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Abstract. For n ∈ N and m ∈ N0, an algebra L = (L,∧,∨, f, g, 0, 1) of type (2, 2, 1, 1, 0, 0)
is said to be a double Kn,m-algebra, if L is a double Ockham algebra that satisfies the
identities f2n+m = fm, g2n+m = gm, fg = g2zn and gf = f2zn, where z is the smallest
natural number greater than or equal to m/2n. In [2], T. Blyth, A. Noor and J. Varlet
study congruences on some double K1,1-algebras. They describe the complement (when it
exists) of a principal congruence and, using this description, they also determine when the
complement exists. In this paper we generalize this work for double Kn,m-algebras.

1. Preliminaries

The variety O of Ockham algebras is the class of all algebras
(L,∧,∨, h, 0, 1) of type (2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded distribu-
tive lattice and h is a dual endomorphism of this lattice, i.e., h(0) = 1, h(1) = 0,
h(x ∧ y) = h(x) ∨ h(y) and h(x ∨ y) = h(x) ∧ h(y). These algebras were defined by
J. Berman in [1]. We write (L, h) for an Ockham algebra (L,∧,∨, h, 0, 1) and we
represent both the universe L and the lattice (L,∧,∨, 0, 1) by L. The subvariety
of O characterized by the identity h2n+m = hm, n ∈ N and m ∈ N0, is denoted by
Kn,m and the elements of this class are called Kn,m-algebras. Further information
about Ockham algebras and Kn,m-algebras can be found in [1] and [3].

For each L = (L, h) ∈ O, and for all n ∈ N and m ∈ N0, the sets hm(L) and
Ln,m = {x ∈ L : h2n+m(x) = hm(x)} are subuniverses of L. By hm(L) and Ln,m

we denote the subalgebras (hm(L), h) and (Ln,m, h) of L, respectively. It is useful
to notice that, if L ∈ Kn,m then hm(L) ∈ Kn,0.

Associated to Ockham algebras we have the notion of double
Ockham algebras, introduced by M. Sequeira in [5]. A double Ockham algebra
is an algebra L = (L,∧,∨, f, g, 0, 1) of type (2, 2, 1, 1, 0, 0) such that (L,∧,∨, f, 0, 1)
and (L,∧,∨, g, 0, 1) are Ockham algebras. The variety of double Ockham algebras
is represented by O2. We denote a double Ockham algebra L = (L,∧,∨, f, g, 0, 1)
by L = (L, f, g) and we represent by L, both, the universe L and the distributive
lattice (L,∧,∨, 0, 1). For the Ockham algebras that are reduct of L = (L, f, g) we
write (L, f) and (L, g).

Let L = (L, f, g) ∈ O2. For each h ∈ {f, g}, and all n ∈ N and all m ∈ N0, we
represent by Lh

m,n the set {x ∈ L : h2n+m(x) = hm(x)}. We write (Lf
n,m, f) and
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(Lg
n,m, g) for the greatest subalgebras of (L, f) and (L, g), respectively, that belong

to Kn,m.

Let n,m ∈ N and let q be the smallest natural number that is greater than or
equal to m/2n; in what follows this element will be denoted by ⌈m/2n⌉. The
subvariety of O2 characterized by the identities f2n+m = fm, g2n+m = gm,
gf = f2qn, fg = g2qn is represented by DKn,m, [5], and the elements of this
variety are called double Kn,m-algebras.

Given L = (L, f, g) ∈ DKn,m, we have that fm(L) is a subuniverse of L. So,
(fm(L), f, g) is a subalgebra of L, that we denote by fm(L), and the Ockham
algebras (fm(L), f) and (fm(L), g) are subalgebras of (L, f) and (L, g), respectively.

About double Kn,m-algebras it is useful to remind that if L = (L, f, g) ∈ DKn,m,
then f2n+k = fk and g2n+k = gk, for all k ≥ m. We denote by r(t) the remainder of
the integer t on division by 2n and, for 1 ≤ i, j ≤ 2n+m−1, let zi,j = m+r(j−i−m).
Taking into account the relation between operations f and g it follows that:

Lemma 1.1. [5, Proposition 2] Let n,m ∈ N, L = (L, f, g) ∈ DKn,m and
q = ⌈m/2n⌉. Then

i) f igi = gq2n, gif i = f q2n, 1 ≤ i ≤ 2n+m− 1.
ii) gif j = fzi,j , f jgi = gzj,i , 1 ≤ i, j ≤ 2n+m− 1.
iii) fm(L)=gm(L). �

We now present some notation related to congruences. Given an algebra L
(element of O or element of O2) we denote by:

- Conlat L and ConL, the congruence lattice of the distributive lattice L (reduct of
L) and the algebra L, respectively;

- θlat(a, b) and θ(a, b) the least congruence of Conlat L and ConL, respectively, that
identifies the elements a and b of L;

- 0 and 1 the identity and the universal congruence of L, respectively;

- θL′ a congruence defined on a subalgebra L′ of L (0L′ and 1L′ represent, res-
pectively, the identity and the universal congruences of L′).

For L = (L, f, g) ∈ DKn,m we represent by:

- Conf L and Cong L, the congruence lattice of the algebra (L, f) and the algebra
(L, g), respectively;

- θf (a, b) and θg(a, b) the least congruence of Conf L and Cong L, respectively, that
identifies the elements a and b of L;

- θf,fm(L)(a, b), θg,fm(L)(a, b) the least congruence of Conf f
m(L) and Cong f

m(L),
respectively, that identifies the elements a and b of fm(L).
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Remark: Let L = (L, f, g) ∈ DKn,m. Given θf ∈ Conf L and θg ∈ Cong L, since
θf , θg ∈ Conlat L, we represent by θf ∨ θg and θf ∧ θg, respectively, the join and
the meet of θf and θg on Conlat L.

