ i
is a factorization as required. This terminates the proof of CM5. The remaining
statements follow from 5.6 and 7.2. 2
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Birkhäuser (1999).

[9] E. Goubault: Some geometric perspectives in concurrency theory, Homology, Homotopy and

Applications 5 (2) (2003), 95-136.
[10] M. Grandis: Directed homotopy theory. I. Cah. Topol. Géom. Différ. Catég. 44 (4) (2003),
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