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1 INTRODUCTION 
 

A new strengthening technique for concrete structures failing in shear was developed based on 
introducing laminates of Carbon Fiber Reinforced Polymer (CFRP) into slits made on the concrete 
cover of the lateral faces of the beams to be strengthened (Figure 1). The designation of this 
strengthening technique is Near Surface Mounted (NSM) with CFRP laminates. Existing Reinforced 
Concrete (RC) beams requiring shear strengthening intervention often have a certain percentage of 
steel stirrups. This paper presents an experimental program carried out with aim of estimating the 
influence of the percentage of existing steel stirrups in the effectiveness of the NSM shear 
strengthening technique using CFRP laminates. For this purpose, six CFRP shear strengthening 
configurations were applied in T cross section RC beams with a percentage of steel stirrups (ρsw) 
equal 0.10% and 0.17%. The main results of this experimental research are presented and analyzed. 
 
2 EXPERIMENTAL STUDY 
 
2.1 Test series and materials 

Figure 1 presents the T cross section beam prototype used in the experimental program, which 
was composed by fourteen beams. The reinforcement systems were designed to assure shear failure 
mode for all the tested beams. To avoid shear failure in the Lr beam span, steel stirrups φ6@75mm 
were applied in this span. The differences between the tested beams are restricted to the shear 
reinforcement systems applied in Li beam span. The experimental program was made up of seven 
beams with steel stirrups φ6@300mm (ρsw = 0.10%) and seven beams with steel stirrups φ6@180mm 
(ρsw = 0.17%). According to Table 1, six NSM CFRP shear strengthening configurations were applied 
in beams with ρsw = 0.10% and beams with ρsw = 0.17%. Two distinct levels of percentage of CFRP 
laminates were studied and, for each CFRP percentage (ρf), three inclinations for the laminates, 90º, 
60º and 45º, were analysed (Table 1 and Figure 2). For both percentages of CFRP, the spacing of 
laminates for each inclination was obtained with the purpose that the contribution of the CFRP would 
be similar [1]. The laminates had a cross section area of 9.5×1.4 mm2. 

The average compressive strength at the date of beam testing was evaluated from uniaxial 
compression tests with cylinders (150 mm diameter and 300 mm height) according to EN 206-1 [2] 
and the value obtained was 39.7 MPa. The properties of the steel bars were obtained from uniaxial 
tensile tests, carried out according to EN 10 002-1 [3] (Table 2). For the laminates (S&P Laminates 
CFK 150/2000), six tests were also carried out according to the ISO 527-5 [4] recommendations, from 
which the following average values were obtained: maximum tensile strength = 2741.7 MPa, Young’s 
modulus = 170900 MPa, ultimate tensile strain = 1.6%. The MBrace Resin 220 [5] epoxy adhesive 
was used to bond the laminates to the concrete. 

 
Table 1 CFRP shear reinforcement configurations of the tested beams. 

CFRP quantity CFRP percentage 
(%) 

CFRP spacing 
(mm) 

Angle a 
(º) 

Beams b 
(ρsw = 0.10%) 

Beams c 
(ρsw = 0.17%) 

2×4 laminates 0.08 180 90 2S-4LV 4S-4LV 
2×4 laminates 0.08 275 45 2S-4LI45 4S-4LI45 
2×4 laminates 0.07 243 60 2S-4LI60 4S-4LI60 
2×7 laminates 0.13 114 90 2S-7LV 4S-7LV 
2×7 laminates 0.13 157 45 2S-7LI45 4S-7LI45 
2×6 laminates 0.11 162 60 2S-6LI60 4S-6LI60 

a Angle between the CFRP fiber direction and the beam axis; b 2S-R is the reference beam without CFRP (Figure 2);                                                       
c 4S-R is the reference beam without CFRP (Figure 2).                        
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Table 2 Properties of the steel bars. 
Property φ6 φ12 φ16 φ32 

Yield stress 542 MPa 453 MPa 447 MPa 759 MPa 
Maximum strength 594 MPa 591 MPa 566 MPa 902 MPa 
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Fig 1 (a) Tested beams: geometry, steel reinforcements applied in all beams and CFRP strengthening of the most 
loaded beam support (to avoid concrete spalling); (b) Shear strengthening by NSM with CFRP laminates.  
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Fig 2 Localization of the steel stirrups (continuous line) and CFRP laminates (dashed line) (dimensions in mm). 
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2.2 Discussion of test results  
The recorded force-displacement diagrams (F-u) in the loaded section obtained for the tested 

