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THEORETICAL MODEL AND COMPUTATIONAL PROCEDURE TO EVALUATE THE NSM FRP 

STRIPS SHEAR STRENGTH CONTRIBUTION TO A RC BEAM 

Vincenzo Bianco 1, Giorgio Monti 2 and J.A.O. Barros 3  

 

Abstract: This paper presents a closed-form procedure to evaluate the shear strength contribution provided to a 

Reinforced Concrete (RC) beam by a system of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) 

strips. This procedure is based on the evaluation of: a) the constitutive law of the average-available-bond-length 

NSM FRP strip effectively crossing the shear crack and b) the maximum effective capacity it can attain during the 

loading process of the strengthened beam. Due to complex phenomena, such as: a) interaction between forces 

transferred through bond to the surrounding concrete and the concrete fracture, and b) interaction among adjacent 

strips, the NSM FRP strip constitutive law is largely different than the linear elastic one characterizing the FRP 

behavior in tension. Once the constitutive law of the average-available-bond-length NSM strip is reliably known, 

its maximum effective capacity can be determined by imposing a coherent kinematic mechanism. The 

self-contained and ready-to-implement set of analytical equations and logical operations is presented along with 

the main underlying physical-mechanical principles and assumptions. The formulation proposed is appraised 

against some of the most recent experimental results, and its predictions are also compared with those obtained 

by a recently developed more sophisticated model. 

 

Keywords: FRP; NSM; Computational Procedure; Shear Strengthening; Concrete Fracture; Debonding; Tensile 

Rupture. 

 

Introduction 

Shear strengthening of RC beams by NSM technique consists of gluing FRP strips by a powerful structural 

adhesive into thin shallow slits cut onto the concrete cover of the beam web lateral faces. A comprehensive 

three-dimensional mechanical model to predict the NSM FRP strips shear strength contribution to a RC beam 

was recently developed (Bianco 2008, Bianco et al. 2009a-b and 2010). Despite its consistency with 

experimental recordings, that model turned out to be somehow cumbersome to be easily implemented and 

accepted by professional structural engineers. The aim of the present work is to develop a simpler computational 
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procedure that has to be: a) mechanically-based and b) simple to implement. As to the first point, it has to fulfill 

equilibrium, kinematic compatibility and constitutive laws. As to the second point, it has to be a design tool that 

is easy to apply. For this purpose, a reasonable compromise between accuracy of prediction and computational 

demand has to be achieved. Excessively simplified assumptions, which would provide too roughly conservative 

estimates of the shear strength contribution provided by a system of NSM FRPs, should be avoided since they 

could lead to uneconomical design solutions, discouraging application, further improvement and spreading of the 

technique. A relatively simple model can be derived from the more sophisticated one by introducing the 

following simplifications (Bianco 2008): 1) a bi-linear rigid-softening local bond stress-slip diagram is adopted 

instead of a multilinear diagram, 2) concrete fracture surface is assumed as semi-pyramidal instead of semi-

conical, 3) attention is focused on the average-available-bond-length NSM FRP strip glued on the relevant prism 

of surrounding concrete, 4) determining the constitutive law of the average-available-bond-length NSM strip, 

along the approach followed for Externally Bonded Reinforcement (EBR) by Monti et al. (2003), and 

5) determining the maximum effective capacity attainable by the average-available-bond-length NSM strip 

placed along the CDC, imposing a coherent kinematic mechanism (e.g. Monti et al. 2004, Monti and Liotta 

2007). The main features of the resulting modeling strategy are reported hereafter. 

During the loading process of a RC beam subject to shear, when concrete average tensile strength ctmf  is 

attained at the web intrados (Fig. 1), some shear cracks originate therein and successively progress towards the 

web extrados. Those cracks can be thought as a single Critical Diagonal Crack (CDC) inclined of an angle θ  

with respect to the beam longitudinal axis (Fig. 1a). The CDC can be schematized as an inclined plane dividing 

the web into two portions sewn together by the crossing strips (Fig. 1a). At load step 1t , the two web parts, 

separated by the CDC, start moving apart by pivoting around the crack end whose trace, on the web face, is point 

E in Fig. 1a. From that step on, by increasing the applied load, the CDC opening angle ( )ntγ  progressively 

widens (Fig. 1a). The strips crossing the CDC oppose its widening by anchoring to the surrounding concrete to 

which they transfer, by bond, the force originating at their intersection with the CDC, liO , as a result of the 

imposed end slip ( )[ ]Li ntδ γ . The capacity of each strip is provided by its available bond length fiL  that is the 

shorter between the two parts into which the crack divides its actual length fL  (Fig. 1a). Bond is the mechanism 

through which stresses are transferred to the surrounding concrete (Yuan et al. 2004, Mohammed Ali et al. 2006 

and 2007, Bianco et al. 2007). The local bond stress-slip relationship ( )τ δ , comprehensively simulating the 

mechanical phenomena occurring at 1) the strip-adhesive interface, 2) within the adhesive layer and at 3) the 
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adhesive-concrete interface, can be represented, in a simplified way, by a bi-linear curve (Fig. 1b). The 

subsequent phases undergone by bond during the loading process, representing the physical phenomena 

occurring in sequence within the adhesive layer by increasing the imposed end slip, are: “rigid”, “softening 

friction” and “free slipping” (Fig. 1b) (Bianco 2008). The first rigid branch (0- 0τ ) represents the overall initial 

shear strength of the joint, independent of the deformability of the adhesive layer and attributable to the 

micro-mechanical and mainly chemical properties of the involved materials and relative interfaces. In fact, the 

parameter 0τ  is the average of the following physical entities encountered in sequence by stresses flowing from 

the strip to the surrounding concrete, i.e.: adhesion at the strip-adhesive interface, cohesion within the adhesive 

itself, and adhesion at the adhesive-concrete interface (e.g. Sekulic and Curnier 2006, Zhai et al. 2008). 

The ( )τ δ  curve adopted (Fig. 1b) envisages that, by imposing increasing end slips to the FRP strip, cracks form 

instantaneously within the adhesive layer, both orthogonally to the (inclined) tension isostatics and along the 

strip-adhesive and adhesive-concrete interfaces (e.g. Sena-Cruz and Barros 2004). Stresses are transferred by 

friction and micro-mechanical interlock along those micro-cracks. Nonetheless, by imposing increasing end 

slips, those cracks progressively become smoother (softening friction phase) up to the point ( 1Liδ δ= ) in which 

friction can no longer be mobilized and the strip is pulled out without having to overcome any restraint left (free 

slipping phase). 

The constitutive law ( );fi Rfi LiV L δ  of an NSM FRP strip, i.e. the force transmissible by a strip with resisting 

bond length RfiL  as function of the imposed end slip Liδ , can be determined by analyzing the behavior of the 

simple structural element composed of the NSM FRP strip within a concrete prism (Fig. 1a,c-d) whose 

transversal dimensions are limited by the spacing fs  between adjacent strips and half of the web cross section 

width 2wb . In this way, the problem of interaction between adjacent strips (Dias and Barros 2008, Rizzo and 

De Lorenzis 2009) is taken into account in a simplified way, i.e., by limiting the concrete volume into which 

subsequent fractures can form, to the amount of surrounding concrete pertaining to the single strip in dependence 

of fs  and wb . Moreover, even though here neglected, the interaction with existing stirrups may be also 

accounted for by limiting the transversal dimension of the concrete prism to a certain ratio of 2wb , since the 

larger the amount of stirrups, the shallower concrete fracture is expected to be (Bianco et. al 2006) even if, in this 

respect, further research is necessary. 

