
Contract-based Slicing

Daniela da Cruz, Pedro Rangel Henriques and Jorge Sousa Pinto
{danieladacruz,prh,jsp}@di.uminho.pt

Departamento de Informática / CCTC
Universidade do Minho, 4710-057 Braga, Portugal

Abstract. In the last years, the concern with the correctness of pro-
grams has been leading programmers to enrich their programs with an-
notations following the principles of design-by-contract, in order to be
able to guarantee their correct behaviour and to facilitate reuse of veri-
fied components without having to reconstruct proofs of correctness.

In this paper we adapt the idea of specification-based slicing to the scope
of (contract-based) program verification systems and behaviour specifi-
cation languages. In this direction, we introduce the notion of contract-
based slice of a program and show how any specification-based slicing
algorithm can be used as the basis for a contract-based slicing algorithm.

1 Introduction

Program slicing plays an important role in program comprehension, enabling
engineers to focus on just a relevant part (with respect to a given criterion) of a
program. After Weiser’s pioneering work [13], many researchers have searched for
more effective or more powerful slicing techniques; since then, many application
areas have been identified, including program debugging, software maintenance,
software reuse, and so on. See [14] for a fairly recent survey of the area.

Many studies have proposed the use of slicing for software testing. In the
context of complex applications, which are by their very nature, size and archi-
tecture difficult to comprehend and test, slicing may be an invaluable help when
a certification process has to be carried out.

On the other hand a strong demand for formal methods that help program-
mers developing correct programs has been present in software engineering for
some time now. The Design by Contract (DbC) approach to software develop-
ment [12] facilitates modular verification and certified code reuse, and has be-
come a standard approach to the design of architecturally complex systems. The
contract for a component (a procedure) can be regarded as a form of enriched
software documentation that fully specifies the behavior of that component.

The development and broad adoption of annotation languages for the most
popular programming languages reinforces the importance of using DbC princi-
ples in the development of programs. These include for instance the Java Mod-
eling Language (JML) [4]; Spec# [2], a formal language for C# API contracts,
and the SPARK [1] subset of Ada.

Traditional program slicing is based on control and data dependency anal-
yses, but forms of slicing based on logical assertions have also been studied
for over 10 years now, which combine slicing techniques with program verifica-
tion, to identify synergies and take advantage of good practices on both sides.
Comuzzi introduced the concept of p-slice [7], which is a slice calculated with
respect to the validity of a given postcondition Q. The idea is that all program
statements that are not required for the validity of Q upon termination are re-
moved from the program (this only makes sense if Q holds as postcondition for
the initial program). Canfora and colleagues used preconditions in their con-
ditioned slicing technique [5] as a means to specify a set of initial states for
computing a slice, resulting in a mixed form halfway between static and dy-
namic slicing. Preconditions and postconditions were combined by Chung and
colleagues [6] to calculate what they called specification-based slices. Finally, Fox
et al [9] introduced the backward conditioning technique, based on symbolic exe-
cution, to slice statements which, when executed, always lead to the negation of
a given postcondition. The goal here is to use slicing as an aid in the verification
of programs, in particular to find bugs.

In this paper we consider programs as sets of contract-annotated procedures,
and study notions of assertion-based slicing for such programs with contracts.
Specifically, we introduce the concept of contract-based slice of a program. Given
any specification-based slicing algorithm (working at the level of commands), a
contract-based slice can be calculated by slicing the code of each individual
procedure independently with respect to its contract (which we call an open
slice), or taking into consideration the calling contexts of each procedure inside
a program (which we call a closed slice). We study both notions and then go on
to introduce a more general notion of contract-based slice, which encompasses
both open and closed slices as extreme cases. We remark that although the
language used in this paper to illustrate our ideas is very simple, the principles
and algorithms presented here scale up to realistic languages.