To study principal congruences of L = (L, f, g) ∈ O2 it suffices to consider the
congruence θ(a, b) for a ≤ b since, for any congruence θ of a lattice L′ and any
x, y ∈ L′, we have (x, y) ∈ θ if and only if (x ∧ y, x ∨ y) ∈ θ.

For any L ∈ O (resp. O2), the lattice ConL is distributive. Also, for any
subalgebra L′ of an algebra L ∈ O, each congruence defined on L′ is the restriction
of some congruence defined on L. This means that the variety O satisfies the
congruence extension property. Consequently we have the following:

Lemma 1.2. If L ∈ O, L′ is a subalgebra of L and a, b ∈ L′, then

θ(a, b)|L′ = θL′(a, b). �

The following result, that establishes that any principal congruence on L ∈ Kn,m

is the join of principal congruences on the distributive lattice L, is fundamental in
the investigation of congruences defined on Kn,m-algebras.

Lemma 1.3. [1, Corollary Theorem 1] If L = (L, h) ∈ Kn,m and a, b ∈ L with
a ≤ b then

θ(a, b) =
2n+m−1∨

i=0

θlat
(
hi(a), hi(b)

)
. �

For double Kn,m-algebras it is also possible to establish a result similar to this
one:

Lemma 1.4. [5] If L = (L, f, g) ∈ DKn,m and a, b ∈ L with a ≤ b, then

θ(a, b) = θlat(a, b) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
∨

2n+m−1∨
j=1

θlat
(
gj(a), gj(b)

)
. �

From Lemmas 1.3 and 1.4 is immediate that:

Lemma 1.5. If L = (L, f, g) ∈ DKn,m and a, b ∈ L are such that a ≤ b, then

θ(a, b) = θf (a, b) ∨ θg(a, b). �

Definition 1.6. By a p-ladder in an ordered set E we shall mean a subset of E
that consists of two p-chains a1 < ... < ap and b1 < ... < bp such that ai ≤ bi for
i = 1, ..., p. We shall denote a p-ladder by (ai, bi)p.

Let T = {0, 1, ..., n− 1} and, for s ∈ {1, ..., n}, let Ts = {J : J ⊆ T, |J | = s}. Let
L = (L, h) ∈ Kn,m and a, b ∈ L be such that a ≤ b. For s ∈ {1, ..., n}, let

ãh,s =
∧

J∈Ts

∨
j∈J

h2j(a), b̃h,s =
∧

J∈Ts

∨
j∈J

h2j(b).
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It is easy to prove that the set {ãh,s, b̃h,s : s = 1, ..., n} is an n-ladder consisting
of elements that belong to the subalgebra L1,m. In the following theorem, which
is an unpublished result of M. Sequeira, this n-ladder is used to establish that any
principal congruence defined on a double Kn,m-algebra L = (L, f, g) is the join of
principal congruences generated by elements of L1,m.

Theorem 1.7. Let L = (L, h) ∈ Kn,m and a, b ∈ L be such that a ≤ b. Then

θ(a, b) =
n∨

s=1
θ(ãh,s, b̃h,s). �

Next Lemma follows immediately from Theorem 1.7 and Lemma 1.5 and
describes each principal congruence defined on a double Kn,m-algebra L = (L, f, g)

by means of elements of Lf
1,m and elements of Lg

1,m.

Lemma 1.8. If L = (L, f, g) ∈ DKn,m and a, b ∈ L with a ≤ b, then

θ(a, b) =
n∨

s=1
θf (ãf,s, b̃f,s) ∨

n∨
t=1

θg(ãg,t, b̃g,t). �

The purpose of this paper is to characterize the principal congruences θ(a, b) on
double Kn,m-algebras that are complemented. The study of these con-
gruences is strongly related to the following theorem which establishes that, given
L = (L, f) ∈ O, all congruences generated by elements of L1,0 are complemented.
This theorem is, also, an unpublished result of M. Sequeira [5].

Theorem 1.9. If L = (L, h) ∈ O and a, b ∈ L1,0 with a ≤ b, then θ(a, b) is
complemented in Con(L), and

θ(a, b)′ = θ
(
h(a) ∨ b, 1

)
∨ θ

(
h(a), h(a) ∨ a

)
∨ θ

(
b, b ∨ h(b)

)

= θ
(
0, a ∧ h(b)

)
∨ θ

(
a ∧ h(a), a

)
∨ θ

(
b ∧ h(b), h(b)

)
. �

2. Congruences

Let L = (L, f, g) ∈ DKn,m and a, b ∈ L be such that a ≤ b. By Lemma
1.5, the congruence θ(a, b) is the join, on Conlat L, of a principal congruence on
(L, f) and a principal congruence on (L, g). So, it is natural that the study of
θ(a, b) uses various results obtained on [4]; where the author studies complemented
congruences on Kn,m-algebras. Moreover, similar results for double Kn,m algebras,
involving the relation between the operations f and g, need to be established. We
start this section establishing and proving that results.

Lemma 2.1. Let L = (L, f, g) ∈ DKn,m, i ∈ N, k ∈ N be such that k ≥ m and
a, b ∈ L with a ≤ b. Then, given x, y ∈ L

(x, y) ∈ θlat
(
gi(a), gi(b)

)
⇒

(
fk(x), fk(y)

)
∈ θlat

(
gt(a), gt(b)

)
,

for some t ∈ {m, ..., 2n+m− 1}.
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Proof. Let x, y ∈ L. If (x, y) ∈ θlat
(
gi(a), gi(b)

)
, for some i ∈ N, then(

fk(x), fk(y)
)

∈ θlat
(
fk(gi(a)), fk(gi(b))

)
. From Lemma 1.1 it follows that

fk
(
gi(a)

)
= gt(a) and fk

(
gi(b)

)
= gt(b), with t ∈ {m, ..., 2n+m− 1}. �

Lemma 2.2. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L with a ≤ b. Then

θg(a, b)|fm(L) =
2n+m−1∨

k=0

θlat
(
gk(a), gk(b)

)
|fm(L).

