NMR analysis of a series of substituted pyrazolo[3,4-d]pyrimidines-

4-amines

Lígia M. Rodrigues^{*1}, Aravind Sivasubramanian¹, Elisa M. Pinto¹, Ana M.F. Oliveira-Campos¹, Julio A. Seijas², M. Pilar Vázquez-Tato²

¹ Centro de Química, Campus de Gualtar, Universidade do Minho, 4710-057, Braga, Portugal

² Departamento de Química Orgânica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27080-Lugo, Spain

* Correspondence to: Lígia M. Rodrigues, Centro de Química, Universidade do Minho, 4710-057, Braga , Portugal. fax: +351253604382; e-mail:ligiar@quimica.uminho.pt Contract/ grant sponsors: Portuguese Fundação para a Ciência e Tecnologia and FEDER (POCTI-SFA-3-686) and SFRH/BPD/20816/2004. Xunta de Galicia (PGIDIT05PXIB 26201PR, PR405A098/59-0).

A series of twenty one substituted pyrazolo[3,4-d]pyrimidines-4-amines were studied by ¹H and ¹³C

NMR. The application of two-dimensional techniques, HMQC and HMBC, allowed the complete

assignment of the spectra for all the compounds.

KEYWORDS: NMR; 2D NMR; ¹H NMR; ¹³C NMR; pyrazolo[3,4-*d*]pyrimidines-4amines

Structure	Compound	R	R´
	1a	Н	3"
	2a	Cl	2"4"
	3 a	Br	
	1b	Н	3"
	2b	Cl	2 4"
	3b	Br	
	1c	Н	ÇN
	2c	Cl	2"4"
	3c	Br	
ъ 3' ^R '			
$R \rightarrow 2' N = 6$	1d	Н	2"_N
	2d	Cl	
	3d	Br	4"
3	1e	Н	5", N
	2e	Cl	
	3e	Br	3" 2"
	1f	Н	5"
	2f	Cl	S
	3f	Br	3"
	1g	Н	5"
	$2\mathbf{g}$	Cl	0~_4"
	3g	Br	3"

Figure 1. Structures and numbering for compounds

INTRODUCTION

As part of our ongoing research program on heterocyclic compounds which may serve as leads for designing novel chemotherapeutic agents, we have been involved on the preparation of pyrazolopyrimidines [1, 2]. These compounds and other related fused heterocycles are known to exhibit biological activity of several types such as CNS depressant [3], neuroleptic [4], tuberculostatic [5], antibacterial and antifungal [2, 6]. It was also reported that pyrazolo[3,4-*d*]pyrimidines inhibit xanthine oxidase [7, 1].

RESULTS AND DISCUSSION

The compounds described (Figure 1) constitute a series of pyrazolo[3,4-*d*]pyrimidines containing in position 1 a *p*-substituted phenyl group and in position 6 a heterocyclic or aryl ring.

The ¹H NMR signals of the aryl substituent on position 1, the proton 3 and NH_2 were readily attributed.

The assignment of the remaining protons and the ¹³C signals was achieved by concerted application of proton-detected (C,H) 1-bond (HMQC) and long range (HMBC) heteronuclear two-dimensional chemical shift correlation experiments. The proton and carbon chemical shifts assignments are presented in tables 1 and 2.

EXPERIMENTAL

¹H NMR spectra were recorded at 300 MHz and ¹³C NMR spectra at 75.4 MHz both on a Varian Unity Plus Spectrometer. The spectra were obtained at 298 K, in 5 mm tubes, using DMSO- d_6 or acetone- d_6 , with the solvent (residual) peak as internal reference: DMSO- d_6 : δ 2.49 (¹H) and δ 39.5 (¹³C); acetone- d_6 : δ 2.05 (¹H) and δ 29.9 (¹³C).

¹H NMR parameters were as follows: spectral width, 4000 Hz; data points, 32 K; pulse width 45°, acquisition time 2.8 s. ¹³C NMR parameters were as follows: spectral width, 18850; data points, 64K; pulse width 45°, acquisition time 1.8 s; delay 1 s.