Structure of the Paper. Section 2 introduces a simple imperative language with
annotated mutually recursive procedures, and sets up a verification conditions
generator (VCGen) for that language. Section 3 then formalizes the notion of
specification-based slice for the language. Sections 4 and 5 introduce contract-
based slicing in their more specific (open and closed) and general forms respec-
tively; section 6 then shows how a contract-based slicing algorithm (working
at the inter-precedural level) can be synthesized from any desired specification-
based slicing algorithm (working at the intra-precedural level). Section 7 illus-
trates our ideas through an example, and Section 8 concludes the paper.

2 Foundations: Verification Conditions and
Specification-based Slicing

To illustrate our ideas we use a simple programming language. Its syntax is
defined in Figure 1, where x and p range over sets of variables and procedure

Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x | x˜ | result | −e | e+ e | e− e | e ∗ e
| e div e | e mod e

Exp[bool] 3 b ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e
| b && b | b ‖ b | ! b

Comm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do {A}C | call p

Assert 3 A ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e
| !A | A &&A | A ‖A | A→ A | Forallx.A | Existsx.A

Proc 3 Φ ::= pre A post A proc p = C

C wp(C,Q) VC(C,Q)

skip Q ∅
C1 ; C2 wp(C1,wp(C2, Q)) VC(C1,wp(C2, Q))

∪ VC(C2, Q)
x := e Q[e/x] ∅
if b then Ct else Cf (b→ wp(Ct, Q)) && (! b→ wp(Cf , Q)) VC(Ct, Q) ∪ VC(Cf , Q)
while b do {I}C I {(I && b)→ wp(C, I),

(I && ! b)→ Q}
∪ VC(C, I)

call p Forallxf . ∅`
pre(p)→ post(p)

ˆ
x/x ,̃ xf/x

˜´
→ Q[xf/x]

with x = N (post(p)) ∪N (Q)

– The operator N (·) returns a sequence of the variables occurring free in its
argument assertion.

– Given a sequence of variables x = x1, . . . , xn, we let xf = x1f , . . . , xnf and
x˜ = x1 ,̃ . . . , xn˜

– The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en denotes the
parallel substitution t[e1/x1, . . . , en/xn]

Fig. 1. Abstract syntax of programming language with annotations and VCGen rules

names respectively. A program is a non-empty set of mutually recursive proce-
dure definitions that share a set of global variables (note that this is also an
appropriate model for classes in an object-oriented language, whose methods
operate on instance attributes). Operationally, an entry point would have to be
defined for each such program, but that is not important for our current pur-
pose. For the sake of simplicity we will consider only parameterless procedures
that work exclusively on global variables, used for input and output, but the
ideas presented here can be easily adapted to cope with parameters passed by
value or reference, as well as return values.

Each procedure consists of a body of code, annotated with a precondition and
a postcondition that form the procedure’s specification, or contract. The body
may additionally be annotated with loop invariants. Occurrences of variables in
the precondition and postcondition of a procedure refer to their values in the
pre-state and post-state of execution of the procedure respectively; furthermore
the postcondition may use the syntax x˜ to refer to the value of variable x in the
pre-state (this is inspired by the SPARK syntax). For each program variable x,
x˜ is a special variable that can only occur in postconditions of procedures; the
use of auxiliary variables (that occur in assertions only, not in code) is forbidden.

C-like syntax is used for expressions; the language of annotated assertions
(invariants and contracts) extends boolean expressions with first-order quan-
tification. Note that defining the syntax of assertions as a superset of boolean
expressions is customary in specification languages based on contracts, as used
by verification toolsets for realistic programming languages such as the SPARK
toolset [1]. This clearly facilitates the task of programmers when annotating code
with contracts.

A program is well-defined if all procedures adhere to the above principles,
and moreover all defined procedure names are unique and the program is closed
with respect to procedure invocation. We will write P(Π) for the set of names
of procedures defined in Π. The operators pre(·), post(·), and body(·) return
a routine’s precondition, postcondition, and body command, respectively, i.e.
given the procedure definition pre P post Q proc p = C with p ∈ P(Π), one
has preΠ(p) = P , postΠ(p) = Q, and bodyΠ(p) = C. The program name will
be omitted when clear from context.