Proof. The result follows immediately from [4, Lemma 2.3] since fm(L) = gm(L),
θg(a, b) ∈ Cong L and (L, g) ∈ Kn,m. �

Lemma 2.3. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L be such that a ≤ b. Then,

θ(a, b)|fm(L) = θlat(a, b)|fm(L) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
|fm(L)

∨
2n+m−1∨

j=1

θlat
(
gj(a), gj(b)

)
|fm(L).

Proof. By Lemma 1.4 we have

θ(a, b) = θlat(a, b) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
∨

2n+m−1∨
j=1

θlat
(
gj(a), gj(b)

)

and it is obvious that

θlat(a, b)|fm(L) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
|fm(L) ∨

2n+m−1∨
j=1

θlat
(
gj(a), gj(b)

)
|fm(L)

≤
[
θlat(a, b) ∨

2n+m−1∨
i=1

θlat
(
f i(a), f i(b)

)
∨

2n+m−1∨
j=1

θlat
(
gj(a), gj(b)

)]∣∣
fm(L)

.

Let x, y be elements of L such that (x, y) ∈ θ(a, b)|fm(L), i.e., such that

(x, y) ∈
[
θlat(a, b) ∨

2n+m−1∨
i=1

θlat
(
f i(a), f i(b)

)
∨

2n+m−1∨
j=1

θlat
(
gj(a), gj(b)

)]∣∣
fm(L)

.

Then x, y ∈ fm(L) and there exist s ∈ N and x0 = x, x1, ..., xs = y ∈ L such that,
for all v ∈ {0, ..., s− 1},

- (xv, xv+1) ∈ θlat
(
f iv (a), f iv (b)

)
, for some iv ∈ {0, ..., 2n+m− 1}

or

- (xv, xv+1) ∈ θlat
(
gjv (a), gjv (b)

)
, for some jv ∈ {1, ..., 2n+m− 1}.

In what follows we consider q = ⌈m/2n⌉. Thus, if (xv, xv+1) ∈ θlat
(
f iv (a), f iv (b)

)

we have by [4, Lemma 2.2] that
(
f q2n(xv), f

q2n(xv+1)
)
∈ θlat

(
f tv (a), f tv (b)

)
, for

some tv ∈ {m, ..., 2n+m− 1}. Since f q2n(xv), f
q2n(xv+1) are elements of fm(L),

then
(
f q2n(xv), f

q2n(xv+1)
)
∈ θlat

(
f tv (a), f tv(b)

)
|fm(L).
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If (xv, xv+1) ∈ θlat
(
gjv (a), gjv (b)

)
it is also possible to conclude, in this case

using Lemma 2.1, that
(
f q2n(xv), f

q2n(xv+1)
)
∈ θlat

(
gsv(a), gsv (b)

)
|fm(L), for some

sv ∈ {m, ..., 2n+m− 1}.

Consequently
(
f q2n(x), f q2n(y)

)
∈ θlat(a, b)|fm(L) ∨

2n+m−1∨
i=1

θlat
(
f i(a), f i(b)

)
|fm(L)

∨
2n+m−1∨

j=1

θlat
(
gj(a), gj(b)

)
|fm(L)

where f q2n(x) = x and f q2n(y) = y since x, y ∈ fm(L). Thus we have

θ(a, b)|fm(L) ≤ θlat(a, b)|fm(L) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
|fm(L)

∨
2n+m−1∨

j=1

θlat
(
gj(a), gj(b)

)
|fm(L). �

This lemma is used to prove the following result:

Lemma 2.4. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L be such that a ≤ b. Then,

θ(a, b)|fm(L) =
n∨

s=1
θf (ãf,s, b̃f,s)|fm(L) ∨

n∨
t=1

θg(ãg,t, b̃g,t)|fm(L).

Proof. By Lemma 2.3 we have

θ(a, b)|fm(L) = θlat(a, b)|fm(L) ∨
2n+m−1∨

i=1

θlat
(
f i(a), f i(b)

)
|fm(L)

∨
2n+m−1∨

j=1

θlat
(
gj(a), gj(b)

)
|fm(L).

From [4, Lemma 2.3] and Lemma 2.2 it follows that

θ(a, b)|fm(L) = θf (a, b)|fm(L) ∨ θg(a, b)|fm(L)

and, by Theorem 1.7

θ(a, b)|fm(L) =
( n∨
s=1

θf (ãf,s, b̃f,s)
)
|fm(L) ∨

( n∨
t=1

θg(ãg,t, b̃g,t)
)
|fm(L).

Finally, using [4, Lemma 2.4] and since fm(L) = gm(L), we have

θ(a, b)|fm(L) =
n∨

s=1
θf (ãf,s, b̃f,s)|fm(L) ∨

n∨
t=1

θg(ãg,t, b̃g,t)|fm(L). �

Given an algebra L ∈ O (resp. L ∈ O2), let Con′ L represent the lattice of
complemented congruences on L.