Heteronuclear ¹H-¹³C HMQC and HMBC experiments were carried out using standard procedures. The spectra widths were $F_1 = 18100$ Hz and $F_2 = 5000$ Hz. The spectra were collected as 2048 x 256 block data and processed using a sinusoidal multiplication in each dimension. HMQC was optimized for ¹J (¹³C, ¹H = 140 Hz) and HMBC for long-range ¹³C, ¹H coupling constants of 8 Hz.

Materials

The pyrazolo[3,4-d]pyrimidine derivatives used in this study were prepared in our laboratory [2].

Acknowledgments

Financial support from the Portuguese Fundação para a Ciência e Tecnologia and FEDER (POCTI-SFA-3-686), XUNTA DE GALICIA (PGIDIT05PXIB26201PR, PR405A098/59-0) is kindly acknowledged. We thank FCT for post-doctoral grant (SFRH/BPD/20816/2004) for AS.

REFERENCES

- Gupta S, Rodrigues LM, Esteves AP, Oliveira-Campos AMF, Nascimento MSJ, Nazareth N, Cidade H, Neves MP, Pinto M. *Eur. J. Med. Chem.* 2008; 43: 771.
- Oliveira-Campos AMF, Sivasubramanian A, Rodrigues LM, Seijas JA, Vázquez-Tato MP, Peixoto F, Abreu CG, Cidade H, Oliveira AE, and Pinto M. *Helv. Chim. Acta*, 2008; **91**: 1336.
- a) Julino M, Stevens MFG. J. Chem. Soc., Perkin Trans. 1 1998: 1677. b)
 Kirkpatrick WE, Okabe T, Hillyard IW, Robins RK, Dren AT, Novinson T. J. Med. Chem. 1997; 20: 386.
- 4. Filler R. Chem. Technol. 1974; 4: 752.
- Ghorab MM, Ismail ZH, Abdel-Gawad SM, Aziem A. *Heteroatom Chem.* 2004; 15: 57.
- Holla BS, Mahalinga M, Karthikeyan MS, Akberali PM, Shetty NS. *Bioorg. Med. Chem.* 2006; 14: 2040.

