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a b s t r a c t

The potential for improving long-chain fatty acids (LCFA) conversion to methane was

evaluated by bioaugmenting a non-acclimated anaerobic granular sludge with Syntropho-

monas zehnderi. Batch bioaugmentation assays were performed with and without the solid

microcarrier sepiolite, using 1 mM oleate as sole carbon and energy source. When S.

zehnderi was added to the anaerobic sludge methane production from oleate was faster.

High methane yields, i.e. 89 � 5% and 72 � 1%, were observed in bioaugmented assays in

the absence and presence of sepiolite, respectively. Sepiolite stimulated a faster methane

production from oleate and prevented the accumulation of acetate. Acetoclastic activity

was affected by oleate in the absence of sepiolite, where methane production rate was 26%

lower than in assays with microcarrier.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction possible (Stams, 1994). Presently, there are 7 species of syn-
Long-chainfattyacids (LCFA)areproducedduringthehydrolysis

of oils and fats and are commonly present in fatty-wastewaters.

These compounds can be efficiently converted to methane in

anaerobic bioreactors, if the appropriate technologyand feeding

strategy are applied (Alves et al., 2009; Cavaleiro et al., 2009).

Nonetheless, LCFA accumulation during the degradation of

lipid-rich wastewaters has been frequently described.

Broughtonetal. (1998) reportedtheaccumulationofstearateand

palmitate during batch degradation of sheep tallow, and these

LCFA were also found in bioreactors fed with milk-oleate

syntheticwastewaters (Cavaleiro et al., 2009; Pereira et al., 2002).

Complete LCFA degradation evolves through the coordi-

nated activity of syntrophic bacteria, which convert LCFA to

acetate and hydrogen, and methanogenic archaea that utilize

these substrates, making the overall conversion energetically
00; fax: þ351 253 678 986.
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trophic bacteria reported as capable of growing on LCFA with

more than 12 carbon atoms. Among these bacteria only 3

mesophilic species can utilize unsaturated LCFA, namely

Syntrophomonas sapovorans, Syntrophomonas curvata and Syn-

trophomonas zehnderi (Sousa et al., 2009).

Several authors reported the presence of syntrophic aceto-

genic bacteria belonging to the Syntrophomonadacea family in

microbial communities degrading different LCFA, either in

mesophilic enrichment cultures (Hatamoto et al., 2007; Sousa

et al., 2007b) or in continuous bioreactors (Sousa et al., 2007a).

In the work from Sousa et al. (2007a) Syntrophomonas-related

microorganisms appear as predominant microorganisms in

sludges that were submitted to contact with saturated and

unsaturatedLCFA,butnot inthesludgeusedas inoculumfor the

bioreactors. Thus, extended contact with LCFAmight stimulate

the occurrence of syntrophic bacteria (Sousa et al., 2007a).
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It is likely that LCFA degradation relies on the development

of syntrophic communities and, thus, the addition of LCFA-

degrading bacteria to anaerobic sludge can potentially be used

to (1) accelerate bioreactors’ start-up phase, which is generally

time-consuming, or (2) promote the recovery of disrupted

treatment processes when LCFA accumulation/adsorption

onto the biomass could not be prevented.

Bioaugmentation has been frequently applied in polluted

site or bioreactors to fasten the removal of undesired

compounds, to improve the performance of on-going bio-

logical processes, and to ease the establishment of specific

populations in microbial communities (Bouchez et al., 2000;

Jiang et al., 2007). Bioaugmentation of anaerobic waste and

wastewater-treating processes, with pure or mixed cultures,

has also been reported (Table 1).

Cirne et al. (2006) studied the effects of bioaugmentation as

ameansof improving thehydrolysis andsolubilizationof lipids.

Batch assays with a model waste containing 10% triolein were

bioaugmented with Clostridium lundense, a lipolytic strain iso-

lated from bovine rumen. The hydrolysis of the lipid fraction

was improved,but LCFAdegradationappeared tobe the limiting

step in the complete conversion of the substrate to methane.