In particular, in the present work, attention is focused on the system composed of the strip with the average value 

of available bond length glued on the pertaining prism of surrounding concrete (Fig. 1c-d). 
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The failure modes of an NSM FRP strip subject to an imposed end slip comprise, depending on the relative 

mechanical and geometrical properties of the materials involved: debonding, tensile rupture of the strip, concrete 

semi-pyramidal tensile fracture and a mixed shallow-semi-pyramid-plus-debonding failure mode (Fig. 1e). The 

term debonding is adopted to designate loss of bond due to damage initiation and propagation within the 

adhesive layer and at the FRP strip-adhesive and adhesive-concrete interfaces, so that the strip pulling out results 

(Fig. 1e). When principal tensile stresses transferred to the surrounding concrete attain its tensile strength, 

concrete fractures along a surface, envelope of the compression isostatics, whose shape can be conveniently 

assumed as a semi-pyramid with principal generatrices inclined of an angle α  with respect to the strip 

longitudinal axis (Fig. 1c-d). Increasing the imposed end slip can result in subsequent semi-pyramidal and 

coaxial fracture surfaces in the concrete surrounding the NSM strip. These progressively reduce the resisting 

bond length RfiL  that is the portion of the initial available bond length fiL  still bonded to concrete. Those 

subsequent fractures can either progress up to the free end, resulting in a concrete semi-pyramidal failure, or stop 

progressing midway between loaded and free end, resulting in a mixed-shallow-semi-pyramid-plus-debonding 

failure (Fig. 1e). Moreover, regardless of an initial concrete fracture, the strip can rupture (Fig. 1e). 

The formulation obtained by this strategy is presented in the following sections along with the main mechanical 

bases. 

 

Calculation procedure 

The input parameters include (Fig. 2): beam cross-section web’s depth wh  and width wb ; inclination angle of 

both CDC and strips with respect to the beam longitudinal axis, θ  and β , respectively; strips spacing measured 

along the beam axis fs ; angle α  between axis and principal generatrices of the semi-pyramidal fracture surface 

(Fig. 1c-d); concrete average compressive strength cmf ; strips tensile strength fuf  and Young’s modulus fE ; 

thickness fa  and width fb  of the strip cross-section; increment Liδɺ  of the imposed end slip; values of bond 

stress 0τ  and slip 1δ  defining the adopted local bond stress-slip relationship (Fig. 1b): 

( ) 0 1
1

1

1 0

0

τ         δ δ
τ δ δ

                      δ δ

δ  − < ≤  =   
 >

         (1) 

The geometrical configuration is adopted in which the minimum integer number ,int
l
fN  of strips cross the CDC 

with the first one placed at a distance equal to fs  from the crack origin (Fig. 1a). This configuration corresponds 
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to the minimum of the sum of all the available bond lengths fiL . ,int
l
fN  is obtained by rounding off the real 

number to the lowest integer, as follows: 

( )
,int

cot cot
round offl

f w
f

N h
s

θ β +
= ⋅ 

  
        (2) 

and the average available bond length fiL  is obtained by: 
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      (4) 

and: 

fi fx i s= ⋅            (5) 

After having defined the geometrical characteristics of the simple structural system composed of the average-

available-bond-length strip within the relevant prism of surrounding concrete, it is necessary to determine its 

constitutive law ( );fi fi LiV L δ  and the corresponding maximum effective capacity max
fiV , as explained hereafter. 

Once max
fiV  has been obtained, the actual fV  and design fdV  values of the NSM shear strength contribution can 

be obtained by Eq. (36). 

 

Constitutive law of a single NSM FRP strip 

The mechanical behaviour of an FRP strip glued near the surface of a concrete prism and subjected to an 

increasing imposed end slip is very complex. That complexity is due to the interaction between the mechanism of 

force transfer to the surrounding concrete through bond stresses, mobilized along the glued surface, and the 

possibility of concrete fracture. Due to this interaction, the simple structural system composed of a single strip, 

the adhesive and the surrounding concrete, undergoes changes during the loading process since, each time 

concrete fractures, the resisting bond length reduces accordingly. In particular, the different features assumed by 

that system throughout the loading process are function not only of the load step nt , but also of the iteration mq  

in correspondence of nt  (Bianco 2008). In fact, for each nt , that system undergoes modifications up to reaching 

the equilibrium configuration eq . Whenever concrete fractures, the mechanism of force transfer to the 
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surrounding concrete leaps forward towards the strip’s free end. In general, in correspondence of each leap, the 

overall transfer length ( ), ;tr fi Rfi LiL L δ  increases and the resisting bond length decreases (Fig. 1c-d). Thus, in 

general, at each leap, concrete tensile fracture capacity increases and at the same time the bond-transferred force 

decreases, until equilibrium is attained. In this scenario, in order to determine the comprehensive constitutive law 

( );fi fi LiV L δ  of the average-available-bond-length NSM FRP strip bonded to the relevant prism of surrounding 

concrete, it is necessary to carry out an incremental procedure that simulates the imposed end slip ( )Li ntδ  and to 

check, at each nt , either if concrete is capable of carrying the bond-transferred stresses without undergoing 

fracture, or if a concrete fracture occurs and the system has to be modified accordingly. 

 

Bond-based constitutive law 

The bond behaviour of an NSM FRP strip subject to an increasing imposed end slip can be modelled by fulfilling 

equilibrium, kinematic compatibility and constitutive laws of both adhered materials (concrete and FRP) and 

local bond between themselves (Bianco 2008). In this way, it is possible to obtain closed-form analytical 

equations for both the bond-based constitutive law ( );bd
fi Rfi LiV L δ  of a single strip and the corresponding bond 

transfer length ( ), ;bd
tr fi Rfi LiL L δ . The latter two quantities represent: the force a strip of resisting bond length RfiL  

can transfer by bond, as function of Liδ , and the corresponding amount of RfiL  along which bond is mobilized, 

respectively. Once the invariant distribution of shear stress ( )xτ  and slip ( )xδ  is determined for an infinite 

value of RfiL  (Fig. 3a), ,
bd
tr fiL  and bd

fiV  can be determined for any finite value of RfiL  (Fig. 3b-g) considering the 

migration of ( )xτ  along RfiL , from the loaded end (LE) to the free end (FE), by increasing Liδ . The analytical 

equations of ( ), ;bd
tr fi Rfi LiL L δ  and ( );bd

fi Rfi LiV L δ , presented below and plotted in Fig. 4, can be determined by: a) 

considering the relative position of RfiL  with respect to the invariant distribution of ( )xτ  and ( )xδ , and b) 

integrating ( )xτ , respectively (Bianco 2008, Bianco et. al 2009b). Those analytical equations envisage (Figs. 3-

4), for a given RfiL , three phases, whose limits (1 2 3; ;L L Lδ δ δ ) are function of the value assumed by RfiL  with 

respect to the effective bond length 1trL  that is the value of resisting bond length beyond which any further 

increase of length does not produce any further increase of the maximum force transmissible by bond. In the first 

phase (Figs. 4,3b), the force transmitted by bond stresses increases up to reaching the peak in correspondence of 
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( )1L RfiLδ  that is (Fig. 3c), for 1Rfi trL L< , the Liδ  for which the invariant distribution of bond stresses has 

reached the strip’s free end while, for 1Rfi trL L≥ , the Liδ  for which , 1
bd
tr fi trL L= . The second phase (Figs. 4,3d), 

for 1Rfi trL L< , is characterized by a decrease of bd
fiV  and a constancy of ,

bd
tr fiL  while, for 1Rfi trL L≥ , bd

fiV  

remains constant and equal to the peak 1
bdV  and ,

bd
tr fiL  goes on increasing up to ( )2L RfiLδ . ( )2L RfiLδ  is 

(Figs. 4,3e), for 1Rfi trL L< , the Liδ  for which the null value of the invariant distribution of ( )xτ  has reached the 

loaded end while, for 1Rfi trL L≥ , the Liδ  for which the value 0τ  of the invariant distribution of ( )xτ  has 

reached the free end. In the third phase (Figs. 4,3f), the invariant distribution of bond stresses progressively 

moves away from RfiL , regardless of its value, resulting in a decrease of bd
fiV  up to zero and in a constant value 

of ,
bd
tr fiL  that is equal to RfiL . ( )3L RfiLδ  is (Figs. 4,3g), for each 1Rfi trL L , the Liδ  in correspondence of which 

the null value of the invariant distribution of ( )xτ  has reached the free end. Note that, for continuity, for 

1Rfi trL L=  it is ( ) ( )1 1 2 1 1L tr L trL Lδ δ δ= ≡  and the second phase reduces to a point (Fig. 4). 