7. Kobayashi S. Chem. Pharm. Bull. 1973; 21: 941. (and references cited therein).

	H3	NH ₂	Н-2' Нб'	H3' H5'	H4'	H2"	Н6"	H3"	Н5	5"	H4"
1a	8.36 (s)	7.92(vbrs)	8.32(d, 9.0)	7.59(t, 8.2)	7.35(t, 7.2)	8.47	-8.40 (m)		7.51-7.47(r	n)	7.51-7.47 8m)
2a	8.30 (s)	7.97(vbrs)	8.38(d, 8.7)	7.65(d, 9.0)	-	8.46	5-8.41(m)		7.54-7.47 (1	m)	7.54-7.47 (m)
3 a	8.38 (s)	7.98(vbrs)	8.31(d, 9.0)	7.78(d, 9.0)	-	8.47	-8.39 (m)		7.54-7.47 (1	m)	7.54-7.47 (m)
1b*	8.28 (s)	7.80(vbrs)	8.20(dt, 7.5, 1.5)	7.51(t, 7.5)	7.17(tt, 7.2, 1.2)	7.35	-7.22 (m)		7.35-7.22 (1	m)	7.35-7.22 (m)
2b*	8.29 (s)	7.85(brs)	8.27(d, 7.0)	7.58(d, 7.0)	-	7.38	-7.14 (m)		7.28(t, 7.5	i)	7.18(t, 7.2)
3b*	8.33 (s)	7.84(vbrs)	8.22(d, 8.7)	7.71(d, 8.7)	-	7.36	-7.23 (m)		7.36-7.23 (1	m)	7.18(tt, 6.9, 1.2)
1c	8.38 (s)	8.14(vbrs)	8.26(dd, 8.7, 1.2)	7.59(t, 8.0)	7.36(tt, 7.5,1.2)	8.66-8.73 (m)	7.96(dt, 7.5, 1.5)	-	7.7	73(t, 8.8)	8.66-8.73 (m)
2c	8.39 (s)	8.20;8.00(2 brs)	8.32(dd, 7.2, 2.1)	7.65(dd, 6.9, 2.1)	-	8.66-8.64 (m)	7.95(dt, 7.8, 1.5)	-	7.7	73(t, 7.8)	8.66-8.64 (m)
3c	8.38 (s)	8.18(vbrs)	8.26(d, 8.7)	7.76(d, 8.7)	-	8.72-8.66 (m)	7.95(dt, 7.5, 1.2)	-	7.7	71(t, 8.1)	8.72-8.66 (m)
1d	8.39 (s)	8.16;7.96(2 brs)	8.30(dd, 8.7, 1.2)	7.52-7.64(m)	7.52-7.64(m)	9.54(d, 2.1)	8.67-8.64 (m)	-	7.3	36(t, 7.5)	8.67-8.64 (m)
2d	8.39 (s)	8.16;8.00(2 brs)	8.36(d, 9.0)	7.65(d, 9.0)	-	9.50(brs)	8.73-8.65 (m)	-	7.5	58-7.50 (m)	8.73-8.65 (m)
3d	8.41 (s)	8.17 (brs)	8.31(d, 9.0)	7.79(d, 9.0)	-	9.56(d, 2.1)	8.68(d, 7.0)	-	7.5	58-7.52 (m)	8.68(d, 7.0)
1e	8.41 (s)	8.18;8.01(2 brs)	8.32-8.21(m)	7.60(tt, 7.5, 2.0)	7.36(tt, 7.2, 1.2)	8.74	(brd, 6.0)		8.32-8.21(r	n)	-
2e	8.42 (s)	8.20;8.00(2 (brs)	8.34(d, 9.0)	7.66(d, 6.5)	-	8.7	4(d, 6.3)		8.28(d, 6.3	3)	-
3e	8.41 (s)	8.22;8.04(2 brs)	8.29(d, 8.7)	7.77(d, 8.7)	-	8.7	4(d, 4.7)		8.26(d, 4.8	3)	-
1f	8.33 (s)	7.93(vbrs)	8.30(dd, 7.5, 1.5)	7.57(t, 7.5)	7.34(t, 7.5)	-	-	7.93 (dd, 3.0	6, 1.2) 7.6	59(dd, 5.3, 1.5)	7.18(dd, 5.0, 3.9)

Table 1. ¹H chemical shifts^a (multiplicities, coupling constants in Hertz) of pyrazolopyrimidines

2f	8.34 (s)	7.97(vbrs)	8.33(d, 9.0)	7.62(d, 9.3)	-	-	-	7.94(dd, 3.9, 1.2)	7.70(dd, 5.1, 1.2)	7.18(dd, 5.1, 3.9)
3f**	8.34 (s)	7.37(brs)	8.47(d, 9.0)	7.78(d, 9.0)	-	-	-	8.06(dd, 3.9, 1.2)	7.65(dd, 5.1, 1.2)	7.20(dd, 5.1, 3.9)
1g	8.78 (s)	7.87(brs)	8.92(d, 7.8)	8.03(t, 8.0)	8.40-7.76(m)	-	-	8.40-7.76 (m)	8.25-8.20 (m)	7.10(dd, 3.6, 1.5)
2g	8.35 (s)	8.00(brs)	8.53(d, 9.3)	7.62(d, 9.3)	-	-	-	7.34(dd, 3.3, 0.9)	7.90-7.70 (m)	6.66(dd, 3.3, 1.8)
3g	8.35 (s)	8.00(vbrs)	8.28(d, 9.3)	7.75(d, 9.0)	-	-	-	7.26(dd, 3.3, 0.9)	7.90-7.87 (m)	6.67(dd, 3.3, 1.5)