Lemma 2.5. Let L = (L, f, g) ∈ DKn,m and θ ∈ ConL. If θ ∈ Con′ L, then
θ|fm(L) ∈ Con′ fm(L). In fact, if θ′ is the complement of θ in ConL, then θ′|fm(L)

is the complement of θ|fm(L) in Con fm(L).
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Proof. Let θ ∈ Con′ L and θ′ be the complement of θ in ConL. Then θ|fm(L) and
θ′|fm(L) are elements of Con fm(L). Since θ, θ′ ∈ Conf L, θ

′ is also the complement
of θ in Conf L. By [4, Lemma 2.5] we have that θ′|fm(L) is the complement of
θ|fm(L) in Conf f

m(L) and, consequently, in Con fm(L). �

Lemma 2.6. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L with a ≤ b and
k ∈ N be such that k ≥ m. Then

i) θ
(
fk(a), fk(b)

)
= θf

(
fk(a), fk(b)

)
,

ii) θ
(
gk(a), gk(b)

)
= θf

(
gk(a), gk(b)

)
,

iii) θ
(
gk(a), gk(b)

)
= θg

(
gk(a), gk(b)

)
,

iv) θ
(
fk(a), fk(b)

)
= θg

(
fk(a), fk(b)

)
.

Proof. i) By Lemma 1.4 we have

θ
(
fk(a), fk(b)

)
= θlat

(
fk(a), fk(b)

)
∨

2n+m−1∨
i=1

θlat
(
f i(fk(a)), f i(fk(b))

)

∨
2n+m−1∨

j=1

θlat
(
gj(fk(a)), gj(fk(b))

)
.

Since k = m+ r, for some r ∈ N0, it follows by Lemma 1.1 that, for all x ∈ L and
j ∈ {1, ..., 2n+m− 1},

gj
(
fk(x)

)
= gj

(
fm(f r(x))

)
= fzj,m

(
f r(x)

)

= fzj,m−m
(
fm

(
f r(x)

))
= fzj,m−m

(
fk(x)

)
,

with zj,m −m ∈ {0, ..., 2n− 1}. Thus we have

θ
(
fk(a), fk(b)

)
= θlat

(
fk(a), fk(b)

)
∨

2n+m−1∨
i=1

θlat
(
f i(fk(a)), f i(fk(b))

)

and by Lemma 1.3 we conclude that θ
(
fk(a), fk(b)

)
= θf

(
fk(a), fk(b)

)
; so i) fol-

lows. Since fm(L) = gm(L) we have gk(a) = fm(x) and gk(b) = fm(y), for some
x, y ∈ L. So case ii) is immediate from i). The proof of iii) is analogous to the one
for case i). Case iv) follows from iii). �

Definition 2.7. By a m-pair, m ∈ N, we shall mean the ordered pair (k, l) such
that

(k, l) =

{
(m,m+ 1) if m is even;
(m+ 1,m) if m is odd.

It is useful to notice that, if (k, l) is a m-pair then k is always even, and l is
always odd.

In what follows we consider L = (L, f, g) ∈ DKn,m and, for z ∈ L,
T = {0, 1, ..., n − 1}, s ∈ T and i ∈ N, we represent the elements f i(z̃f,s) and
gi(z̃g,s) by f i(z̃s) and gi(z̃s), respectively. Note that we never use the elements
f i(z̃g,s) and gi(z̃f,s). Moreover, we denote by (k, l) an m-pair.
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Let a, b ∈ L be such that a ≤ b and suppose that θ(a, b) is complemented. As we
will see, the description of the complement of θ(a, b) is, in fact, related to Theorem
1.9.

If we take q = ⌈m/2n⌉, then f q2n(ãs), f q2n(̃bs) ∈ fm(L) and gq2n(ãs),

gq2n(̃bs) ∈ gm(L). Consequently, taking into account that fm(L) = gm(L), it
follows by Lemma 2.4, [4, Lemma 2.1] and Lemma 1.2 that:

θ(a, b)|fm(L) =
n∨

s=1

θf (ãf,s,b̃f,s)|fm(L) ∨
n∨

t=1

θg(ãg,t,b̃g,t)|fm(L)

=
n∨

s=1

θf
(
fq2n(ãs), f

q2n (̃bs)
)
|fm(L) ∨

n∨
t=1

θg
(
gq2n(ãt), g

q2n(̃bt)
)
|fm(L)

=
n∨

s=1

θf,fm(L)

(
fq2n(ãs), f

q2n (̃bs)
)
∨

n∨
t=1

θg,fm(L)

(
gq2n(ãt), g

q2n (̃bt)
)
.

Since ãf,s, b̃f,s ∈ Lf
1,m, ãg,t, b̃g,t ∈ Lg

1,m and q2n ≥ m, then f q2n(ãs),

f q2n(̃bs) ∈ Lf
1,0, and gq2n(ãt), gq2n(̃bt) ∈ Lg

1,0. So, by Theorem 1.9, the con-

gruences θf,fm(L)

(
f q2n(ãs), f

q2n(̃bs)
)
and θg,fm(L)

(
gq2n(ãt), g

q2n (̃bt)
)
are comple-

mented, respectively, in Conf f
m(L) and Cong f

m(L).

Using Lemma 1.2 and [4, Lemma 2.4] it is proved in [4] that

θf,fm(L)(f
q2n(ãs), f

q2n (̃bs))
′ = ϕf (ãf,s, b̃f,s)|fm(L) and

θg,fm(L)(g
q2n(ãt), g

q2n (̃bt))
′ = ϕg(ãg,t, b̃g,t)|fm(L)

where

ϕf (ãf,s, b̃f,s) = θf
(
fk (̃bs) ∨ f l(ãs), 1

)
∨ θf

(
fk (̃bs), f

k (̃bs) ∨f
l(̃bs)

)

∨ θf
(
f l(ãs), f

l(ãs) ∨ fk(ãs)
)

and

ϕg(ãg,t, b̃g,t) = θg
(
gk (̃bt) ∨ gl(ãt), 1

)
∨ θg

(
gk (̃bt), g

k(̃bt) ∨ gl(̃bt)
)

∨ θg
(
gl(ãt), g

l(ãt) ∨ gk(ãt)
)

Since k ≥ m and l ≥ m, it follows by Lemma 2.6 that each congruence

θf
(
fk(̃bs)∨f l(ãs), 1

)
, θf

(
fk(̃bs), f

k(̃bs)∨f l(̃bs)
)
and θg

(
gl(ãt), g

l(ãt)∨gk(ãt)
)
is an

element of ConL; so ϕf (ãf,s, b̃f,s) is an element of ConL. Now, taking into account

that fm(L) is a subuniverse of L we conclude that ϕf (ãf,s, b̃f,s)|fm(L) ∈ Con fm(L).