The bond transfer length is as follows: 

( ) ( )
2

,
0 1

1
; arccos 1bd sf

tr fi Rfi Li tr Li LiL L L
J

λδ δ δ
λ τ

 
= = ⋅ − ⋅ ⋅ 

 ( )10.0 Li L RfiLδ δ≤ ≤  

(6) 

( )
( ) ( )

, 1

, 1 1

;

;

bd
tr fi Rfi tr Li Rfi

bd fs
tr fi Rfi tr Li tr tr Li

L L L L

L L L L L

δ

δ δ

 < =


≥ = +

 ( ) ( )1 2L Rfi Li L RfiL Lδ δ δ< ≤  

( ), ;bd
tr fi Rfi Li RfiL L Lδ =  ( ) ( )2 3L Rfi Li L RfiL Lδ δ δ< ≤  

( ), ; 0.0bd
tr fi Rfi LiL L δ =  ( )3Li L RfiLδ δ>  

and the bond-based constitutive law: 

( ) ( )( ) ( )( ){ }3 1 2; cos 1 sinsf sfbd sf sf
fi Rfi Li p tr Li tr LiV L L J C L C Lδ λ λ δ λ δ = ⋅ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅   ( )10.0 Li L RfiLδ δ≤ ≤  

(7) 

( ) ( ) ( ) ( )
( )

( )
1 3 1 2

1 1

; cos sin

;

sf
tr Li

sf
tr Li Rfi

Lsf sfbd sf sf
fi Rfi tr Li p L L

bd bd
fi Rfi tr Li f

V L L L J C x C x

V L L V

δ

δ
δ λ λ λ

δ

−
  < = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅  

 ≥ =

 ( ) ( )1 2L Rfi Li L RfiL Lδ δ δ< ≤  

( ) ( ) ( ) ( )
1

1
3 1 2; cos sin tr

fs
tr tr Li Rfi

Lsf sfbd sf sf
fi Rfi Li p L L L

V L L J C x C x
δ

δ λ λ λ
+ −

 = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅   ( ) ( )2 3L Rfi Li L RfiL Lδ δ δ< ≤  

( ); 0.0bd
fi Rfi LiV L δ =  ( )3Li L RfiLδ δ>  

where: 



 8

2p f fL b a= ⋅ +             (8) 

is the effective perimeter of the strip cross-section, and: 

( )

1
1 22

0 1

0 1 0 1
3 1 1 22 2

1 1
; ;

; ;

p f f c c

f f c c c c f f

f f c c sf sf

p c c f f

L A E E A
J J

J A E A E E A E A

E A E A J J
J C C

L A E A E

δ
τλ

τ τδ
λ λ

  ⋅ ⋅
= = ⋅ + = ⋅ ⋅ ⋅ + ⋅ 

⋅ ⋅ ⋅ ⋅ ⋅= = − = −
⋅ ⋅ + ⋅

      (9) 

are bond-modeling constants (Bianco 2008, Bianco et al. 2009b), with p f fA a b= ⋅  and 2c f wA s b= ⋅  the 

cross-section of the strip and the concrete prism, respectively. 

Moreover, the effective bond length 1trL  and the corresponding maximum bond force 1
bd
fV  are given by: 

0 1
1 1 3 12

2
;

2
bd

tr f p
J

L V L J
π τλ δ

λ λ
⋅ ⋅ = = ⋅ ⋅ ⋅ − ⋅  

        (10) 

The value of resisting bond length undergoing softening friction, as function of the imposed end slip, is given by: 

( )
2

0 1

1
arcos 1sf

tr Li LiL
J

λδ δ
λ τ

 
= ⋅ − ⋅ ⋅ 

        (11) 

and the value of resisting bond length undergoing free slipping: 

( ) ( )2 1

1

f Lifs
tr Li bd

f

A J
L

V

δ δ
δ

⋅ ⋅ −
=          (12) 

The resisting bond length-dependent values of imposed end slip defining the extremities of the three bond 

phases, are given by (Fig. 3b-g): 

( ) ( ) ( ) 0 1
1 2 12

1

1 1

sin cos for

for

sf sf
Rfi Rfi Rfi tr

L Rfi

Rfi tr

J
C L C L L L

L
L L

τλ λ
δ λ

δ

⋅ ⋅ ⋅ + ⋅ ⋅ + <= 
 ≥

    (13) 

( ) ( )

1 1

2 1
1 1 1

2

for

for

Rfi tr

bd
L Rfi f

Rfi tr Rfi tr
f

L L

L V
L L L L

A J

δ

δ
δ

<


= 
+ ⋅ − ≥ ⋅

      (14) 

( ) 1
3 1

2

bd
Rfi f

L Rfi
f

L V
L

A J
δ δ

⋅
= +

⋅
          (15) 

 

Concrete tensile fracture capacity 
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The concrete tensile fracture capacity ( ),
cf

tr fifiV L  is obtained by spreading the concrete average tensile strength 

ctmf  over the semi-pyramidal surface (Fig. 1c-d) of height equal to the total transfer length ,tr fiL , orthogonally 

to it in each point. By integrating one obtains: 

( ) { } ( )

( ) ( ) ( ) ( )

, ,

, ,

min tan ; sin
2

sin sin sin sin
min ; min ;

2 sin sin 2 sin sin

cf w
tr fi ctm tr fifi

f tr fi f tr fi

b
V L f L

s L s L

α θ β

β α β α
θ β θ β α θ β θ β α

= ⋅ ⋅ ⋅ + ⋅

⋅ ⋅ ⋅ ⋅    
⋅ +    ⋅ + + + ⋅ + + −    

    (16) 

where ctmf  can be determined from the average compressive strength. The total transfer length is evaluated as 

reported in next Eq. (17). 

 

Comprehensive constitutive law 

At the nt  load step, an iterative procedure ( 1:m eq q q→ ) is carried out in order to determine the equilibrium 

condition ( eq ) in the surrounding concrete depending on the current value of both imposed end slip ( )Li ntδ  and 

resisting bond length ( );Rfi n mL t q  (Figs. 5-7). In particular, at the mq  iteration of the nt  load step, based on 

( );Rfi n mL t q  and ( )Li ntδ , the bond transfer length ( ) ( ), ; ;bd
tr fi Rfi n m Li nL L t q tδ    and the corresponding 

bond-transferred force ( ) ( ); ;bd
fi Rfi n m Li nV L t q tδ    are evaluated as reported in Eq. (6) and Eq. (7), respectively. 

Then, the current value of the total transfer length is evaluated as follows: 

( ) ( ) ( ) ( ) ( ), 1 ,; ; ; ; ;c bd c
tr fi n m fi n e tr fi Rfi n m Li n fi n mL t q L t q L L t q t L t qδ−= + + ∆        (17) 

where ( )1;
c
fi n eL t q−  is the cumulative depth of the concrete fracture surface resulting from the equilibrium of the 

preceding 1nt −  load step and ( );c
fi n mL t q∆  is the increment of concrete fracture depth corresponding to the current 

nt , accumulated up to the current mq  (Fig. 6c): 

( ) ( ) ( )1

1

,; ; ;
mq

c bd
fi n m tr fi Rfi n m Li n

q
L t q L L t q tδ−

∑∆ =             (18) 

Then, after having evaluated the concrete fracture capacity ( ),
cf

tr fifiV L  as indicated in Eq. (16), if it is: 

( ) ( ) ( ),; ; ;bd cf
fi Rfi n m Li n fi tr fi n mV L t q t V L t qδ ≥              (19) 

meaning that the surrounding concrete is not capable to carry the bond-transferred force, then it fractures and the 

bond transfer mechanism leaps forwards towards the free end. Thus, the parameters ( )1;Rfi n mL t q +  and 
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( )1;c
fi n mL t q +∆  are updated ( ( ) ( ) ( ) ( )1 ,; ; ; ;bd

Rfi n m Rfi n m tr fi Rfi n m Li nL t q L t q L L t q tδ+ = −    , 

( ) ( ) ( ) ( )1 ,; ; ; ;c c bd
fi n m fi n m tr fi Rfi n m Li nL t q L t q L L t q tδ+∆ =∆ +    ) and iteration is performed ( 1mq + ) (Fig. 5). At each of 

those leaps, the point representative of the strip state moves from one bond-based constitutive law 

( ); ;bd
fi Rfi n m LiV L t q δ    to the other ( )1; ;bd

fi Rfi n m LiV L t q δ+    and, as long as the updated value of RfiL  is larger or 

equal to the necessary bond transfer length ( )[ ]bd
tr Li nL tδ , such leap is only visible in a three dimensional 

representation (Fig. 6d). The necessary bond transfer length ( )[ ]bd
tr Li nL tδ  is the bond transfer length that would 

be necessary, if RfiL  were infinite, to transmit the corresponding force to the surrounding concrete, with 

( )[ ] ( )[ ]bd sf
tr Li n tr Li nL t L tδ δ=  for ( ) 1Li ntδ δ≤  and ( )[ ] ( )[ ]1

bd fs
tr Li n tr tr Li nL t L L tδ δ= +  for ( ) 1Li ntδ δ>  (Fig. 3). Note 

also that, at each mq  iteration, the equality ( ) ( ) ( ) ( )1 1 1; ; ; ;c c
Rfi n m fi n e fi n m Rfi fiL t q L t q L t q L t q L−+ +∆ = =  has to be 

fulfilled (Fig. 6c and Fig. 7c). 