We adopt the common assumptions of modern program verification systems
based on the use of a verification conditions generator (VCGen for short) that
reads in a piece of code together with a specification, and produces a set of
first-order proof obligations (verification conditions) whose validity implies the
partial correctness of the code with respect to its specification. Recall that given
a command C and assertions P and Q, the Hoare triple {P}C {Q} is valid if
Q holds after execution of C terminates, starting from an initial state in which
P is true [10]. A set of first-order conditions Verif({P}C {Q}) whose validity is
sufficient for this is given as

Verif({P}C {Q}) = {P → wp(C,Q)} ∪ VC(C,Q)

Where the functions wp(·, ·) and VC(·, ·) are defined in Figure 1. The first con-
dition states that P is stronger than the weakest precondition that grants the

validity of postcondition Q, and the remaining verification conditions ensure the
adequacy of certain preconditions. For instance, the precondition of a loop com-
mand can only be considered to be equal to the annotated invariant if this is
indeed an invariant (whose preservation is ensured by a verification condition)
and moreover it is sufficient to establish the truth of the required postcondition
upon termination of the loop.

Definition 1 (Verif. Conditions of a Program) For a program Π consist-
ing of the set of procedures P(Π), the set of verification conditions Verif(Π)
is

Verif(Π) =
⋃

p∈P(Π) Verif({pre(p) &&x == x˜}body(p) {post(p)})

Note pre(p) is strengthened to allow for the use of the ˜ notation in postcon-
ditions. Let |= A denote the validity of assertion A, and |= S, with S a set
of assertions, the validity of all A ∈ S. This VCGen algorithm can be shown
to be sound with respect to an operational semantics for the language, i.e. if
|= Verif(Π) then for every p ∈ P(Π) the triple {pre(p)} call p {post(p)} is
valid.

The intra-procedural (command-level) aspects of the VCGen are standard,
but the inter-procedural aspects (program-level) are less well-known. We make
the following remarks.

– Although this is somewhat hidden (unlike in the underlying program logic),
the soundness of the VCGen is based on a mutual recursion principle, i.e. the
proof of correctness of each routine assumes the correctness of all the rou-
tines in the program, including itself. If all verification conditions are valid,
correctness is established simultaneously for the entire set of procedures in
the program. This is the fundamental principle behind design-by-contract.

– The weakest precondition rule for procedure call takes care of what is usu-
ally known as the adaptation between the procedure’s contract and the post-
condition required in the present context. The difficulty of reasoning about
procedure calls has to do with the need to refer, in a contract’s postcondi-
tion, to the values that some variables had in the pre-state. We adapt to our
context the rule proposed by Kleymann [11] as an extension to Hoare logic,
and refer the reader to that paper for a historical discussion of approaches
to adaptation.

Lemma 1. Let |= Q1 → Q2 with Q1, Q2 any two assertions. Then |= wp(C,Q1)→
wp(C,Q2) and moreover |= VC(C,Q1) implies |= VC(C,Q2).

3 Specification-based Slicing

This section reviews the basic notions of specification-based slicing at the com-
mand level.

Informally, a command C ′ is a specification-based slice of C if it is a portion
of C (a syntactic notion) and moreover C can be refined to C ′ with respect to
a given specification (a semantic notion). We now give the formal definitions.

skip � C
C1 � C2

C1 ; C � C2 ; C

C1 � C2

C ; C1 � C ; C2

C1 � C2

if b then C1 else C � if b then C2 else C

C1 � C2

if b then C else C1 � if b then C else C2

C1 � C2

while b do {I}C1 � while b do {I}C2

Fig. 2. Definition of portion-of relation

Definition 2 (Portion-of relation) The · � · relation is the transitive and
reflexive closure of the binary relation generated by the set of rules given in
Figure 2.

Definition 3 (Specification-based slice [6]) Let C, C ′ be commands and P ,
Q assertions such that |= Verif({P}C {Q}) holds, thus C is correct with respect
to the specification (P,Q). C ′ is a slice of C with respect to (P,Q), written
C ′ /(P,Q) C, if C ′ � C and |= Verif({P}C ′ {Q}).