In a similar way we prove that ϕg(ãg,t, b̃g,t)|fm(L) ∈ Con fm(L) and, also by Lemma

2.6, we have θf,fm(L)

(
f q2n(ãs), f

q2n (̃bs)
)
, θg,fm(L)

(
gq2n(ãt), g

q2n(̃bt)
)
∈ Con fm(L).

So, both congruences θf,fm(L)

(
f q2n(ãs), f

q2n(̃bs)
)
and θg,fm(L)

(
gq2n(ãt), g

q2n (̃bt)
)

are complemented in Con fm(L). Since

θ(a, b)|fm(L) =
n∨

s=1

θf,fm(L)

(
f
q2n(ãs), f

q2n (̃bs)
)
∨

n∨
t=1

θg,fm(L)

(
g
q2n(ãt), g

q2n(̃bt)
)
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it is obvious that θ(a, b)|fm(L) is also complemented in Con fm(L) and we have:

(θ(a, b)|fm(L))
′ =

n∧
s=1

θf,fm(L)

(
fq2n(ãs), f

q2n (̃bs)
)′

∧
n∧

t=1

θg,fm(L)

(
gq2n(ãt), g

q2n (̃bt)
)′

=
( n∧
s=1

ϕf (ãf,s, b̃f,s)|fm(L)

)
∧

( n∧
t=1

ϕg(ãg,t, b̃g,t)|fm(L)

)

=
( n∧
s=1

ϕf (ãf,s, b̃f,s) ∧
n∧

t=1

ϕg(ãg,t, b̃g,t)
)
|fm(L).

Let ϕf,g stand for
n∧

s=1
ϕf (ãf,s, b̃f,s) ∧

n∧
t=1

ϕg(ãg,t, b̃g,t). From Lemma 2.6 we conclude

that ϕf,g ∈ ConL.

Next lemma shows that ϕf,g can be described as the join of a finite number of
principal congruences and we use this result to determine the complement of θ(a, b).
To obtain this description it is useful to remember facts R1) an R2) mentioned in
[4] and to take into account the following:

Remark: Let L = (L, f, g) ∈ DKn,m, (k, l) be anm-pair and r ∈ N0. Let h ∈ {f, g}.
Then, for x ∈ Lh

1,m,




f r
(
hk(x)

)
= hl(x), f r

(
hl(x)

)
= hk(x) if r is odd,

f r
(
hk(x)

)
= hk(x), f r

(
hl(x)

)
= hl(x) if r is even,

gr
(
hk(x)

)
= hl(x), gr

(
hl(x)

)
= hk(x) if r is odd,

gr
(
hk(x)

)
= hk(x), gr

(
hl(x)

)
= hl(x) if r is even.

Lemma 2.8. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L be such that a ≤ b. Let

b̃f,0 = b̃g,0 = 0 and ãf,n+1 = ãg,n+1 = 1 and (k, l) be an m-pair.
Then,

ϕf,g =
n+1∨
i,p=1

n∨
j=i−1

n∨
q=p−1

[
θf (xi,j,p,q , yi,j,p,q) ∨ θg(wi,j,p,q , zi,j,p,q)

]
,

where

xi,j,p,q = f l(ãi) ∨ fk(̃bj) ∨ gl(ãp) ∨ gk(̃bq),

yi,j,p,q = xi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1)

)
,

wi,j,p,q = f l(ãi) ∨ fk(̃bj) ∨
(
gk(ãp) ∧ gl(̃bq) ∧ [gl(ãq+1) ∨ gk(̃bp−1)]

)
,

zi,j,p,q = wi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãp) ∧ gl(̃bq)

)
.

Proof. We have ϕf,g =
n∧

s=1

ϕf (ãf,s, b̃f,s) ∧
n∧

t=1

ϕg(ãg,t, b̃g,t) and from [4] we know

that
n∧

s=1

ϕf (ãf,s, b̃f,s) =
n+1∨
i=1

n∨
j=i−1

θf
(
f l(ãi) ∨ fk (̃bj), f

l(ãi) ∨ fk (̃bj) ∨ [fk(ãj+1) ∧ f l (̃bi−1)]
)
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and
n∧

t=1

ϕg(ãg,t, b̃g,t) =
n+1∨
p=1

n∨
q=p−1

θg
(
gl(ãp) ∨ gk (̃bq), g

l(ãp) ∨ gk (̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
)
.

By Lemma 1.3 and the remark we made before, it follows that:

n∧
s=1

ϕf (ãf,s, b̃f,s) =
n+1∨
i=1

n∨
j=i−1

[
θlat

(
f l(ãi) ∨ fk (̃bj), f

l(ãi) ∨ fk (̃bj) ∨ [fk(ãj+1) ∧ f l (̃bi−1)]
)

∨ θlat
(
fk(ãi)∧f l (̃bj)∧[f l(ãj+1)∨fk (̃bi−1)], f

k(ãi)∧f l (̃bj)
)]
,

n∧
t=1

ϕg(ãg,t, b̃g,t) =
n+1∨
p=1

n∨
q=p−1

[
θlat

(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk(̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
)

∨ θlat
(
gk(ãp)∧gl (̃bq)∧ [gl(ãq+1)∨gk (̃bp−1)], g

k(ãp)∧gl(̃bq))
]
.