Bioaugmentation success depends on the survival of the

inoculated microbial culture, which is influenced by several

parameters including phenotypic characteristics of the selected

strains, complex microbial interactions and environmental

factors (Jiang et al., 2007). Therefore, the applicability and limits

of bioaugmentation can be initially tested in microcosms or

batch assays, but should be further evaluated in conditions

comparable to the real environment where bioaugmentation is

to be performed. Batch assays allow effective retention of the

inoculated culture in the system, sincewashout is avoided, and

provide more homogeneous environmental conditions. To

increase the success of bioaugmentation strategies, some

authors used carrier materials such as alginate, agarose and

polyurethane, toprovideatemporaryprotectiveenvironmentto

the inoculum (Boon et al., 2002). The use of microcarriers, such

as sepiolite and diabase, has also been reported as beneficial for

stimulating methanogenic activity (Sanchez et al., 1994).
Table 1 e Examples of bioaugmentation studies in anaerobic b

Bioreactor Microorganism(s)

UASBR Desulfomonile tiedjei (as a pure culture

and in co-culture)

3

UASBR Desulfitobacterium hafniense strain DCB-2 P

UASBR Dehalospirillum multivorans T

UASBR Phenol, o- and p-cresol degrading enriched

microbial consortium

P

AnSBBR Enriched culture of sulphate reducing bacteria

(immobilized in alginate beds)

S

Batch Clostridium lundense (DSM 17049T) R

Batch Azoarcus sp. strain DN11 B

Batch Caldicellulosiruptor lactoaceticus or Dictyoglomus sp. C

Two stage CSTR Caldicellulosiruptor lactoaceticus C

Batch Ralstonia sp. HM-1 C

UASBR Sulfurospirillum barnesii (immobilized in

polyacrylamide gels)

S

AnSBBR e anaerobic sequencing batch biofilm reactor;

UASBR e upflow anaerobic sludge blanket reactor; CSTR e continuous st
In thiswork, thepotential for improvingmethaneproduction

fromLCFAwas studiedbybioaugmentinganaerobic sludgewith

S. zehnderi. A direct link between S. zehnderi and oleate degrada-

tion, either in continuous and fed-batch reactors, has been

previously reported (Sousa et al., 2008). This bacterium is able to

degrade a wide range of saturated and unsaturated fatty acids

(with 4e18 carbon atoms), which makes it suitable for using as

a bioaugmenting strain in LCFAdegradation (Sousa et al., 2007c).

2. Materials and methods

2.1. Preparation of the bioaugmenting culture

S. zehnderi DSM 17840T was pre-grown in co-culture with

Methanobacterium formicicum DSM 1535T in bicarbonate-buff-

ered mineral salt medium. Anaerobic medium was prepared

as described by Stams et al. (1993), dispensed in bottles and

sealed with butyl rubber septa and aluminum screw caps.

Bottles were pressurized with a mixture of N2/CO2 (80:20 vol/

vol, 1.7 � 105 Pa) and autoclaved for 20 min at 121 �C. Before
inoculation, mineral medium was reduced with 0.8 mM

sodium sulfide and supplemented with bicarbonate and salts

plus vitamins solutions (Stams et al., 1993). Sodium oleate

(�99%, Fluka) was added to the medium from a sterile stock

solution. Inoculation of S. zehnderi and M. formicicum active

cultures, as well as the addition of the solutions, was per-

formed aseptically using sterile syringes and needles. S.

zehnderi was incubated with 3� 0.5 mM oleate (successive

substrate additions) at 37 �C, statically and in the dark. Prior

the bioaugmentation assays, S. zehnderi co-culture was

centrifuged (1600 g, 10 min, 4 �C) and washed (2�) with

anaerobic medium. Co-culture was distributed in two bottles

under N2 atmosphere; one of this bottles was heat treated

(121 �C, 40 min, 2�) in order to inactivate the culture.

2.2. Microcarrier characterization

Sepiolite, a clay mineral, was the solid microcarrier selected

for this work based on the reports of Alves et al. (1999) and
ioreactors.

Type of waste/wastewater Reference

-Chlorobenzoate Ahring et al., 1992

entachlorophenol Christiansen and Ahring, 1996

etrachloroethene Hörber et al., 1998

henolic compounds Hajji et al., 2000

ulphate-rich wastewater Mohan et al., 2005

estaurant lipid-rich waste Cirne et al., 2006

enzene contaminated groundwater Kasai et al., 2007

attle manure Nielsen et al., 2007

attle manure Nielsen et al., 2007

d and Zn contaminated sediment Park et al., 2008

elenate and nitrate or sulphate Lenz et al., 2009

irred tank reactor.
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Sanchez et al. (1994). Chemically sepiolite is a hydrated

magnesium silicate with general formula Si12Mg8O30(O-

H2)4(OH)4$8H2O. A wet grain density of 1.64 � 0.02 g cm�3 was

determined by water picnometry for the calcinated sepiolite.