A specification-based slicing algorithm is any function slice that takes a command
and a specification, and produces a slice of the command w.r.t. the specification,
i.e. slice(C,P,Q) /(P,Q) C.

Given program C correct with respect to the specification (P,Q), one wants
to be able to identify portions of C that are still correct w.r.t (P,Q), i.e., portions
in which some irrelevant statements (in the sense that they are not required for
the program to be correct) are removed. Naturally, many such slices may exist,
as well as methods for calculating them. These methods differ with respect to
efficacy (being able to precisely identify all removable commands and effectively
removing the highest possible number of such commands) and efficiency (how
the execution time of the slicing algorithm varies with the number of lines of
code). In [3] we explain the issues involved in detail, survey the existing al-
gorithms, and propose improvements over those algorithms, concerning both
precision and efficiency.

We remark that in practice one would not want to slice a block of code C
with respect to its own specification (P,Q), unless maybe to confirm that it does
not contain unnecessary code; but consider the situation in which one is asked
to fulfill a weaker specification (P ′, Q′), i.e. |= P ′ → P and |= Q→ Q′. Then the
code C can be reused, since it is necessarily also correct with respect to (P ′, Q′),
but it may contain code that, while being necessary to satisfy (P,Q), is irrelevant
with respect to satisfying (P ′, Q′). Thus in such a specialization reuse context,

it makes sense to slice C with respect to the new specification to eliminate the
unnecessary code.

A Specification-based Slicing Algorithm

We have designed a specification-based slicing algorithm that improves on previ-
ous algorithms with respect to the number of statements removed from the pro-
grams. In fact we show in [3] that this algorithm produces the smallest slice of a
program relative to a given specification (modulo an oracle for first-order proof
obligations). The algorithm works on a labelled control-flow graph, whose edges
are labelled with a pair of assertions corresponding to the strongest postcondition
(calculated by propagating the specified precondition forward) and the weakest
precondition (calculated by propagating the specified postcondition backward)
at the program point represented by that edge. The graph is then extended by
adding additional edges corresponding to subprograms S such that the strongest
postcondition at the point immediately before S is stronger than the weakest
precondition immediately after S (this implicative formula can be checked by an
external proof tool). The resulting slice graph contains as subgraphs represen-
tations (in the form of labelled CFGs) of all the specification-based slices of the
initial program with respect to its specification, and the smallest such slice can
be calculated using standard graph algorithms.

Figure 3 shows an example slice graph for a program. Sliceable sequences are
signaled by edges (and possibly skip nodes) added to the initial labeled CFG
(shown as thick lines). Our online laboratory [8] implements this algorithm. The
laboratory also allows for the visualization of these labelled control-flow graphs,
which are useful as an aid in debugging, when the verification of a program fails.

4 Open / Closed Contract-based Slicing

How can specification-based slicing be applied in the context of a multi-procedure
program? Since a program is a set of procedures carrying their own contract
specifications, it makes sense to investigate how the contract information can be
used to produce useful slices at the level of individual procedures, and globally
at the level of programs. A natural approach consists in simply slicing each
procedure based on its own contract information. The idea is to eliminate all
spurious code that may be present and does not contribute to that procedure’s
contract.

Definition 4 (Open Contract-based Slice) Given programs Π, Π ′ such
that |= Verif(Π) and P(Π) = P(Π ′), we say that Π ′ is an open contract-based
slice of Π, written Π ′ /oΠ, if for every procedure p ∈ P(Π) the following holds:
preΠ′(p) = preΠ(p); postΠ′(p) = postΠ(p); and

bodyΠ′(p) /(pre(p) && x==x˜,post(p)) bodyΠ(p)

i.e. the body of each routine in Π ′ is a specification-based slice (with respect to
its own annotated contract) of that routine in Π.