^a In ppm from the solvent peak *CH₂ 4.01; 4.01; 4.02 (for compounds 1b, 2b, 3b, respectively); **Acetone-*d*₆. Vbrs-very broad singlet

 Table 2. ¹³C chemical shifts of pyrazolopyrimidines

Compound	C-2' C6'	C3' C5'	C4'	C1'	C3	C3a	C4	C6	C7a	C1"	C2"	C6"	С3"	C5"	C4"
1a	120.5	129.3	126.0	139.3	134.3	100.4	158.3	162.0	154.6	138.0	128.2	128.2	128.4	128.4	130.5
2a	121.8	129.2	130.5	137.8	134.6	100.3	158.2	162.0	154.7	138.0	128.1	128.1	128.3	128.3	129.9
3 a	122.2	132.2	118.3	137.9	134.7	100.4	158.3	162.1	154.8	138.5	128.4	128.4	128.2	128.2	130.6
1b*	120.4	129.2	126.2 or 4"	139.2	134.1	99.8	158.4	167.7	154.4	139.0	129.1	129.1	128.3	128.3	126.0 or 4')
2b*	121.6	129.1	129.8	138.0	134.4	99.8	158.3	167.8	154.4	138.8	129.0	129.0	128.2	128.2	126.2
3b*	121.9	132.0	118.0	138.5	134.5	99.8	158.3	167.8	154.5	138.8	129.0	129.0	128.2	128.2	126.2
1c**	120.7	129.4	126.2	139.0	134.3	100.7	158.4	159.8	154.2	111.6	131.5	133.8	139.2	129.9	132.6
2c**	122.0	129.3	130.1	137.8	134.6	100.7	158.3	159.9	154.3	111.6	131.4	133.8	139.0	129.8	132.6
3c**	122.4	132.2	118.8	138.3	134.7	100.7	158.3	159.9	154.3	111.6	131.5	133.9	139.0	129.9	132.6
1d	120.6	129.3	126.2	139.1	134.3	100.6	158.4	160.2	154.2		151.1	135.4	133.4	123.6	149.4
2d	122.0	129.3	130.1	137.9	134.7	100.6	158.4	160.4	154.4		149.4	135.5	133.3	123.6	151.1
3d	122.2	132.2	118.3	138.3	135.4	100.6	158.3	160.3	154.3		151.1	134.7	133.2	123.6	149.4
1e	120.6	129.3	126.2	139.0	134.3	100.9	158.4	159.9	154.1		150.2	150.2	122.0	122.0	145.2
2e	122.0	129.3	130.2	137.8	134.7	101.0	158.4	160.0	157.4		150.2	150.2	122.0	122.0	145.1
3e	122.3	132.2	118.4	138.2	134.7	101.0	158.4	160.0	154.3		150.2	150.2	122.0	122.0	145.1
1f	120.2	129.2	125.9	139.2	134.3	100.1	158.1	158.6	154.0		144.0		128.5	130.1	128.2

2f 3f***	121.8 122.9	129.4 132.8	128.4 119.1	138.1 139.9	134.8 134.8	100.3 101.3	158.3 159.3	158.9 160.1	154.3 155.6	 143.9 145.2	 130.4 130.5	128.8 128.7	130.1 129.6
1g 2g 3g	121.3 122.6 122.0	129.7 129.8 132.1	126.6 131.3 118.2	140.7 139.5 138.4	134.2 134.7 134.7	101.3 101.3 100.2	156.4 156.6 155.3	159.4 159.4 158.2	155.5 154.0 154.2	 154.1 145.6 152.4	 113.8 114.0 113.2	145.5 141.8 145.2	112.7 112.7 112.2

 $\frac{56}{4} = \frac{122.0}{122.0} = \frac{132.1}{122.0} = \frac{110.2}{122.0} = \frac{130.4}{122.0} = \frac{132.4}{122.0} =$