Average values of equivalent diameter, area and perimeter

were determined by image analysis, following the procedure

described by Abreu et al. (2007). Average equivalent diameter

of 0.64 mm was observed for 99.8% of the sepiolite grains.

Average area and perimeter of sepiolite were 0.35 mm2 and

2.34 mm, respectively. Before addition to the bottles, sepiolite

was submitted to calcination at 550 �C for 2 h, washed with

distilled water (3�) and sterilized in autoclave (121 �C, 20min).

2.3. Bioaugmentation potential of S. zehnderi

Bioaugmentation of anaerobic sludge with the pre-grown S.

zehnderi co-culture was done in bottles with anaerobic gran-

ular sludge, in the absence and presence of sepiolite. A

scheme of the experimental set-up is depicted in Fig. 1a.

Non-acclimated granular sludge was obtained from

a pilot-scale upflow anaerobic sludge blanket (UASB) reactor

treating winery effluent (Santiago de Compostela, Spain).

Medium was amended with sludge and S. zehnderi co-culture

to final concentrations of 13% and 0.3% (w/v), respectively.

Inactivated S. zehnderi co-culture was used in non-bio-

augmented controls. Assays with microcarrier were per-

formed with 5 g (dry weight) of sepiolite. Bottles were

incubated with 1 mM sodium oleate at 37 �C, statically and in

the dark. Blank assays containing no oleate were also per-

formed. In order to warrant uniform hydrogenotrophic

activity in bioaugmented and non-bioaugmented assays, 5%

(v/v) of an active culture of M. formicicum was added to all the

bottles. Assays were performed in triplicate. Methane

concentration in the headspace of the bottles and volatile

fatty acids (VFA) in the liquid mediumwere monitored during

the experiment. LCFA were quantified at the end of the

assays. Methane yield was calculated as the ratio between
Fig. 1 e Experimental set-up. CC e S. zehnderi and M. formicicum

sludge; OL e sodium oleate 1 mM; SEP e sepiolite; AC e sodium
methane concentration measured in bottles’ headspace and

the theoretical stoichiometric value for complete conversion

of 1 mM oleate (i.e. 12.75 mM CH4).

2.4. Effect of oleate on acetoclastic methanogenesis in
bioaugmented assays

Bottles with anaerobic sludge and S. zehnderi were supple-

mented with 16 mM acetate (sodium salt �99%, Sigma) and

16 mM acetate plus 1 mM oleate. Experimental procedure and

monitoringwere similar to the previously described in Section

2.3. Set-up was done according to Fig. 1b. Once more, assays

were performed in the absence and presence of sepiolite.

2.5. Analytical methods

Methane was measured using a Pye Unicam GC-TCD gas

chromatograph (Cambridge, England), with a Porapack Q

(100e180 mesh) column. Helium was the carrier gas

(30 mL min�1) and the temperatures of the injection port,

columnanddetectorwere 110, 35 and 110 �C, respectively. VFA
were analyzed by HPLC (Jasco, Japan) using a Chrompack

organic analysis column (30 � 6.5 mm) with a mobile phase of

5 mM H2SO4 at a flow rate of 0.7 mL min�1. The column

temperature was set at 60 �C and the detection was made

spectrophotometrically at 210 nm. Mixed liquid and solid

phases (cells and microcarrier) withdrawn from the bottles at

the endof the experimentwere analyzed for total LCFA. Bottles

with microcarrier were sonicated for 30 min prior sampling.

SaturatedandunsaturatedLCFAwereextractedandquantified

as previously described by Neves et al. (2009). Esterification of

free fatty acids was performed with propanol, in acid medium

(3.5 h at 100 �C). Propyl esters were further extracted with

dichloromethane and analyzed in a gas chromatograph (Var-

ian 3800) equipped with a flame ionization detector and

a eq.CP-Sil 52 CB 30 m � 0.32 mm � 0.25 mm capillary column

(Teknokroma, TR-WAX). Helium was used as carrier gas at
co-culture; CCi e inactivated co-culture; SL e anaerobic

acetate 16 mM.

http://dx.doi.org/10.1016/j.watres.2010.07.039
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a flow rate of 1.0mLmin�1. Initial oven temperature was set at

50 �C for 2 min and final temperature of 225 �C was attained

with a ramp rate of 10 �C min�1. Injector and detector

temperatures were 220 �C and 250 �C, respectively.
2.6. Statistical analysis

The statistical significance of the differences detected in

methane yields after 15 days of incubation was evaluated

using single factor analysis of variances (ANOVA). Statistical

significance was established at the P < 0.05 level.