More in detail, at the mq  iteration of the nt  load step, if concrete is not in equilibrium ( 0ec = ), one of the 

following alternatives might occur: 

• concrete fracture is deep ( 1fd = ) but it does not reach the free end, i.e. the updated resisting bond 

length ( )1;Rfi n mL t q +  is not long enough to mobilize, for the current ( )Li ntδ , a bond transfer length as 

large as the necessary one: ( )[ ]bd
Rfi tr Li nL L tδ<  (Fig. 5). Note that in this case, the passage of the point 

representative of the strip state from one bond-based constitutive law to the other is also visible in a 

bi-dimensional representation (Fig. 7); 

• concrete fracture is deep ( 1fd = ) and it reaches the free end, i.e. the updated resisting bond length 

( )1;Rfi n mL t q +  is null. Note is taken of the current value of the imposed end slip ( ( )Lu Li ntδ δ← ) and the 

incremental procedure is terminated since a decision about the comprehensive constitutive law can 

already be taken ( 1u = ) (Fig. 8a). 

On the contrary, if at the mq  iteration of the nt  load step, concrete is in equilibrium ( 1ec = ), it is not necessary 

to iterate and one of the following alternatives might occur: 

• the current value of bond-transferred force is larger or equal to the strip tensile rupture capacity 

( bd tr
fi fV V≥ ). The incremental procedure is terminated since, even if the surrounding concrete is in 
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equilibrium, the strip has ruptured ( 2u = ) and note is taken of the ultimate imposed end slip 

( ( )Lu Li ntδ δ← ); 

• the next value of the imposed end slip ( )1Li ntδ +  is larger or equal to the one in correspondence of which 

the peak bond force is attained for the current value of the resisting bond length 

( ) ( )1 1 ;Li n L Rfi n et L t qδ δ+ ≥    . Since bd
fiV  starts to decrease for ( )1Li ntδ +  (Figs. 6-7), the incremental 

procedure is terminated and note is taken of the current value of the resisting bond length (Rfu RfiL L← ) 

and of its relationship with the effective bond length 1trL  ( 3u←  if 1Rfu trL L< , 4u←  if 1Rfu trL L=  or 

5u←  if 1Rfu trL L> ); 

• concrete fracture is deep ( 1fd = ) and it does not reach the free extremity. The incremental procedure is 

terminated ( 6u = ) (Fig. 8d); 

• the next value of the imposed end slip ( )1Li ntδ +  is smaller than the one where the peak bond force is 

attained for the current value of the resisting bond length ( ) ( )1 1 ;Li n L Rfi n et L t qδ δ+ <    . Then, the imposed 

end slip is incremented and the iteration carried out. 

The incremental procedure described above is terminated and, depending on the phenomenon characterizing the 

specific case at hand and the type of constitutive law associated (u ), the parameters necessary to define 

( );fi fi LiV L δ  are returned, i.e.: 

• deep concrete fracture that reaches the strip’s free extremity ( 1u = ) or tensile rupture of the strip 

( 2u = ). The parameter necessary to determine the constitutive law is the imposed end slip Luδ  in 

correspondence of which the peak of ( );fi fi LiV L δ  occurs. ( );fi fi LiV L δ  is given by the first bond phase 

of Eq. (7) for 0.0 Li Luδ δ≤ ≤  (Fig. 8a); 

• shallow or absent concrete fracture with an ultimate value of resisting bond length smaller (3u = ), 

equal ( 4u = ) or larger ( 5u = ) than the effective bond length. The parameter necessary to determine 

the comprehensive constitutive law is the ultimate value assumed by the resisting bond length RfuL . 

( );fi fi LiV L δ  is given by Eq. (7) for Rfi RfuL L=  (Fig. 8b-c); 

• deep tensile fracture with an ultimate value of resisting bond length very short but not null ( 6u = ). The 

parameters necessary to determine the comprehensive constitutive law are both the imposed end slip 
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Luδ  in correspondence of which the peak of ( );fi fi LiV L δ  occurs and the ultimate value assumed by the 

resisting bond length RfuL . ( );fi fi LiV L δ  is given by: the first bond phase of Eq. (7) for 0.0 Li Luδ δ≤ ≤ , 

the second bond phase of Eq. (7) for ( )2Lu Li L RfuLδ δ δ< ≤  and the third bond phase of Eq. (7) for 

( ) ( )2 3L Rfu Li L RfuL Lδ δ δ< ≤  (Fig. 8d). 

 

Maximum effective capacity of a single NSM FRP strip 

The effective capacity ( ),fi effV γ  is the average of the NSM FRP strip capacity along the CDC ( ), ;fi CDCV γ ξ  for 

a given value of the CDC opening angle γ  (Figs. 9-13), where ξ  is the reference system assumed along the 

CDC (Fig. 1a). ( ), ;fi CDCV γ ξ  is obtained by introducing the kinematic compatibility 

( ( ) ( )1; sin2Liδ γ ξ ξ γ θ β= ⋅ ⋅ ⋅ + , with ( )[ ]0 sinwhξ θ∈ − ) into the comprehensive constitutive law of the single 

average-available-bond-length NSM FRP strip ( );fi f LiV L δ . For the sake of brevity, all of the details are herein 

omitted but they can be found elsewhere (Bianco 2008). The equation to evaluate the maximum effective 

capacity max
,fi effV  and the value of the CDC opening angle maxγ  in correspondence of which it is attained, assume 

different features as function of the type (u) of the comprehensive constitutive law characterizing the specific 

case at hand. 

 

Cases of concrete fracture that reaches the strip’s free extremity (u = 1) or strip tensile rupture (u = 2) 

In these cases, the exact value of the maximum effective capacity is attained for a value of the CDC opening 

angle γ  such as to yield an imposed end slip at the end of the crack ( ( )Li dLδ ), equal to Luδ  (Fig. 9) i.e.: 

( )

( ) ( ) ( ) }
max 2 2 2
, , max 1 max1

3 max

2
3 max 3 max 3 max

1

2

arcsin 1 1 1 1
2

sf
sf

fi eff fi eff d
d

d d d

A C
V V A C L

L A

A L A L A L

γ γ
γ

πγ γ γ

 ⋅= = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
 ⋅ − ⋅ ⋅ + − ⋅ ⋅ ⋅ − − ⋅ ⋅ −  

     (20) 

where: 

( )3
3

1
0 1

sin

4
pL J

A
J

λ θ β
τ

⋅ ⋅ ⋅ +
=−

⋅ ⋅
; 2 3pA L J λ= ⋅ ⋅ ; ( )2

3
0 1

sin

2
A

J

λ θ β
τ

⋅ +
=

⋅ ⋅
      (21) 

are integration constants independent of the type (u) of comprehensive constitutive law and: 

( )max 1
2

sin
Lu

dL

δγ γ
θ β

⋅
= =

⋅ +
          (22) 



 13 

 

Case of shallow concrete fracture and strip ultimate resisting bond length smaller than the effective bond 

length (u = 3) 

In this case, the maximum effective capacity is attained for a value of γ  very close to 2γ  that is the value of the 

CDC opening angle such as to yield an imposed end slip at the end of the crack, equal to ( )2L RfuLδ . For the 

sake of simplicity, it is assumed that max
fiV  is effectively attained for 2γ  accepting a slight approximation 

(Fig. 10) i.e.: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

2
max 22 1 11 2 2 1 1
, 1 1 21 2

3 3 max

22 2
3 max 3 max 3 max 2 1 1

3 max

2 21 1

sin 2 4 sin

arcsin 1 1 1 1
2

sf
sf sf LL L

fi eff
d

d d d d

A CA A C
V A C C C C

L A A

A C
A L A L A L A C L A C

A

πδδ δ
θ β θ β γ

γ γ γ
γ

 ⋅ ⋅⋅Φ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ + + ⋅ − − ⋅ +   + ⋅ ⋅ +   