� �
1 i f (y > 0) then x := 100 ; x := x+50; x := x−100
2 else x := x−150; x := x+100; x := x+100� �

Fig. 3. Example program and its slice graph w.r.t. specification (y > 10, x ≥ 0)

As expected, open contract-based slicing produces correct programs:

Proposition 1 If |= Verif(Π) and Π ′ /o Π then |= Verif(Π ′).

Given some specification-based slicing algorithm slice(·, ·, ·), program Π, and
procedure p ∈ P(Π), it is straightforward to lift it to an algorithm that calculates
contract-based slices. Let

procsliceo(p) .= pre (preΠ(p))
post (postΠ(p)
proc p = slice(bodyΠ(p),preΠ(p),postΠ(p))

Then progsliceo(Π) .= { procsliceo(p) | p ∈ P(Π) }.

Proposition 2 For any program Π such that |= Verif(Π), progsliceo(Π) /o Π.

As was the case with specification-based slicing, one may want to calculate
open contract-based slices just to make sure that a program (already proved cor-
rect) does not contain irrelevant code. This notion of slice of a program assumes
that all the procedures are public and may be externally invoked – the program
is open. But consider now the opposite case of a program whose procedures are
only invoked by other procedures in the same program, which we thus call a
closed program (this makes even more sense if one substitutes class for program
and method for procedure in this reasoning). In this situation, since the set of
callers of each procedure is known in advance (it is a subset of the procedures in
the program), it is possible that weakening the procedures’ contracts may still
result in a correct program, as long as the assumptions required by each pro-
cedure call are all still respected. In other words the procedures may be doing
more work than is actually required. Such a program may then be sliced in a
more aggressive way, defined as follows.

Definition 5 (Closed Contract-based Slice) Let Π, Π ′ be programs such
that |= Verif(Π) and P(Π) = P(Π ′). Π ′ is a closed contract-based slice of Π,
written Π ′ /c Π, if |= Verif(Π ′) and additionally for every procedure p ∈ P(Π)

1. |= preΠ′(p)→ preΠ(p);
2. |= postΠ(p)→ postΠ′(p); and
3. bodyΠ′(p) /(preΠ′ (p) && x==x˜,postΠ′ (p)) bodyΠ(p)

Note that in general weakening the contracts of some procedures in a cor-
rect program may result in an incorrect program, since the correctness of each
procedure may depend on the assumed correctness of other procedures; thus the
required condition |= Verif(Π ′) in the definition of closed contract-based slice.

5 Contract-based Slicing: General Case

Clearly the notion of closed contract-based slicing admits trivial solutions: since
all contracts can be weakened, any precondition (resp. postcondition) can be set

to false (resp. true), and thus any procedure body can be sliced to skip. A more
interesting and realistic notion is obtained by fixing a subset of procedures of
the program, whose contracts must be preserved. All other contracts may be
weakened as long as the resulting program is still correct.

Definition 6 (Contract-based Slice) Let Π, Π ′ be programs such that P(Π) =
P(Π ′) and S ⊆ P(Π); Π ′ is a contract-based slice of Π, written Π ′ /S Π, if
the following all hold:

1. |= Verif(Π ′).
2. for every procedure p ∈ S,

– preΠ′(p) = preΠ(p) and postΠ′(p) = postΠ(p);
– bodyΠ′(p) /(pre(p) && x==x˜,post(p)) bodyΠ(p)

3. for every procedure p ∈ P(Π) \ S,
– |= preΠ′(p)→ preΠ(p);
– |= postΠ(p)→ postΠ′(p); and
– bodyΠ′(p) /(preΠ′ (p) && x==x˜,postΠ′ (p)) bodyΠ(p)

This notion is very adequate to model slicing when applied to code reuse.
When program (or class) Π is reused, some of its procedures may not need to
be public, since they will not be externally invoked (but they may be invoked by
other, public procedures in the program). In this case the contracts of the private
procedures may be weakened according to their usage inside the program, i.e.
the actual required specification for each private procedure may be calculated
from the set of internal calls, since it is guaranteed that no external calls will be
made to private procedures. One may then want to reflect this in the annotated
contracts, in order to produce a contract-based slice stripped of the redundant
code. Private procedures whose contracts are not required internally may indeed
see their bodies sliced to skip.