Using [4, R1) and R2)] it is routine to prove the following identity (but we omit the
proof since it is very long):

ϕf,g =
n+1∨

i,p=1

n∨

j=i−1

∨n

q=p−1 (Ai,j,p,q ∨Bi,j,p,q ∨Ci,j,p,q ∨Di,j,p,q) ,

with

Ai,j,p,q = θlat(f
l(ãi) ∨ fk (̃bj) ∨ [gk(ãp) ∧ gl(̃bq) ∧ (gk (̃bp−1) ∨ gl(ãq+1))],

f l(ãi)∨fk (̃bj )∨ [gk(ãp)∧gl (̃bq)∧ (gk (̃bp−1)∨gl(ãq+1))]∨ [f l (̃bi−1)∧fk(ãj+1)∧gk(ãp)∧gl (̃bq)]);

Bi,j,p,q = θlat(f
k(ãi) ∧ f l (̃bj) ∧ [gl(ãp) ∨ gk (̃bq) ∨ (gl (̃bp−1) ∧ gk(ãq+1))],

fk(ãi)∧f l (̃bj )∧ [gl(ãp)∨gk (̃bq)∨ (gl (̃bp−1)∧gk(ãq+1))]∧ [fk (̃bi−1)∨f l(ãj+1)∨gl(ãp)∨gk (̃bq)]);

Ci,j,p,q = θlat(f
l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),

f l(ãi) ∨ fk (̃bj ) ∨ gl(ãp) ∨ gk (̃bq) ∨ [f l(̃bi−1) ∧ fk(ãj+1) ∧ gl(̃bp−1) ∧ gk(ãq+1)]);

Di,j,p,q = θlat(f
k(ãi) ∧ f l(̃bj) ∧ gk(ãp) ∧ gl(̃bq) ∧ [fk (̃bi−1) ∨ f l(ãj+1) ∨ gk (̃bp−1) ∨ gl(ãq+1)],

fk(ãi) ∧ f l(̃bj ) ∧ gk(ãp) ∧ gl (̃bq)).

Now, from Lemma 1.3 it follows that

ϕf,g =
n+1∨
i,p=1

n∨
j=i−1

n∨
q=p−1

(
θf (xi,j,p,q, yi,j,p,q) ∨ θg(wi,j,p,q, zi,j,p,q)

)
,

where

xi,j,p,q = f l(ãi) ∨ fk(̃bj) ∨ gl(ãp) ∨ gk(̃bq),

yi,j,p,q = xi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1)

)
,

wi,j,p,q = f l(ãi) ∨ fk(̃bj) ∨
(
gk(ãp) ∧ gl(̃bq) ∧ [gl(ãq+1) ∨ gk(̃bp−1)]

)
,

zi,j,p,q = wi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãp) ∧ gl(̃bq)

)
. �
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Theorem 2.9. Let L = (L, f, g) ∈ DKn,m and a, b ∈ L be such that a ≤ b. Let
(k, l) be an m-pair.
Then,

(a) θ(a, b) ∨ ϕf,g = 1,

(b) if θ(a, b) is complemented, then necessarily θ(a, b)′ = ϕf,g.

Proof. (a) By Lemma 1.8, we have θ(a, b) =
∨n

s=1θf (ãf,s, b̃f,s) ∨
∨n

t=1θg(ãg,t, b̃g,t)
and from [4, Theorem 2.7] we know that, for all s, t ∈ {1, ..., n},

θf (ãf,s,b̃f,s) ∨ ϕf (ãf,s,b̃f,s) = 1 and θg(ãg,t,b̃g,t) ∨ ϕg(ãg,t, b̃g,t) = 1.
Consequently,

θ ∨ ϕf,g =
[ n∨
s=1

θf (ãf,s,b̃f,s) ∨
n∨

t=1

θg(ãg,t,b̃g,t)
]
∨
[ n∧
u=1

ϕf (ãf,u,b̃f,u) ∧
n∧

v=1

ϕg(ãg,v,b̃g,v)
]

=
n∧

u=1

(
ϕf (ãf,u,b̃g,u) ∨ θf (ãf,u, b̃f,u) ∨

n∨
s=1,s6=u

θf (ãf,s,b̃f,s) ∨
n∨

t=1

θg(ãg,t,b̃g,t)
)

∧
n∧

v=1

(
ϕg(ãg,v,b̃g,v) ∨ θg(ãg,v, b̃g,v) ∨

n∨
s=1

θf (ãf,s,b̃f,s) ∨
n∨

t=1,t 6=v

θg(ãg,t,b̃g,t)
)

= 1.

(b) Suppose now that θ(a, b) is complemented. From (a) it follows that
θ(a, b)′ ≤ ϕf,g. It remains to prove that ϕf,g ≤ θ(a, b)′.

As we have already seen
(
θ(a, b)|fm(L)

)′
= ϕf,g|fm(L).

Let b̃f,0 = b̃g,0 = 0 and ãf,n+1 = ãg,n+1 = 1. By Lemma 2.8 we have

ϕf,g =
n+1∨
i,p=1

n∨
j=i−1

n∨
q=p−1

[
θf (xi,j,p,q, yi,j,p,q) ∨ θg(wi,j,p,q , zi,j,p,q)

]
,

where

xi,j,p,q = f l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),

yi,j,p,q = xi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1)

)
,

wi,j,p,q = f l(ãi) ∨ fk(̃bj) ∨
(
gk(ãp) ∧ gl(̃bq) ∧ [gl(ãq+1) ∨ gk(̃bp−1)]

)
,

zi,j,p,q = wi,j,p,q ∨
(
fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãp) ∧ gl(̃bq)

)
.