⋅  − ⋅ − ⋅ ⋅ + − ⋅ ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ + ⋅  ⋅ ⋅
2

1 max dLγ ⋅ ⋅ 


 (23) 

where 1A , 2A  and 3A  are given by Eq. (21), ( )1 1L L RfuLδ δ=  by Eq. (13) and: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 2

2 2 1 2

cos sin

sin cos

sf sf sf
Rfu Rfu Rfu

sf sf sf
Rfu Rfu Rfu

C L C C L C L

C L C C L C L

λ λ

λ λ

= − ⋅ ⋅ − ⋅ ⋅

=− − ⋅ ⋅ + ⋅ ⋅
            (24) 

( )
( ) ( ) ( )

2
3 3 3

1
2 2 2

arcsin 1 1 1 1
sin sin sin

Li Li Li
Li

A A Aδ δ δδ
θ β θ β θ β

⋅ ⋅ ⋅ ⋅ ⋅ ⋅     Φ = − + − ⋅ − −     + + +     
    (25) 

( )
( )

2
max 2

2

sin
L Rfu

d

L

L

δ
γ γ

θ β
⋅

= =
⋅ +

          (26) 

 

Case of shallow concrete fracture and strip’s ultimate resisting bond length equal to the effective bond length 

(u = 4) 

In this case, the maximum effective capacity is attained for a value of the CDC opening angle γ  slightly larger 

than ( )( )1 12 sindLγ δ θ β= ⋅ ⋅ +  at which the 1δ  end slip occurs at the end of the CDC (Fig. 11). Anyway, since 

the expressions of ( ),fi effV γ  are very complex for 1 2γ γ γ< ≤ , instead of carrying out the derivative 

( ( ), 0fi effdV dγ γ = ) to search for the exact value of maxγ , it is deemed reasonable to assume 1γ  as the angle 

where the maximum effective capacity occurs. The solution so obtained, slightly underestimating the real 

maximum, is: 
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( ) ( ) ( ) }
max 2 2 2
, 1 max1

3 max

2
3 max 3 max 3 max

1

2

arcsin 1 1 1 1
2

sf
sf

fi eff d
d

d d d

A C
V A C L

L A

A L A L A L

γ
γ

πγ γ γ

 ⋅= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

 ⋅ − ⋅ ⋅ + − ⋅ ⋅ ⋅ − − ⋅ ⋅ −  

     (27) 

where 1A , 2A  and 3A  are given by Eq. (21) and: 

( )
1

max 1
2

sindL

δγ γ
θ β

⋅
= =

⋅ +
          (28) 

 

Case of shallow concrete fracture and strip’s ultimate resisting bond length larger than the effective bond 

length (u = 5) 

In this case, the maximum effective capacity is attained for a value of the CDC opening angle γ  slightly larger 

than ( )( )2 22 sinL dLγ δ θ β= ⋅ ⋅ +  at which the end slip ( )2L RfuLδ  occurs at the end of the CDC (Fig. 12). 

Again, since the expressions of ( ),fi effV γ  are very complex for 2 3γ γ γ< ≤ , it is deemed a reasonable 

compromise between accuracy of prediction and computational demand, to assume 2γ  as the angle in 

correspondence of which the maximum effective capacity occurs. The solution so obtained, slightly 

underestimating the real maximum, is: 

( )
( )

( )

2
max 2 1 1 21 2 2 1
, 1 11

3 3 max max

2 21 1

sin 2 4 sin

sf sf
sf bd

fi eff f d
d

C A A C
V A C V L

L A A

δ πδ δ
θ β γ γ θ β

  ⋅ ⋅Φ ⋅ ⋅⋅ ⋅    = ⋅ ⋅ ⋅ + − ⋅ + ⋅ −     + ⋅ ⋅ ⋅ +       
 (29) 

where 1A , 2A  and 3A  are given by Eq. (21), ( )1 1δΦ  as given by Eq. (25) and: 

( )
( )

2
max 2

2

sin
L Rfu

d

L

L

δ
γ γ

θ β
⋅

= =
⋅ +

          (30) 

 

Case of deep concrete fracture (u = 6) 

In this case, it is not known a priori if the maximum effective capacity is attained at a value of the CDC opening 

angle such as to yield an imposed end slip at the end of the crack, equal to Luδ  or to ( )2L RfuLδ  (Fig. 13). Thus, 

the maximum effective capacity will be given by: 

{ }max max1 max2
, , ,max ;fi eff fi eff fi effV V V=          (31) 

where: 
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( )

( ) ( ) ( ) }
max1 2 2 2
, , max1 1 max11

3 max1

2
3 max1 3 max1 3 max1

1

2

arcsin 1 1 1 1
2

sf
sf

fi eff fi eff d
d

d d d

A C
V V A C L

L A

A L A L A L

γ γ
γ

πγ γ γ

 ⋅= = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

 ⋅ − ⋅ ⋅ + − ⋅ ⋅ ⋅ − − ⋅ ⋅ −  

     (32) 

( )max1 1
2

sin
Lu

dL

δγ γ
θ β

⋅
= =

⋅ +
          (33) 

and: 

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

max2
, , max2

2
22 1 2 12

1 1 21 2
3 3 max2

22 2
3 max2 3 max2 3 max2

3 max2

2 21 1

sin 2 4 sin

arcsin 1 1 1 1
2

fi eff fi eff

sf
sf sfLu Lu Lu

d

d d d

V V

A CA A C
A C C C C

L A A

A C
A L A L A L

A

γ

πδ δ δ
θ β θ β γ

γ γ γ
γ

= =

 ⋅ ⋅⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ − − ⋅ +   + ⋅ ⋅ +   

⋅ − ⋅ − ⋅ ⋅ + − ⋅ ⋅ ⋅ − − ⋅ ⋅
⋅ ⋅

2
2 1 1 1 max2d dA C L A C Lγ + ⋅ ⋅ + ⋅ ⋅ ⋅    

(34) 

( )
( )

2
max 2 2

2

sin
L Rfu

d

L

L

δ
γ γ

θ β
⋅

= =
⋅ +

          (35) 

and where 1A , 2A  and 3A  are given by Eq. (21), ( )1 RfuC L  and ( )2 RfuC L  as given by Eq. (24) and ( )1 LuδΦ  as 

given by Eq. (25). 

 

Actual and Design value of the Shear Strengthening Contribution  

The actual fV  and design value fdV  of the NSM shear strength contribution, can be obtained as follows: 

( )max
,int ,

1 1
2 sinl

fd f f fi eff
Rd Rd

V V N V β
γ γ

= ⋅ = ⋅ ⋅ ⋅ ⋅        (36) 

where Rdγ  is the partial safety factor, divisor of a capacity, that can be assumed as 1.1-1.2 according to the level 

of uncertainty affecting the input parameters but, in this respect, a reliability-based calibration is needed. 

  

Model Appraisal 

The proposed model was applied to the RC beams tested by Dias and Barros (2008), by Dias et al. (2007) and by 

Dias (2008). The beams tested in the first two experimental programs (series I and II) were T cross-section RC 

beams characterized by the same test set-up with the same ratio between the shear span and the beam effective 

depth ( 2.5a d = ), the same amount of longitudinal reinforcement, the same kind of CFRP strips and epoxy 

adhesive and they differed for the concrete mechanical properties. In fact, the first experimental program (series 

I) was characterized by a concrete average compressive strength cmf  of 31.1 MPa, while the second (series II) 

by 18.6 MPa. Both series presented different configurations of NSM strips, in terms of both inclination β  and 
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spacing fs . The first program also included beams characterized by a different amount of existing steel stirrups 

(see Table 1). The beams tested in the third experimental program (series III) were characterized by the same test 

set up, but with a different shear aspect ratio ( 3.3a d = ) and distinct concrete mechanical properties 

( 59.4cmf MPa= ). Some of them were also subjected to pre-cracking (their label includes a letter F). The details 

of the beams taken to appraise the predictive performance of the developed model are listed in Table 1. Those 

beams are characterized by the following common geometrical and mechanical parameters: 180wb mm= ; 

300wh mm= ; 2952fuf MPa=  (for the series I and II) and fuf  = 2848 MPa (for the series III); 

166.6fE GPa=  (for the series I and II) and 174.3fE GPa=  (for the series III); 1.4fa mm= ; 10.0fb mm= . 