Note that even for closed programs this notion makes more sense. Since its
procedures are not invoked externally from other programs’ procedures, every
closed program will naturally have a main procedure to be executed as an entry
point, whose contract is fixed (cannot be weakened).

Finally, it is easy to see that both open and closed contract-based slicing are
special cases of Definiton 6: Π ′ /o Π ⇔ Π ′ /P(Π) Π and Π ′ /c Π ⇔ Π ′ /∅ Π.

6 A Contract-based Slicing Algorithm

Again any specification-based slicing algorithm (at the command level) can be
used for calculating contract-based slices according to Definition 6. A contract-
based slice of program Π can be calculated by analyzing Π in order to obtain
information about the actual preconditions and postconditions that are required
of each procedure call, and merging this information together. Specifically, we
may calculate for each procedure the disjunction of all required preconditions
and the conjunction of all required postconditions; this potentially results in a

weaker contract with respect to the annotated contract of the procedure, which
can thus be used to slice that procedure.

To implement this idea for a given program Π we consider a preconditions
table T0 that associates to each procedure p ∈ P(Π) a precondition, initialized
with T0[p] = false, and a postconditions table T that associates to each pro-
cedure p ∈ P(Π) a postcondition, initialized with T [p] = true. The algorithm
executes the following steps to produce progsliceo(Π).

1. Calculate Verif(Π) and while doing so, for every invocation of the form
wp(call p, Q) set T [p] := T [p] &&Q.

2. An alternative set of verification conditions based on strongest postconditions
can be defined by rules that are fairly symmetric to those given in Figure 1
(omitted here). We calculate this set, and while doing so, for every invocation
of the form sp(call p, P) set T0[p] := T0[p] ‖P .

3. For p ∈ P(Π)\S let

procsliceS(p) .= pre T0[p]
post T [p]
proc p = slice(body(p), T0[p], T [p])

4. Then progsliceS(Π) = { procsliceo(p) | p ∈ S }∪{procsliceS(p) | p ∈ P(Π)\S}

Proposition 3 For any program Π such that |= Verif(Π), progsliceS(Π) /S Π.

Note that step 1 (or 2) can be skipped, in which case T [p] (resp. T0[p]) should
be set to post(p) (resp. pre(p)), and slicing will be less aggressive, based on
preconditions or postconditions only. Section 7 illustrates the application of this
contract-based slicing algorithm (using only postconditions, i.e. with step 2 of
the algorithm skipped) to a program containing a procedure p that calculates a
number of different outputs given an input array; this program is being reused in
a context in which no external calls are made to p, and two internal procedures
do call p, but some of the information computed by p is not required by either
of the calls. Then maybe some statements of p can be sliced off.

7 An Illustrative Example

In this section we intend to illustrate the concept of contract-based slice through
an example. We have implemented a prototype program slicer1 for a subset of
Spec#, which includes many different specification-based slicing algorithms, and
which we have used to calculate the slices shown below. Note that in an object-
oriented language if we substitute the notions of class, method, and instance
attribute for those of program, procedure, and global variables of our previous
imperative setting, the ideas introduced earlier essentially apply without modi-
fications.
1 Available through a web-based interface from
http://gamaepl.di.uminho.pt/gamaslicer

� �
1 int summ, sumEven , productum , maximum, minimum ;
2 public int [] ! a = new int [1 0 0] ;
3 public int l ength = 100 ;
4

5 public void OpersArrays ()
6 ensure s summ == sum{ int i in (0 : l ength) ; a [i] } ;
7 ensure s sumEven ==
8 sum{ int i in (0 : l ength) ; (((a [i] % 2)== 0)? a [i] : 0) } ;
9 ensure s productum == product { int i in (0 : l ength) ; a [i] } ;

