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Abstract 
Gluing of FRP strips within thin shallow slits cut in the concrete cover of RC beams is a 
strengthening technique that is gaining increasing attention in the FRP community. It has 
proven to be effective for both shear and flexural strengthening of existing RC structures that 
need a retrofitting intervention. Recent findings have highlighted that such near surface 
mounted (NSM) strips may fail due to: debonding, concrete semi-conical tensile fracture and 
strip tensile rupture. The necessity to improve an analytical model for predicting the NSM 
FRP strips shear strength contribution led to further address issues related to bond mechanism 
through which force in the strip is transferred to the surrounding concrete. A new local bond 
stress-slip relationship is proposed and closed-form equations to be implemented in that 
analytical model are derived and appraised on the basis of some of the most recent 
experimental results. 
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1. Introduction 
In the framework of a study aiming at developing a comprehensive analytical model for 
predicting the NSM FRP strips shear strength contribution to RC beams [1], it was demonstrated 
that the failure modes affecting the behaviour, at ultimate, of the NSM FRP strips include: strip 
tensile rupture, concrete semi-conical tensile fracture and debonding (Fig. 1). Concrete semi-
conical fracture occurs when the force transferred by bond to the surrounding concrete is such as 
to induce principal tensile stresses in the concrete exceeding its tensile strength. Concrete 
fractures along a surface, envelope of the compression isostatics, whose shape can be 
conveniently assumed as semi-conical. The term “debonding” is adopted to designate failure 
occurring within the adhesive or just a few millimetres inside the surrounding concrete. In that 
occasion, the modelling strategy adopted to simulate the concrete fracture failure mode was 
developed in closed form, resulting robust and rational. However, the strategy adopted to simulate 
the possibility of debonding was based on analytical expressions obtained by regression of 
experimental data. That part of the analytical model resulted, this way, not scientifically rigorous 
and therefore, susceptible of improvements. Moreover, among the possible failure modes 
affecting the behaviour, at ultimate, of an NSM CFRP strip, a mixed failure mode composed of a 
shallow semi-cone plus debonding should be also taken into consideration (Fig. 1d). The 
possibility of this latter failure mode can be easily explained considering the interaction between 
the progressive value of force transferred by bond to the concrete, due to the imposed end slip 



consequent to the shear crack widening process and originating at the end of the strip available 
bond length lying on the critical diagonal crack (CDC), and the progressive concrete fracture 
capacity. The details of that interaction are herein omitted for the sake of brevity but can be found 
elsewhere [2,3]. 

a) b)

c) d)
 e) 

Fig. 1. Possible failure modes of an NSM FRP strip: a) debonding; b) strip tensile rupture; 
c) concrete semi-conical tensile fracture; d) mixed shallow semi-cone plus debonding; and e) 

proposed local bond stress-slip relationship. 

2. Debonding Model 
The understanding and analytical modelling of debonding, affecting the behaviour of 
externally bonded FRPs, has reached to date a high level of accuracy [4,5]. As regards more 
specifically the case of NSM strips it arises, from the most recent works [6-8], that debonding 
is more complicated, mainly due to the higher number of parameters it depends on. Moreover, 
several aspects still need to be clarified. In the present work a new interpretation of the 
phenomenon is provided. By analyzing the most recent specialized publications, regarding the 
newest findings in terms of the use of high performance adhesives in engineering applications 
[9,10], it arises that, due to the relative novelty of those materials, a lot of aspects still need to 
be clarified, even from a micro-structural and chemical standpoint. In that scenario, a new 
interpretation of the phenomenon of loss of bond for an NSM FRP strip is provided by putting 
forward some hypotheses that should be further confirmed, a posteriori, also by means of 
more specialized contributions. 

2.1 Local Bond Stress-Slip Relationship 
The local bond stress-slip relationship herein proposed to simulate the subsequent phases 
undergone by bond during the loading process is composed of four different linear branches 
(Fig. 1e). Those phases, representing the physical phenomena occurring in sequence within 
the adhesive layer by increasing the imposed end slip, are: “elastic”, “softening”, “softening 
friction” and “free slipping”. The first rigid branch ( )00 τ−  represents the overall initial shear 
strength of the joint, independent of the deformability of the adhesive layer and attributable to 
the micro-mechanical and chemical properties of the involved materials and interfaces. In 
fact, the parameter 0τ  is the average of the following physical entities encountered in 
sequence by forces flowing from the strip to the surrounding concrete, i.e.: adhesion at the 
strip-adhesive interface, cohesion within the adhesive itself, and adhesion at the adhesive-
concrete interface. From 0τ  up to the peak strength 1τ , a macro-mechanical strength due to 
the adhesive layer elastic stiffness adds to the constant adhesive-cohesive strength. That 
macro-mechanical strength due to the elastic stiffness of the intact adhesive layer can be 