The CDC inclination angle θ  adopted in the simulations, listed in Table 1 for all the beams analyzed, is the one 

experimentally observed by inspecting the crack patterns (Dias 2008). Note that the experimental observations 

confirm the expected trend according to which θ  diminishes for increasing values of the ratio a d  (e.g. 

Bousselham and Chaalal 2004, Chao et. al. 2005). In fact, for some beams of the III series ( 3.3a d = ), expθ  

assumes values smaller than 45º and up to 20º (Table 1). In this respect, it has to be stressed that assuming 

45ºθ =  can result excessively conservative since, with respect to smaller values (e.g. 20ºθ = ), and other 

parameters being the same, the predicted NSM shear strength contribution decreases due to the fact that the 

number of strips effectively crossing the CDC diminishes (Bianco 2008). It would be necessary to develope 

rigorous equations to evaluate the CDC inclination angle θ  as function of 1) shear aspect ratio a d  and amount 

of both 2) NSM strips and 3) existing steel stirrups but, in this respect, further research is necessary. The angle 

α  was assumed equal to 28.5°, being the average of values obtained in a previous investigation 

(Bianco et al. 2006) by back-analysis of experimental data. As to the value of α , due to its importance to the 

prediction accuracy of NSM shear strength contributions, further research is desirable. The parameter 

characterizing the loading process is: 0.0001Li radsδ =ɺ . Concrete average tensile strength ctmf  was calculated 

from the average compressive strength by means of the formulae of the CEB Fib Model Code 1990 resulting in 

2.45 MPa, 1.45 MPa and 4.17 MPa for the series I, II and III, respectively. The parameters characterizing the 

adopted local bond stress-slip relationship (Fig. 1b) are: 0 20.1MPaτ =  and 1 7.12mmδ = . Those values were 

obtained by the values characterizing the more sophisticated local bond stress-slip relationship adopted in 

previous works (Bianco et al. 2009a, 2010), by fixing the value of 0 20.1MPaτ =  and determining 

1 7.12mmδ =  by equating the fracture energy. In this respect, it has to be underlined that the necessity is felt to 
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develop rigorous equations that would allow the values ( )0 1,τ δ  characterizing the local bond stress slip 

relationship to be determined on the basis of: a) superficial chemical and micro-mechanical properties of FRP, 

adhesive and concrete, and b) the adhesive layer thickness. Nonetheless, further research is, in this respect, 

required. However, as highlighted by means of parametric studies (Bianco 2008), for the values of concrete 

mechanical properties that can be met in practice, debonding rarely occurs due the high capacity of currently 

available structural adhesives. Thus, slight variations of the values of the parameters 0τ  and 1δ  can not be felt, 

in terms of NSM shear strength contribution, due to the premature occurrence of other failure modes such as 

either concrete fracture or strip rupture. For this reason, adopting values of 0 20.1MPaτ =  and 1 7.12mmδ =  for 

cases characterized by different values of both 1) superficial chemical-mechanical properties of FRP, adhesive 

and concrete, and 2) adhesive thickness, is not expected to significantly affect the predictive performance of the 

model. 

Table 1 shows that the model, in general, provides reasonable underestimates of the experimental recordings 

exp
fV  since the ratio exp

f fV V  presents mean value and standard deviation equal to 0.86 and 0.33, respectively. 

The values of NSM shear strength contribution have also been compared with the maximum values provided by 

the more refined model in correspondence of three different geometrical configurations that the occurred CDC 

could assume with respect to the strip (max
,1fV , max

,2fV  and max
,3fV  in Table 1). The simplified model herein 

presented, in some cases (e.g. beam 2S-5LV-I) provides a value of the NSM shear strength contribution that lies 

in between the minimum and maximum values obtained by the more refined model and in other cases (e.g. 

2S-5LI45-I) it gives a value that is rather lower than the lower bound of the values obtained by the more refined 

model. This is reasonable, since the approximations introduced inevitably reduce the accuracy. 

The model herein proposed, as the more refined one, both seem to provide reasonable estimates of the 

experimental recordings regardless of the amount of existing stirrups. Actually, the authors think that the amount 

of existing stirrups affects the depth to which the concrete fracture can penetrate the beam web core but, since it 

also affects the CDC inclination angle expθ , both models end up giving satisfactory results regardless of the 

amount of existing stirrups (Table 1). Anyway, in this respect, further research is needed. 

 

Conclusions 

A closed-form computational procedure to evaluate the NSM FRP strips shear strength contribution to RC beams 

was developed by simplifying a more sophisticated model recently developed. That procedure was obtained by 
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introducing some substantial simplifications, such as: 1) assuming a simplified local bond stress-slip relationship, 

2) taking into consideration the average-available-bond-length NSM FRP strip confined to a concrete prism, and 

3) assuming the concrete fracture surfaces as being semi-pyramidal instead of semi-conical. Given those 

simplifications, the procedure is based on 1) the evaluation of the constitutive law of the 

average-available-bond-length strip and 2) the determination of the maximum effective capacity that this latter 

can provide during the loading process of the strengthened beam, once the kinematic mechanism has been 

suitably imposed. The estimates of the NSM shear strength contribution obtained by means of that simplified 

model showed a reasonable agreement with both the experimental recordings and the predictions obtained by a 

more sophisticated model. Anyway, the introduction of substantial simplifications inevitably brought a loss of 

accuracy. Moreover, many aspects such as: 1) the correct evaluation of the local bond stress slip relationship as 

function of both the chemical-mechanical properties of FRP, concrete and adhesive and this latter thickness; 2) 

the correct evaluation of the CDC inclination angle as function of shear aspect ratio and amount of both FRPs 

and existing steel stirrups; and 3) the issue of the interaction with existing stirrups, still have to be addressed. 

 

Acknowledgements 

The authors of the present work wish to acknowledge the support provided by the “Empreiteiros Casais”, S&P, 

degussa Portugal, and Secil (Unibetão, Braga). The study reported in this paper forms a part of the research 

program “CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to 

increase the flexural resistance to negative moments of continuous reinforced concrete structures” supported by 

FCT, PTDC/ECM/73099/2006. Also, this work was carried out under the auspices of the Italian DPC-ReLuis 

Project (repertory n. 540), Research Line 8, whose financial support is greatly appreciated. 



 19 

Notation 

 

cA  = area of the concrete prism cross section 

fA  = area of the strip’s cross section 

1A  = integration constant entering the expressions to evaluate the max
,fi effV  

2A  = integration constant entering the expressions to evaluate the max
,fi effV  

3A  = integration constant entering the expressions to evaluate the max
,fi effV  

sfC1  = first integration constant for the softening friction phase 

sfC2  = second integration constant for the softening friction phase 

( )1 RfiC L  = resisting-bond-length-dependent integration term 

( )2 RfiC L  = resisting-bond-length-dependent integration term 

cE  = concrete Young’s modulus 

fE  = strips’ CFRP Young’s modulus 

1J  = bond modeling constant 

2J  = bond modeling constant 

3J  = bond modeling constant 

dL  = CDC length 

fL  = Actual length of th strips 

fiL  = i-th strip available bond length 

fL  = average available bond length 

( )nn
c
fi qtL ;  = height of the concrete semi-pyramid in correspondence of the i-th strip 

pL  = effective perimeter of the strip cross section 

( )nnRfi qtL ;  = i-th strip resisting bond length 

( ), ;tr fi Rfi LiL L δ  = transfer length of the i-th strip for the relevant imposed slip 

( )bd
tr LiL δ  = necessary bond transfer length  
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( ), ;bd
tr fi Rfi LiL L δ  = bond based transfer length of the i-th strip for the relevant imposed slip 

1trL  = maximum invariant value of transfer length that can undergo elastic phase 

( )Li
fs
trL δ  = amount of a transfer length for an infinite bond length undergoing free slipping 

( )Li
sf
trL δ  = softening frictional amount of a transfer length for an infinite bond length 