10 ensure s maximum == max{ int i in (0 : l ength) ; a [i] } ;
11 ensure s minimum == min{ int i in (0 : l ength) ; a [i] } ;
12 {
13 summ = 0 ; sumEven = 0 ; productum = 0 ;
14 maximum = Int32 . MinValue ; minimum = Int32 . MaxValue ;
15 for (int n = 0 ; n < l ength ; n++)
16 i n v a r i a n t n <= length ;
17 i n v a r i a n t summ == sum{ int i in (0 : n) ; a [i] } ;
18 i n v a r i a n t sumEven ==
19 sum{ int i in (0 : n) ; (((a [i] % 2)== 0)? a [i] : 0) } ;
20 i n v a r i a n t productum == product { int i in (0 : n) ; a [i] } ;
21 i n v a r i a n t maximum == max{ int i in (0 : n) ; a [i] } ;
22 i n v a r i a n t minimum == min{ int i in (0 : n) ; a [i] } ;
23 {
24 summ += a [n] ;
25 productum ∗= a [n] ;
26 i f ((a [n] % 2) == 0) { sumEven += a [n] ; }
27 i f (a [n] > maximum) { maximum = a [n] ; }
28 i f (a [n] < minimum) { minimum = a [n] ; }
29 }
30 }� �

Listing 1.1. Annotated method OpersArrays

Listings 1.1 and 1.2 contain extracts from a class Π containing an annotated
method, called OpersArrays, which computes several array operations: the sum
of all elements, the sum of all the even elements, the iterated product, and the
maximum and minimum. Π contains two other methods Average and Multiply;
the former computes the average of the elements belonging to the array, and the
latter multiplies the minimum of the array by a parameter y. The code contains
appropriate contracts for all methods, as well as loop invariants. All 3 methods
are correct with respect to their contracts – we assume this has been established
beforehand.

Moreover suppose that OpersArrays is a private method, i.e. in a given
context it is known that it will not be invoked externally. As can be observed
in Listing 1.3, the method Average calls the method OpersArrays and then
uses the calculated value of the variable summ, and Multiply calls OpersArrays
and then uses the value of variable minimum. Then it makes sense to calculate

� �
1 public double Average ()
2 ensure s r e s u l t == (sum{ int i in (0 : l ength) ; a [i]}) / l ength ;
3 {
4 double average ;
5 OpersArrays () ;
6 average = summ / length ;
7 return average ;
8 }
9

10 public int Mult ip ly (int y)
11 r e q u i r e s y >= 0 ;
12 ensure s r e s u l t == (min{ int i in (0 : l ength) ; a [i]})∗ y ;
13 {
14 OpersArrays () ;
15 int x = minimum , q = 0 , i =0;
16 while (i <y)
17 i n v a r i a n t 0 <= i <= y ;
18 i n v a r i a n t q == (i ∗ x) ;
19 {
20 q = q + x ;
21 i= i +1;
22 }
23 return q ;
24 }� �

Listing 1.2. Annotated methods Average and Multiply

a contract-based slice of this class with S = {Average, Multiply}, which will
result in the method OpersArrays being stripped of the irrelevant code.

In order to calculate progsliceS(Π), T is first initialized as

T [OpersArrays] := true

After performing the first step of the algorithm we set

T [OpersArrays] := true && Q1 && Q2

where (calculations omitted)

Q1 =
summ

length
==

sum{int i in(0 : length); a[i]}
length

Q2 =0 ≤ i ≤ y && q == i×minimum

So, as the component OpersArrays is called twice in the context of the two
previous components, the result is the weaker postcondition true && Q1 && Q2.
The final step in the calculation of the slice using table T gives us

progslicec(Π) .= {procsliceo(Average), procsliceo(Multiply),
procsliceS(OpersArrays)}

� �
1 public void OpersArrays ()
2 ensure s summ == sum{ int i in (0 : l ength) ; a [i] } ;
3 ensure s minimum == min{ int i in (0 : l ength) ; a [i] } ;
4 {
5 summ = 0 ;
6 minimum = Int32 . MaxValue ;
7 for (int n = 0 ; n < l ength ; n++)
8 i n v a r i a n t n <= length ;
9 i n v a r i a n t summ == sum{ int i in (0 : n) ; a [i] } ;