The modified Gompertz equation was used to describe the

progress of cumulative methane production in batch assays

(Zwietering et al., 1990). Methane production rate, maximum

methane production and lag phase time were estimated using

equation (1).

MðtÞ ¼ Pexp

�
� exp

�
Rm e
P

ðlþ tÞ þ 1

��
(1)

where M(t) ¼ cumulative methane production (mM),

P ¼ maximum methane production (mM), Rm ¼ methane

production rate (mM day�1), e ¼ 2.7182818, l ¼ lag-phase time

(days). For each assay, all the individual measurements per-

formed in the three replicates were utilized independently. R2
Fig. 2 e Cumulative methane production: (C) experimental valu

Acetate concentration (6) in the liquid medium. (a) Bioaugment

without sepiolite, (c) bioaugmented sludge with sepiolite, and (

indicate standard deviation values calculated at each time poin
values and the standard errors for each variable were

calculated.
3. Results

3.1. Bioaugmentation potential of S. zehnderi

Methane production from oleate by S. zehnderi bioaugmented

and non-bioaugmented sludges, in the absence and presence

of sepiolite, is depicted in Fig. 2. The adjustment of the Gom-

pertz modified equation to the experimental cumulative

methane values is also shown, as well as acetate concentra-

tion measured in the liquid medium.

Methane was produced both by bioaugmented and non-

bioaugmented sludges, but faster methane production was

achieved in bottles supplemented with active S. zehnderi co-

culture. After 15 days of incubation, 72� 1% of the oleate could

be already accounted as methane in bioaugmented assays

with sepiolite, contrasting with the 27 � 1% observed in non-

bioaugmented assays (Fig. 2c and d, Table 2). The presence of

sepiolite influenced positively methane production rate, as

after 15 days of incubation methane yield in bioaugmented

sludges grown in the absence of microcarrier was only
es and ($$$$$$$$) predicted values according to equation (1).

ed sludge without sepiolite, (b) non-bioaugmented controls

d) non-bioaugmented controls with sepiolite. The bars

t (n [ 3).

http://dx.doi.org/10.1016/j.watres.2010.07.039
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36 � 12% (Fig. 2a). In the non-bioaugmented assays without

sepiolite a lag phase preceded the onset of methane produc-

tion and only 54 � 24% of the added oleate was converted to

methane by the end of the trial period (Fig. 2b). Cumulative

methane production in blank assays was always lower than

1.6 mM (data not shown).

After 32 days of incubation oleate could not be detected,

both in bioaugmented and non-bioaugmented assays.

Intermediate LCFA or VFA could not be detected as well,

except for acetate and butyrate. n-Butyrate was only occa-

sionally detected in concentrations not higher than 0.4 mM.

Acetate was the major intermediate measured during oleate

degradation, and it was mainly present in assays without

sepiolite in which reached a maximum concentration of

5 mM; acetate concentration in assays with sepiolite was

residual (<0.6 mM) (Fig. 2).
3.2. Effect of oleate on acetoclastic methanogenesis in
bioaugmented assays

Methane production from oleate is dependent on syntrophic

relations between acetogenic bacteria and methanogenic

archaea (Stams, 1994). Successful bioaugmentation is intrin-

sically dependent on hydrogenotrophic and acetoclastic

activities. From these two archaeal groups, acetoclastic

methanogens are described as particularly sensitive to LCFA

inhibition (Hanaki et al., 1981; Hwu and Lettinga, 1997; Koster

and Cramer, 1987; Lalman and Bagley, 2001; Shin et al., 2003)

and, therefore, the effect of oleate on acetoclastic methano-

genesis was studied using bioaugmented sludge. In the pres-

ence of sepiolite, similar methane production rates, i.e.

2.05 � 0.24 and 2.65 � 0.21 mM CH4 day
�1, were observed from

the degradation of acetate in the absence or presence of

oleate, respectively (Table 2). However, this was not the case

in the assays without microcarrier, where methane produc-

tion from the degradation of acetate alone was faster

(2.33 � 0.33 mM CH4 day�1) than from the mixture of acetate

and oleate (0.69 � 0.08 mM CH4 day
�1).
Table 2 e Relevant data concerning methane production durin

Withou

Bioaug.