beams are reported in Figure 3. Up to critical diagonal crack (CDC) initiation the strengthened and its 
corresponding reference beam had similar F-u, regardless of ρsw and ρf. At CDC initiation the load 
decay observed in the reference beams did not occur in the CFRP shear strengthened beams, 
revealing that the presence of the CFRP delayed the propagation of the shear crack. This results in an 
increase of beam stiffness, maximum load (Fmax) and corresponding deflection at loaded-section 
(uFmax). The Fmax and uFmax values for all the tested beams are included in Table 3. 
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Fig 3 Force vs deflection at the loaded-section for: (a) beams with ρsw = 0.10% and the lower percentage of 
CFRP; (b) beams with ρsw = 0.17% and the lower percentage of CFRP; (c) beams with ρsw = 0.10% and the 

higher percentage of CFRP; (d) beams with ρsw = 0.17% and the higher percentage of CFRP. 
 

Table 3 Relevant results in terms of the load capacity up to beam’s failure. 
CFRP Beams 

(ρsw = 0.10%) 
Fmax 
(kN) 

Gain due to 
CFRP (%)

uFmax 
(mm) 

Beams 
(ρsw = 0.17%)

Fmax 
(kN) 

Gain due to 
CFRP (%) 

uFmax 
(mm) Percentage (%) Angle (º)

- - 2S-R 303.8 - 5.88 4S-R 371.4 - 6.25 
0.08 90 2S-4LV 337.4 11.1 7.14 4S-4LV 424.5 14.3 9.32 
0.08 45 2S-4LI45 392.8 29.3 6.45 4S-4LI45 442.5 19.1 7.93 
0.07 60 2S-4LI60 386.4 27.2 6.90 4S-4LI60 443.8 19.5 6.91 
0.13 90 2S-7LV 374.1 23.1 7.17 4S-7LV 427.4 15.1 9.75 
0.13 45 2S-7LI45 421.7 38.8 7.93 4S-7LI45 478.1 28.7 8.26 
0.11 60 2S-6LI60 394.4 29.8 7.87 4S-6LI60 457.6 23.2 7.31 

 
The CFRP shear strengthening configurations provided an increase in maximum load between 

11% and 39% of the maximum load of the reference beams (see Table 3 and Figure 4). Independently 
of the percentage of CFRP and the percentage of existing steel stirrups, the inclined laminates were 
more effective than vertical laminates. An increase of the percentage of CFRP produced an increase 
of the shear strengthening contribution. The contribution of the NSM CFRP laminates for the beam 
shear resistance was limited by the concrete tensile strength, since at failure, a certain concrete 
volume was attached to the laminates. The failure modes of the beams with NSM laminates are 
influenced by the percentage of the CFRP. In some beams with the higher percentage of CFRP 
occurred a group effect between neighbouring laminates that originated a separation of parts of the 

(b) (a) 

(c) (d) 
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concrete cover, which had already been observed in previous experimental programs [1,6]. 
Figures 3 and 4 shows that the amount of existing steel stirrups plays a very important role on the 

effectiveness of the NSM shear strengthening technique with CFRP laminates. In fact, the 
effectiveness of the CFRP was higher in the beams with the lower percentage of steel stirrups 
analysed (ρsw = 0.10%). According to Figure 4, for an increase from 0.1% to 0.17% in the percentage 
of steel stirrups in the Li beam span (about 70%), the NSM strengthening effectiveness decreased in 
about 70% (the value regarding the lower percentage of vertical laminates was excluded for this 
evaluation). It emerges that a formulation for the prediction of the NSM shear strengthening 
contribution cannot neglect the percentage of existing steel stirrups. 
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Fig 4 Influence of the percentage of existing steel stirrups in the effectiveness of the NSM shear strengthening 

technique using CFRP laminates. 
 
3 CONCLUSIONS 
 

The following conclusions can be obtained from the experimental results: 
• NSM technique with CFRP laminates provided a significant contribution for the shear 

resistance of T section RC beams. Inclined laminates were more effective than vertical 
laminates. An increase of the percentage of laminates produced an increase of the shear 
capacity of the beams. 

• The contribution of the NSM CFRP laminates for the beam shear resistance is limited by the 
concrete tensile strength. The failure modes of the beams with NSM laminates are influenced 
by the percentage of the CFRP. 

• An interaction between the percentage of steel stirrups and the CFRP laminates was 
observed, resulting a detrimental effect in terms of the effectiveness of the NSM technique for 
the shear resistance of RC beams. 

• An analytical formulation for the prediction of the NSM shear strengthening contribution should 
take into account the concrete mechanical properties, the percentage and orientation of the 
CFRP and the percentage of the existing steel stirrups. 
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