,int
l
fN  = minimum integer number of strips that can effectively cross the CDC 

OXYZ = crack plane reference system 

l
i

l
i XO  = reference axis along the i-th strip available bond length fiL  

cf
fiV  = progressive concrete tensile fracture capacity along the i-th strip 

dbV1  = value of force transferred by bond along the elastic transfer length 1trL  

max
fiV  = maximum effective capacity 

exp
fV  = experimental value of the NSM shear strengthening contribution 

fV  = actual value of the NSM shear strengthening contribution 

fdV  = design value of the NSM shear strengthening contribution 

( ), ;fi CDCV ξ γ  = distribution of the NSM strip capacity along the CDC 

( );fi f LiV L δ  = comprehensive constitutive law of the average available bond length 

( );bd
fi f LiV L δ  = bond-based constitutive law of the average available bond length 

ca  = concrete prismatic specimen thickness 

fa  = strip cross section’s thickness 

cb  = concrete prismatic specimen width 

fb  = strip cross section’s width 

wb  = beam cross section’s width 

cmf  = concrete average compressive strength 

ctmf  = concrete average tensile strength 

fuf  = FRP strip tensile strength 
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wh  = beam web height 

i  = strips counter 

fsfsxo  
= reference axis along the amount of the infinite strip in free slipping phase 

sfsf xo  
= reference axis along the amount of the infinite strip in softening friction phase 

tr
i

tr
i xo  = reference axis along the strip’s transfer length 

eq  = iteration in correspondence of which equilibrium is attained 

mq  = m-th iteration 

fs  = Spacing between adjacent strips along the CDC axis 

0t  = load step of formation of the critical diagonal crack 

1t  = load step at which the critical diagonal crack starts widening 

nt  = generic n-th load step 

st  = slab thickness 

u  = parameter defining the comprehensive constitutive law type 

fix  = position of the i-th strip along the global reference system 

( )1 LiδΦ  = Imposed-end-slip-dependent expression 

α  = angle defining the concrete fracture surface 

β  = FRP strips inclination angle with respect to the beam longitudinal axis 

( )xδ  = slip along the strip’s length 

1δ  = slip corresponding to the end of softening friction 

Liδ  = imposed slip at the loaded extremity of the i-th strip 

Liδɺ  = imposed slip increment 

( )1L RfiLδ  = value of Liδ  defining the end of the first phase of the bond-based constitutive law 

( )2L RfiLδ  = value of Liδ  defining the end of the second phase of the bond-based constitutive law 

( )3L RfiLδ  = value of Liδ  defining the end of the third phase of the bond-based constitutive law 

( )ntγ  = critical diagonal crack opening angle 

1γ  = CDC opening angle such that the imposed end slip at dL  is equal to 1Lδ  
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2γ  = CDC opening angle such that the imposed end slip at dL  is equal to 2Lδ  

3γ  = CDC opening angle such that the imposed end slip at dL  is equal to 3Lδ  

maxγ  = CDC opening angle for which the maximum effective capacity is attained 

Rdγ  = partial safety factor divisor of the capacity 

λ  = constant entering the governing differential equation for elastic phase 

θ  = critical Diagonal Crack (CDC) inclination angle 

expθ  = experimentally observed CDC inclination angle 

( )δτ  = local bond stress-slip relationship 

( )xτ  = bond stress along the strip length 

0τ  = adhesive-cohesive initial bond strength 

ξ  = reference axis along the CDC 
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TABLE CAPTIONS 

Table 1. Values of the parameters characterizing the beams adopted to appraise the formulation proposed. 

 

Table 1. Values of the parameters characterizing the beams adopted to appraise the formulation proposed. 

Beam 

Label 

expθ  

° 

β  

° 

fs  

mm 

Steel 

Stirrups 

max
,1fV  

kN 

max
,2fV  

kN 

max
,3fV  

kN 

exp
fV  

kN 

fL  

mm 
u  

fV  

kN 

2S-3LV-I 40 90 267 F6/300 18.53 6.46 55.33 22.20 75.96 3 10.77 

2S-5LV-I 40 90 160 “ 52.33 26.42 55.34 25.20 82.87 6 30.97 

2S-8LV-I 36 90 100 “ 68.58 58.88 64.33 48.60 77.34 3 29.59 

2S-3LI45-I 45 45 367 “ 35.10 15.41 45.73 29.40 164.75 3 23.44 

2S-5LI45-I 45 45 220 “ 46.11 49.14 45.74 41.40 134.35 3 23.19 

2S-8LI45-I 36 45 138 “ 75.89 79.71 78.73 40.20* 106.73 6 59.55 

2S-3LI60-I 33 60 325 “ 50.69 18.90 51.68 35.40 169.16 3 30.74 

2S-5LI60-I 36 60 195 “ 36.37 36.59 48.55 46.20 77.27 6 22.27 

2S-7LI60-I 33 60 139 “ 52.98 63.07 67.58 54.60 91.05 6 60.80 

2S-7LV-II 46 90 114 F6/300 26.72 31.84 35.59 28.32 90.97 6 15.04 

2S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 33.90 123.41 3 19.24 

2S-7LI45-II 30 45 157 “ 49.36 47.13 45.95 48.00 108.27 6 37.92 

2S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 33.06 93.90 3 13.23 

2S-6LI60-II 27 60 162 “ 42.79 37.54 39.45 42.72 99.56 6 34.68 

4S-7LV-II 46 90 114 F6/180 26.72 31.84 35.59 6.90* 90.97 6 15.04 

4S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 26.04 123.41 3 19.24 

4S-7LI45-II 40 45 157 “ 40.58 37.48 40.63 31.56 110.83 6 28.36 

4S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 25.08 93.90 3 13.23 

4S-6LI60-II 30 60 162 “ 38.92 35.46 36.71 35.10 92.20 3 25.72 

3S-5LI45-III 30 45 275 F6/300 59.74 59.55 70.01 66.10 140.95 3 70.33 

3S-5LI45F1-III**  23 45 275 “ 83.05 86.96 81.15 85.75 128.32 3 77.93 

3S-5LI45F2-III**  30 45 275 “ 59.74 59.55 70.01 65.35 140.95 3 70.33 

5S-5LI45-III 28 45 275 F6/200 78.24 59.55 72.01 74.90 102.84 3 57.76 

5S-5LI45F-III**  28 45 275 “ 78.24 59.55 72.01 74.90 102.84 3 57.76 

3S-9LI45-III 32 45 157 F6/300 109.88 109.32 98.30 101.85 126.75 6 114.30 

5S-9LI45-III 32 45 157 F6/200 109.88 109.32 98.30 108.90 126.75 6 114.30 

3S-5LI60-III 26 60 243 F6/300 71.74 76.20 62.81 69.00 88.56 3 52.84 

5S-5LI60-III 25 60 243 F6/200 68.48 77.44 63.79 73.35 93.49 3 59.82 

5S-5LI60F-III**  25 60 243 “ 68.48 77.44 63.79 72.55 93.49 3 59.82 

3S-8LI60-III 22 60 162 F6/300 112.82 119.58 112.25 112.30 97.54 3 109.30 

5S-8LI60-III 19 60 162 F6/200 123.34 122.74 132.00 122.45 92.61 3 114.69 

3S-6LV-III 45 90 180 F6/300 58.24 26.62 66.53 39.58 120.00 6 35.04 

3S-10LV-III 32 90 114 “ 97.50 82.41 85.21 83.25 78.76 3 60.23 

I) beams tested by Dias & Barros (2006) and characterized by a/d equal to 2.5 and cmf  equal to 

31.1 MPa; II) beams tested by Dias et al. (2007) and characterized by a/d equal to 2.5 and cmf  

equal to 18.6 MPa; III) beams tested by Dias (2008) and characterized by a/d equal to 3.3 and 

cmf  equal to 59.4 MPa. 

* beams whose experimental value of NSM shear strength contribution is affected by some 
disturbance; 
** beams which were subjected to pre-cracking. 
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FIGURE CAPTIONS 

 

Fig. 1. Main physical-mechanical features of the theoretical model and calculation procedure: 

a) average-available-bond-length NSM strip and relevant prism of surrounding concrete, b) adopted local bond 

stress-slip relationship, c) NSM strip confined to the corresponding prism of surrounding concrete and 

semi-pyramidal fracture surface, d) sections of the concrete prism. 

Fig. 2. Calculation procedure: main algorithm. 