Methane yield after 15 days of incubation (%) 36 � 12a

Methane yield after 32 days of incubation (%) 89 � 5

Parameters from modified Gompertz equation Eq. (1):

P (mM) 13.9 � 2.5

Rm (mM day�1) 0.5 � 0.1

l (days) 5.5 � 1.8

R2 0.924

Methane production rate (mM CH4 day
�1) from:

Acetate (16 mM) 2.33 � 0.33

Acetate (16 mM) þ Oleate (1 mM) 0.69 � 0.08

n.d. not determined.

a, b, c Different letters indicate statistically significant differences ( p < 0

d In order to fit equation (1) to this data set a plateau (P) value of 12.75mM

cumulative methane production from 1 mM oleate.
4. Discussion

Biogas production fromwaste lipids is a promising technology

for sustainable energy production (Alves et al., 2009). In

anaerobic environments, lipids are easily hydrolyzed to glyc-

erol and LCFA (Hanaki et al., 1981; Pavlostathis and Giraldo-

Gomez, 1991), but further conversion of these substrates is

necessary to maximize methane production. LCFA accumu-

lation in anaerobic bioreactors has been ascribed to the low

relative abundance of syntrophic bacteria (i.e. 0.01e3% of

Syntrophomonadaceae members) (Hansen et al., 1999; Menes

and Travers, 2006). Though predominance of syntrophic

bacteria can be stimulated after extended contact with LCFA

(Sousa et al., 2007a), this requires long reactor set-up periods.

Cavaleiro et al. (2009) reported a fed-batch start-up of more

than 100 days for an anaerobic reactor converting oleate and

skim milk. The addition of syntrophic bacteria to anaerobic

bioreactors, operating either in batch- or continuous-mode,

could lead to a faster establishment of stable syntrophic

communities and decrease start-up times. In this work, we

show that bioaugmentation of anaerobic sludge with syntro-

phic bacteria acceleratesmethane production from oleate and

circumvents the accumulation of intermediates during the

conversion of this substrate.

Addition of S. zehnderi to granular sludge resulted in a faster

oleate conversion to methane, preventing the lag phase

observed in non-bioaugmented assays (i.e. l ¼ 12.8 days)

(Fig. 2a,b; Table 2). Additionally, after 15 days of incubation,

methane yield was significantly higher ( p < 0.03) in the bio-

augmented assay than in the non-bioaugmented controls

(Table 2). A noticeable improvement in oleate degradation

velocity was observed when sepiolite was used as micro-

carrier. Methane production rates (Rm) of 1.8 � 0.3 and

0.5 � 0.1 mM day�1 were predicted for the bioaugmented and

non-bioaugmented sludges in the presence of sepiolite,

respectively, by fitting the modified Gompertz equation to the

experimental data (Table 2). Moreover, bioaugmented sludges

incubated with sepiolite showed already its maximum
g the experiment.

t sepiolite With sepiolite

Non-bioaug. Bioaug. Non-bioaug.

11 � 7b 72 � 1c 27 � 1b

54 � 24 72 � 1 67 � 10

d 9.2 � 0.2 9.3 � 0.8

0.3 � 0.1 1.8 � 0.3 0.5 � 0.1

12.8 � 5.5 2.8 � 0.3 7.2 � 1.3

0.764 0.989 0.956

n.d. 2.05 � 0.24 n.d.

n.d 2.65 � 0.21 n.d

.003).

was constrained; this value corresponds to themaximum theoretical

http://dx.doi.org/10.1016/j.watres.2010.07.039
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Table 3 e Possible reactions involved in the syntrophic conversion of oleate to methane (adapted from Sousa et al. (2009)).

Reaction no. Process Equation DG�’ (kJ reaction�1) a DG’ (kJ reaction�1)b

1 Oleate degradation C18H33O2
� þ 16H2O / 9C2H3O2

� þ 15H2 þ 8 Hþ þ338 �164

2 Acetoclastic methanogenesis C2H3O2
� þ H2O / HCO3

� þ CH4 �31 e

3 Hydrogenotrophic

methanogenesis

4H2 þ HCO3
� þ Hþ / CH4 þ 3H2O �136 e

a Gibbs free energies (at 25 �C, pH 7) calculated at standard conditions (solute concentrations of 1 M and gas partial pressure of 105 Pa).

b Gibbs free energies (at 25 �C, pH 7) for oleate concentration of 1 mM, acetate concentration of 16 mM and H2 depletion to a partial pressure of

1 Pa.
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methane yield (i.e. 72 � 1%, Fig. 2c; Table 2) after only 15 days

of incubation. The differences between bioaugmentation in

the presence and absence of sepiolite were also significant

( p < 0.007), either after 15 or 32 days of incubation.