From Lemma 2.6 we know that θf (xi,j,p,q, yi,j,p,q) and θg(wi,j,p,q , zi,j,p,q) are
elements of ConL. So ϕf,g is the least congruence of L that identifies each pair
(xi,j,p,q, yi,j,p,q) and each pair (wi,j,p,q, zi,j,p,q).
Taking into account Lemma 2.5 we have (θ(a, b)|fm(L))

′ = θ(a, b)′|fm(L) . So
ϕf,g|fm(L) = θ(a, b)′|fm(L) and, consequently, θ(a, b)′ also identifies each of those
pairs. Therefore ϕf,g ≤ θ(a, b)′ and we may conclude that θ(a, b)′ = ϕf,g. �
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A double Ockham algebra L = (L, f, g) that satisfies id ≤ f2, g2 ≤ id, fg = g2

and gf = f2 is called a double MS-algebra. Since every double MS-algebra is
a double K1,1-algebra, we can establish Theorem 14.5 of [3] as a corollary of the
previous theorem. Thus we have:

Corollary 2.10. Let L = (L, f, g) be a double MS-algebra and let a, b ∈ L be such
that a ≤ b.
Let

ϕf,g =
[
θf

(
f2(b) ∨ f(a), 1

)
∨ θf

(
f2(b), f2(b) ∨f(b)

)
∨ θf

(
f(a), f(a) ∨ f2(a)

)]

∧
[
θg
(
g2(b) ∨ g(a), 1

)
∨ θg

(
g2(b), g2(b) ∨ g(b)

)
∨ θg

(
g(a), g(a)∨ g2(a)

)]
.

Then

(a) θ(a, b) ∨ ϕf,g = 1,
(b) if θ(a, b) is complemented, then θ(a, b)′ = ϕf,g.

We finish this paper establishing a necessary and sufficient condition for a prin-
cipal congruence defined on a double Kn,m-algebra to be complemented.

Theorem 2.11. Let L = (L, f) ∈ DKn,m and a, b ∈ L be such that a ≤ b. Let (k, l)

be an m-pair. Let b̃f,0 = b̃g,0 = 0 and ãf,n+1 = ãg,n+1 = 1. Then, θ(a, b) is com-

plemented if and only if for all s ∈ {1, ..., n}, all (xs, ys) ∈ {(ãf,s, b̃f,s), (ãg,s, b̃g,s)}
and all i, p ∈ {1, ..., n+ 1} we have:

ys ∧ fk(ãj+1) ∧ f l (̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1) ≤ xs ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),
for all j ∈ {i− 1, ..., n} and q ∈ {p− 1, ..., n},

ys ∧ fk(ãj+1) ∧ f l (̃bi−1) ∧ gk(ãp) ∧ gl(̃bq) ≤ xs ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãq+1) ∨ gk (̃bp−1),
for all j ∈ {i− 1, ..., n} and q ∈ {p, ..., n},

ys ∧ fk(ãi) ∧ f l (̃bj) ∧ gk(ãq+1) ∧ gl(̃bp−1) ≤ xs ∨ f l(ãj+1) ∨ fk (̃bi−1) ∨ gl(ãp) ∨ gk (̃bq),
for all j ∈ {i, ..., n} and q ∈ {p− 1, ..., n},

ys ∧ fk(ãi) ∧ f l (̃bj) ∧ gk(ãp) ∧ gl(̃bq) ≤ xs ∨ f l(ãj+1) ∨ fk (̃bi−1) ∨ gl(ãq+1) ∨ gk (̃bp−1),

for all j ∈ {i, ..., n} and q ∈ {p, ..., n}.

Proof. By Lemma 1.8 we have θ(a, b) =
∨n

s=1θf (ãf,s, b̃f,s)∨
∨n

t=1θg(ãg,t, b̃g,t) and,
from Theorem 2.9 it follows that θ(a, b) is complemented if and only if
θ(a, b) ∧ ϕf,g = 0. By Lemma 2.8 we know that

ϕf,g =
(n+1∨
i=1

n∨
j=i−1

θf
(
f l(ãi) ∨ fk (̃bj), f

l(ãi) ∨ fk (̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
))

∧
(n+1∨
p=1

n∨
q=p−1

θg
(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk (̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
))

with b̃f,0 = b̃g,0 = 0 and ãf,n+1 = ãg,n+1 = 1.
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Then θ(a, b) is complemented if and only if, for all s, t ∈ {1, ..., n},
i, p ∈ {1, ..., n+ 1}, j ∈ {i− 1, ..., n} and q ∈ {p− 1, ..., n},

θf (ãf,s, b̃f,s) ∧ θf
(
f l(ãi) ∨ fk(̃bj), f

l(ãi) ∨ fk(̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
)

∧ θg
(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk(̃bq) ∨ [gk(ãq+1) ∧ gl (̃bp−1)]
)
= 0

and

θg(ãg,t, b̃g,t) ∧ θf
(
f l(ãi) ∨ fk (̃bj), f

l(ãi) ∨ fk (̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
)

∧ θg
(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk (̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
)
= 0.