10 i n v a r i a n t minimum == min{ int i in (0 : n) ; a [i] } ;
11 {
12 summ += a [n] ;
13 i f (a [n] < minimum) { minimum = a [n] ; }
14 }
15 }� �

Listing 1.3. Sliced method OpersArrays

Calculating slice(body(OpersArrays),pre(OpersArrays), T [OpersArrays]) re-
sults in cutting the statements present in lines 14, 27, 28 and 29 (after removing
from the invariant the predicates in lines 20–23, which contain only occurrences
of variables that do not occur in T [OpersArrays]). The final sliced method is
shown below. The other two methods remain unchanged.

8 Conclusion

We introduced notions of slicing for programs developed according to design-
by-contract principles. The motivation was to bring to the inter-procedural level
the power of specification-based slicing, which we believe has great application
potential and will surely become more popular in coming years, profiting from
advances in verification and automated proof technology. We believe that the
ideas proposed can be useful in the traditional fields of application of slicing,
such as source code analysis (to help in debugging or program comprehension);
program maintenance (when more precision is required); certification of pro-
grams constructed by reusing annotated components; and the specialization of
programs composed of fully annotated and certified procedures.

This work sets up a theoretical framework for slicing multi-procedure, contract-
annotated programs, and is part of a bigger effort that includes a fundamental in-
vestigation of command-level (intra-procedural) specification-based slicing algo-
rithms [3], as well as the development of an online laboratory for assertion-based
slicing [8] that interacts with external automatic theorem provers for discharging
slicing conditions. Our approach can be applied to program comprehension (as
it makes easier to understand the process of slicing a program with contracts)
and program reuse (it can be seen as a lever to integrate annotated components
with other programs in an easier manner).

As future work we intend to continue with the development of GamaSlicer
in order to perform tests with more examples as well as to confirm that our
approach scales up.

Acknowledgment. This work was partially supported by projects RESCUE (FCT
contract PTDC / EIA / 65862 / 2006) and CROSS (FCT contract PTDC / EIA-
CCO / 108995 / 2008).

References

1. John Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison Wesley, first edition, March 2003.

2. Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In CASSIS : construction and analysis of safe, se-
cure, and interoperable smart devices, volume 3362, pages 49–69. Springer, Berlin,
ALLEMAGNE, March 2004.

3. J. Barros, D. da Cruz, P. R. Henriques, and J. S. Pinto. Assertion-based Slicing
and Slice Graphs. In J. L. Fiadeiro and S. Gnesi, editors, Proceedings of the
8th IEEE International Conference on Software Engineering and Formal Methods
(SEFM’10), 2010.

4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and E. Poll.
An overview of jml tools and applications, 2003.

5. Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned program
slicing. Information and Software Technology, 40(11-12):595–608, November 1998.
Special issue on program slicing.

6. I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing based on
specification. In SAC ’01: Proceedings of the 2001 ACM symposium on Applied
computing, pages 605–609, New York, NY, USA, 2001. ACM.

7. Joseph J. Comuzzi and Johnson M. Hart. Program slicing using weakest precon-
ditions. In FME ’96: Proceedings of the Third International Symposium of Formal
Methods Europe on Industrial Benefit and Advances in Formal Methods, pages
557–575, London, UK, 1996. Springer-Verlag.

8. Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Gamaslicer:
an Online Laboratory for Program Verification and Analysis. In proceedings of
the 10th. Workshop on Language Descriptions Tools and Applications (LDTA’10),
2010.

9. Chris Fox, Sebastian Danicic, Mark Harman, and Robert M. Hierons. Backward
conditioning: A new program specialisation technique and its application to pro-
gram comprehension. In IWPC, pages 89–97. IEEE Computer Society, 2001.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

11. Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Com-
puting, 11(5):541–566, 1999.

12. Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
13. Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international

conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

14. Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