Comparing bioaugmented assays, one can observe that

acetate accumulates in the medium only in the absence of

sepiolite (Fig. 2a,c). Differences in acetoclastic activity could be

the reason for faster oleate to methane conversion in the

bioaugmented assay with sepiolite. Even though energetics of

oleate b-oxidation is favorable in the presence of acetate, if

hydrogen partial pressure is kept sufficiently low, its conver-

sion to methane is crucial for maximal methane production

(Table 3).

A positive effect of sepiolite in methane production from

acetate has been previously reported by Sanchez et al. (1994).

These authors observed an increase in acetoclastic metha-

nogens numbers in anaerobic sludge incubated with acetate

in the presence of sepiolite. In the present study, acetoclastic

activity of bioaugmented sludges in the absence and presence

of sepiolite, measured through incubation with 16mM acetate

(no oleate added), did not differ significantly. Methane

production rates obtained in assays in the absence and pres-

ence of sepiolite were similar (i.e. 2.33 � 0.33 and

2.05 � 0.24 mM CH4 day�1, respectively; Table 2). However,

when 1 mM oleate was added together with 16 mM acetate,

a positive effect of sepiolite in the overall methane production

rate was evident ( p < 0.035). Oleate strongly affected aceto-

clastic activity in assays without sepiolite lowering methane

production rates to 0.69 � 0.08 mM CH4 day�1 (which corre-

sponds to only 26% of the methane production rate measured

in the presence of sepiolite) (Table 2). In fact, acetoclastic

archaea are described as highly susceptible to the presence of

LCFA; oleate IC50 values (concentration that causes a 50%

relative methanogenic acetoclastic activity loss) between 0.03

and 3.55 mM (Hanaki et al., 1981, 1983; Hwu et al., 1996; Hwu

and Lettinga, 1997; Koster and Cramer, 1987; Shin et al.,

2003). The presence of sepiolite seems to prevent aceto-

clastic activity inhibition as methane production rate was

high, i.e. 2.65� 0.21mMCH4 day
�1. This effectmight be due to

a release of Mg2þ ions from the sepiolite to the liquid medium

causing the precipitation of oleate in the form of magnesium

dioleate. Anionic and cationic surfactants precipitation with

Mg2þ ions released from sepiolite has been reported (Özdemir

et al., 2007; Sabah et al., 2002). Precipitation of LCFA with

divalent ions, such as Ca2þ and Mg2þ, has been previously

used in anaerobic bioreactors as a means of reducing its

toxicity (Hanaki et al., 1981; Roy et al., 1985). Adsorption of

LCFA on sepiolite surface is also plausible, as this carrier is
a good adsorbent for polar molecules (Özdemir et al., 2007).

LCFA bioavailability in the medium can be reduced by this

physical mechanism which potentially decreases toxicity

effects.

Cell proximity has been referred as a key factor in syntro-

phicmethanogenesis (Ishii et al., 2006; Stams, 1994; Stams and

Plugge, 2009). The use of microcarriers might facilitate inter-

species metabolite exchange, enhancing the cooperation

between the acetogenic bacteria and the methanogenic

archaea. Bioaugmentation assays with sepiolite might also

have beneficiated of this effect.

Bioaugmenting anaerobic sludge with syntrophic bacteria

or even with LCFA-degrading enriched cultures appears to be

a promising strategy for accelerating methane production

from LCFA. Further studies are required to evaluate the

potential of bioaugmenting continuous systems with LCFA-

degrading bacteria, but this work shows the advantage of

amending these microorganisms during batch start-up of

bioreactors treating fatty wastewaters. The presence of sepi-

olite had a positive effect on methane formation, but the

mechanisms of sepiolite interactions appear to be very

complex and require further assessment.
5. Conclusions

The potential for improving methane production from oleate

by bioaugmenting anaerobic sludge with S. zehnderi was

demonstrated. Higher methane yields were attained in the

bioaugmented assays, and a faster methane production was

recorded in the presence of sepiolite. The positive effect of

sepiolite in oleate to methane conversion might be related

with: (1) a decrease in LCFA toxicity due to their precipitation

with Mg2þ ions and physical adsorption; (2) a potential

improvement in metabolites transfer between acetogens and

methanogens, as cells can grow on the microcarrier and

increase proximity between groups.

Bioaugmentation of anaerobic bioreactors with S. zehnderi

or other syntrophic LCFA-degraders can be potentially useful

for faster reactor start-up or recovery of an LCFA-inhibited

bioreactor.
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