By Lemma 1.3 and since ãf,s, b̃f,s ∈ Lf
1,m and ãg,t, b̃g,t ∈ Lg

1,m, it follows that, for

all s ∈ {1, ..., n}, i, p ∈ {1, ..., n+ 1}, j ∈ {i− 1, ..., n} and q ∈ {p− 1, ..., n},

θf (ãf,s, b̃f,s) ∧ θf
(
f l(ãi) ∨ fk(̃bj), f

l(ãi) ∨ fk(̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
)

∧ θg
(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk(̃bq) ∨ [gk(ãq+1) ∧ gl (̃bp−1)]
)
= 0

if and only if

[m+1∨
r=0

θlat
(
f r(ãs), f

r (̃bs)
)]

∧
[
θlat

(
f l(ãi) ∨ fk(̃bj), f

l(ãi) ∨ fk(̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
)

∨ θlat
(
fk(ãi) ∧ f l(̃bj) ∧ [f l(ãj+1) ∨ fk(̃bi−1)], f

k(ãi) ∧ f l(̃bj)
)]

∧
[
θlat

(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk(̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
)

∨ θlat
(
gk(ãp) ∧ gl(̃bq) ∧ [gl(ãq+1) ∨ gk(̃bp−1)], g

k(ãp) ∧ gl(̃bq)
)]

= 0.

Now, using [4, R1) and R2)] it is easy we conclude that the previous identity follows
if and only if, for all r ∈ {0, ...,m+ 1},

a) f r (̃bs) ∧ fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1)

≤ f r(ãs) ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),

b) f r (̃bs) ∧ fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãp) ∧ gl(̃bq)

≤ f r(ãs) ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãq+1) ∨ gk(̃bp−1),

c) f r (̃bs) ∧ fk(ãi) ∧ f l(̃bj) ∧ gk(ãq+1) ∧ gl(̃bp−1)

≤ f r(ãs) ∨ f l(ãj+1) ∨ fk(̃bi−1) ∨ gl(ãp) ∨ gk (̃bq),

and

d) f r (̃bs) ∧ fk(ãi) ∧ f l(̃bj) ∧ gk(ãp) ∧ gl(̃bq)

≤ f r(ãs) ∨ f l(ãj+1) ∨ fk(̃bi−1) ∨ gl(ãq+1) ∨ gk(̃bp−1).
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These inequalities are trivial when r is odd. If r is even, we have already seen that,
f r

(
fk(x)

)
= fk(x), f r

(
f l(x)

)
= f l(x), f r

(
gk(y)

)
= gk(y) and f r(gl(y)) = gl(y),

for all x ∈ Lf
1,m and y ∈ Lg

1,m. So, conditions a), b), c) and d) are equivalent,

respectively, to 1), 2), 3) and 4) below:

1) b̃f,s ∧ fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1)

≤ ãf,s ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),

2) b̃f,s ∧ fk(ãj+1) ∧ f l(̃bi−1) ∧ gk(ãp) ∧ gl(̃bq)

≤ ãf,s ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãq+1) ∨ gk(̃bp−1),

3) b̃f,s ∧ fk(ãi) ∧ f l(̃bj) ∧ gk(ãq+1) ∧ gl(̃bp−1)

≤ ãf,s ∨ f l(ãj+1) ∨ fk(̃bi−1) ∨ gl(ãp) ∨ gk(̃bq),

4) b̃f,s ∧ fk(ãi) ∧ f l(̃bj) ∧ gk(ãp) ∧ gl(̃bq)

≤ ãf,s ∨ f l(ãj+1) ∨ fk(̃bi−1) ∨ gl(ãq+1) ∨ gk(̃bp−1).

Conditions 1) and 2) are equal when q = p− 1 (the same happens with 3) and 4)).
For j = i− 1 we also have that 1) coincide with 3) and 2) coincide with 4)).

Given t ∈ {1, ..., n}, i, p ∈ {1, ..., n+ 1}, j ∈ {i− 1, ..., n} and q ∈ {p− 1, ..., n}, we
have

θg(ãg,t, b̃g,t) ∧ θf
(
f l(ãi) ∨ fk (̃bj), f

l(ãi) ∨ fk (̃bj) ∨ [fk(ãj+1) ∧ f l(̃bi−1)]
)

∧ θg
(
gl(ãp) ∨ gk(̃bq), g

l(ãp) ∨ gk (̃bq) ∨ [gk(ãq+1) ∧ gl(̃bp−1)]
)
= 0.

if and only if are satisfied conditions analogous to 1), 2), 3) and 4).

Then θ(a, b) is complemented if and only if for all s ∈ {1, ..., n},

all (xs, ys) ∈ {(ãf,s, b̃f,s), (ãg,s, b̃g,s)} and all i, p ∈ {1, ..., n+ 1} the following con-
ditions hold:

ys ∧ fk(ãj+1) ∧ f l (̃bi−1) ∧ gk(ãq+1) ∧ gl(̃bp−1) ≤ xs ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãp) ∨ gk (̃bq),
for all j ∈ {i− 1, ..., n} and q ∈ {p− 1, ..., n},

ys ∧ fk(ãj+1) ∧ f l (̃bi−1) ∧ gk(ãp) ∧ gl(̃bq) ≤ xs ∨ f l(ãi) ∨ fk (̃bj) ∨ gl(ãq+1) ∨ gk (̃bp−1),
for all j ∈ {i− 1, ..., n} and q ∈ {p, ..., n},

ys ∧ fk(ãi) ∧ f l (̃bj) ∧ gk(ãq+1) ∧ gl(̃bp−1) ≤ xs ∨ f l(ãj+1) ∨ fk (̃bi−1) ∨ gl(ãp) ∨ gk (̃bq),
for all j ∈ {i, ..., n} and q ∈ {p− 1, ..., n},

ys ∧ fk(ãi) ∧ f l (̃bj) ∧ gk(ãp) ∧ gl(̃bq) ≤ xs ∨ f l(ãj+1) ∨ fk (̃bi−1) ∨ gl(ãq+1) ∨ gk (̃bp−1),

for all j ∈ {i, ..., n} and q ∈ {p, ..., n}. �
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