Fig. 3. Determination of bond-based constitutive law ( );bd
fi Li RfiV Lδ  and bond transfer length ( ), ;bd

tr fi Li RfiL Lδ : 

(a) invariant distribution of bond shear stress ( )xτ  and slip ( )xδ  for an infinite value of RfiL  and (b-g) singling 

out of the three bond phases and relative limits (( ) 1,2,3Li RfiL iδ = ) as a result of the progressive migration of 

( )xτ  from the Loaded End (LE) towards the Free End (FE) for whatever value of RfiL  and by increasing Liδ . 

Fig. 4. Bond-based constitutive law of a single NSM FRP strip: (a) relationship between the bond transfer length 

( ), ;bd
tr fi Li RfiL Lδ  and the imposed end slip Liδ  for different values of resisting bond length RfiL ; (b) 

bi-dimensional and (c) three-dimensional representation of the relationship  between the force transferrable by 

bond ( );bd
fi Li RfiV Lδ  and Liδ  for different values of RfiL . 

Fig. 5. Determination of the comprehensive constitutive law: flow chart. 

Fig. 6. Single NSM FRP strip comprehensive constitutive law in the case in which concrete fracture remains 

shallow: a) resulting constitutive law ( );fi fi LiV L δ  in a bi-dimensional representation, b) resulting overall transfer 

length ( ), ;tr fi fi LiL L δ , c) section of the concrete prism and occurrence of subsequent fractures and d) resulting 

constitutive law ( );fi fi LiV L δ  in a three-dimensional representation. Note that this plot has been done for an 

initial resisting bond length equal to the effective bond length but this does not affect the generality of the 

exposition. 

Fig. 7. Single NSM FRP strip comprehensive constitutive law in the case in which concrete fracture is deep: a) 

resulting constitutive law ( );fi fi LiV L δ  in a bi-dimensional representation, b) resulting overall transfer length 

( ), ;tr fi fi LiL L δ , c) section of the concrete prism and occurrence of subsequent fractures and d) resulting 

constitutive law ( );fi fi LiV L δ  in a three-dimensional representation. Note that this plot has been done for an 
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initial resisting bond length equal to the effective bond length but this does not affect the generality of the 

exposition. 

Fig. 8. Possible comprehensive constitutive law of an NSM CFRP strip confined within a prism of concrete: 

(a) concrete that reaches the inner tip (1u = ) or strip tensile rupture ( 2u = ), (b) superficial and/or absent 

concrete fracture and ultimate resisting bond length smaller ( 3u = ) or equal ( 4u = ) to the effective bond length, 

(c)  superficial and/or absent concrete fracture and ultimate resisting bond length larger ( 5u = ) than the effective 

bond length and (d) deep concrete fracture (6u = ). 

Fig. 9. Maximum effective capacity along the CDC for the cases of concrete fracture that reaches the inner tip 

( 1u = ) or strip’s tensile rupture ( 2u = ): a) capacity ( ), ;fi CDCV γ ξ  and c) imposed end slip ( ), ;Li CDCδ γ ξ  

distribution along the CDC  for different values of the CDC opening angle γ , b) comprehensive constitutive law 

and d) effective capacity as function of the CDC opening angle γ .  

Fig. 10. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length smaller than the effective bond length ( 3u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 

Fig. 11. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length equal to the effective bond length ( 4u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 

Fig. 12. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length larger than the effective bond length ( 5u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 

Fig. 13. Maximum effective capacity along the CDC for the case of deep concrete fracture ( 6u = ): a) capacity 

( ), ;fi CDCV γ ξ  and c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC 

opening angle γ , b) comprehensive constitutive law and d) effective capacity as function of the CDC opening 

angle γ . 
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Fig. 1. Main physical-mechanical features of the theoretical model and calculation procedure: 

a) average-available-bond-length NSM strip and relevant prism of surrounding concrete, b) adopted local bond 

stress-slip relationship, c) NSM strip confined to the corresponding concrete prism of surrounding concrete and 

semi-pyramidal fracture surface, d) sections of the concrete prism. 
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Evaluation of the bond constitutive law of the average length NSM strip
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Evaluation of the comprehensive constitutive law of the average length strip

; ; ; ; ; ; ;bd
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,

Evaluation of the maximum effective capacity of the average NSM FRP strip
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Application of the Shear Formula 

2 sinl
f f fi effV N V β= ⋅ ⋅ ⋅

 

Fig. 2. Calculation procedure: main algorithm. 
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Fig. 3. Determination of bond-based constitutive law ( );bd
fi Li RfiV Lδ  and bond transfer length ( ), ;bd

tr fi Li RfiL Lδ : 

(a) invariant distribution of bond shear stress ( )xτ  and slip ( )xδ  for an infinite value of RfiL  and (b-g) singling 

out of the three bond phases and relative limits (( ) 1,2,3Li RfiL iδ = ) as a result of the progressive migration of 

( )xτ  from the Loaded End (LE) towards the Free End (FE) for whatever value of RfiL  and by increasing Liδ . 
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Fig. 4. Bond-based constitutive law of a single NSM FRP strip: (a) relationship between the bond transfer length 

( ), ;bd
tr fi Li RfiL Lδ  and the imposed end slip Liδ  for different values of resisting bond length RfiL ; (b) 

bi-dimensional and (c) three-dimensional representation of the relationship between the force transferrable by 

bond ( );bd
fi Li RfiV Lδ  and Liδ  for different values of RfiL . 
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Fig. 5. Determination of the comprehensive constitutive law: flow chart. 
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Fig. 6. Single NSM FRP strip comprehensive constitutive law in the case in which concrete fracture remains 

shallow: a) resulting constitutive law ( );fi fi LiV L δ  in a bi-dimensional representation, b) resulting overall transfer 

length ( ), ;tr fi fi LiL L δ , c) section of the concrete prism and occurrence of subsequent fractures and d) resulting 

constitutive law ( );fi fi LiV L δ  in a three-dimensional representation. Note that this plot has been done for an 

initial resisting bond length equal to the effective bond length but this does not affect the generality of the 

exposition. 
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Fig. 7. Single NSM FRP strip comprehensive constitutive law in the case in which concrete fracture is deep: a) 

resulting constitutive law ( );fi fi LiV L δ  in a bi-dimensional representation, b) resulting overall transfer length 

( ), ;tr fi fi LiL L δ , c) section of the concrete prism and occurrence of subsequent fractures and d) resulting 

constitutive law ( );fi fi LiV L δ  in a three-dimensional representation. Note that this plot has been done for an 

initial resisting bond length equal to the effective bond length but this does not affect the generality of the 

exposition. 
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Fig. 8. Possible comprehensive constitutive law of a NSM FRP strip confined to a prism of concrete: (a) concrete 

that reaches the free extremity ( 1u = ) or strip tensile rupture ( 2u = ), superficial and/or absent concrete fracture 

and ultimate resisting bond length (b) smaller (3u = ) or equal ( 4u = ) or (c) larger ( 5u = ) than the effective 

bond length and (d) deep concrete fracture (6u = ). 
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Fig. 9. Maximum effective capacity along the CDC for the cases of concrete fracture that reaches the strip’s free 

extremity ( 1u = ) or strip’s tensile rupture ( 2u = ): a) capacity ( ), ;fi CDCV γ ξ  and c) imposed end slip 

( ), ;Li CDCδ γ ξ  distribution along the CDC for different values of the CDC opening angle γ , b) comprehensive 

constitutive law and d) effective capacity as function of the CDC opening angle γ .  
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Fig. 10. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length smaller than the effective bond length ( 3u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 
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Fig. 11. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length equal to the effective bond length ( 4u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 
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Fig. 12. Maximum effective capacity along the CDC for the case of shallow concrete fracture and an ultimate 

value of the resisting bond length larger than the effective bond length ( 5u = ): a) capacity ( ), ;fi CDCV γ ξ  and 

c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC opening angle γ , 

b) comprehensive constitutive law and d) effective capacity as function of the CDC opening angle γ . 
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Fig. 13. Maximum effective capacity along the CDC for the case of deep concrete fracture ( 6u = ): a) capacity 

( ), ;fi CDCV γ ξ  and c) imposed end slip ( ), ;Li CDCδ γ ξ  distribution along the CDC  for different values of the CDC 

opening angle γ , b) comprehensive constitutive law and d) effective capacity as function of the CDC opening 

angle γ . 

 

 

 

 

 

 

 

 

 

 

 

 