conveniently modelled by a linear elastic behaviour. Approaching the peak strength, the 
adhesive fractures along diagonal planes orthogonal to the traction isostatics as was outlined 
by means of post-test optical microscope photos [8] and finite element materially nonlinear 
analysis [7]. During the subsequent softening phase, force is transferred from the strip to the 
surrounding concrete by the resulting diagonal micro-struts. Throughout the softening phase, 
by increasing the imposed slip, the adhesive at the extremities of those struts progressively 
deteriorates, so that, by increasing the imposed slip, micro-cracks parallel to the strip start to 
appear at both the strip-adhesive and adhesive-concrete interfaces. Approaching the softening 
friction phase, the softening resisting mechanism is gradually replaced by friction and 
micro-mechanical interlock along those micro-cracks. Nonetheless, even those mechanisms 
undergo softening due to progressive degradation. When the resisting force provided by 
friction is exhausted, those micro-cracks result in smooth discontinuities. The free slipping 
phase follows, during which the strip keeps being pulled out without having to overcome any 
opposing restraint left. For computational ease, both softening and softening-frictional 
behaviours are modelled as linear. The resulting analytical relationship is the following: 
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2.2 Governing Equations 
The analytical expressions are derived hereafter with reference to a typical push-pull test of an 
FRP strip near surface mounted on a concrete prism. The strip width and thickness are 
denoted by fb  and fa , respectively, and those of the concrete prism by  and , 
respectively. The strip and concrete Young’s modulus is 

cb ca

fE  and , respectively. Based on 
equilibrium considerations, the following fundamental equations can be written: 

cE

( ) ( ) ( ) ( )0 and 0
σ

τ σ σ− ⋅ = ⋅ + ⋅ =f p
f f c c

f

d x L
x x A x

dx A
A         (2) 

where ( )xτ  is the shear stress acting on the surface of the strip, ( )xfσ  is the axial stress in the 
strip, ( )xcσ  is the axial stress in the concrete prism, fA  ( f fa b⋅ ) and  ( ) are the area 
of the cross-section of the strip and concrete prism, respectively, and 

cA c ca b⋅

pL  is the effective bond 
perimeter of the strip cross-section, i.e.: 

2p f fL b a= ⋅ +            (3) 

The constitutive equations for the adhesive layer and the two adhering materials can be 
written as: 

( ) and andτ τ δ σ σ= = ⋅ =f c
f f c c

du duE
dx dx

⋅E        (4) 

The interfacial slip δ  is defined as the punctual relative displacement between the two 
adhering materials, that is: 



( ) ( ) ( )δ = −f cx u x u x           (5) 

The governing differential equation can be obtained by introducing Eqs. (3)-(5) into Eq. (2), 
resulting in: 

( )
2

1 12

10 withδ τ δ
⎛ ⎞

⎡ ⎤− ⋅ = = ⋅ +⎜⎣ ⎦ ⎜ ⋅⎝ ⎠

p ⎟⎟
f

f f c c

L Ad x J J
dx A E A E

     (6) 

Eq. (6) can be solved once the local bond stress-slip model of Eq. (1) is reliably known. Once 
the relationship ( )xδ  has been obtained by solving Eq. (6) with the convenient boundary 
conditions, the expressions for the stress in the strip and the tangential stress along this latter 
can be deduced as follows [2]: 
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and: 

( ) ( )
2

3 32 withδτ
⋅ ⋅ ⋅

= ⋅ =
⋅ ⋅ + ⋅

f f c c

p c c f f

E A E Adx J J
dx L E A E A

       (8) 

2.3 Debonding process for an infinite bond length 
The entire debonding process affecting the behaviour of an NSM strip is herein described by 
distinguishing the several subsequent phases and by referring to an infinite bond length. 
Those phases are singled out according to the value of the imposed slip and with respect to 
the assumed local ‘bond stress-slip’ relationship. Further details can be found elsewhere [2]. 
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Fig. 2. Differentt phases of the debonding failure occurring within the adhesive layer for an 
infinite bond length: a) elastic; b) softening; c) softening friction; d) free slipping.  

 



2.3.1 Elastic phase 

When the imposed end slip is 1Liδ δ≤ , the governing differential equation solved in the local 
reference system  originating in the leftward unloaded extremity of the transfer length, 
becomes (see Fig. 2a): 
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and the boundary conditions are: 

( )0  at  0 and   at  δ δ δ δ= = = =e e e e e
Li tr Lix x L                     (10) 

By solving the resulting equations, the following expressions of the integration constants are 
obtained: 
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And the expression for the interfacial slip: 
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The corresponding expressions for the axial stress in the laminate and the bond stress are 
determined by introducing Eq. (12) into Eqs. (7) and (8), respectively. By imposing the 
equilibrium condition: 
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the expression of the transfer length for the first phase can be obtained as function of the 
imposed slip: 
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The force transferred by bond to the surrounding concrete, along the transfer length ( )e
tr LiL δ , 

can be determined as follows: 
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e
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The transfer length at the end of the elastic phase  and the corresponding value of force 
transferred to concrete , both invariants for given input parameters, are obtained 
respectively by Eq. (14) and (15) imposing 
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2.3.2 Softening phase 

When the imposed slip is , the solving differential equation, limited to the amount 
of the total transfer length in the softening phase, becomes (see Fig. 2b): 

1 Liδ δ δ< ≤
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and the boundary conditions, for a reference system sox  that originates at the point of the 
bond length where slip is equal to 1δ , are: 

1   at  0 and   at  δ δ δ δ= = = =s s s s s
Li trx x L          (18) 

By solving the resulting equations, the following expressions of the integration constants are 
obtained: 
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The expression for the interfacial slip is: 
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The expression of the transfer length ( )s
tr LiL δ  corresponding to the amount of the infinite 

bond length undergoing softening is: 
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The overall transfer length, for , is then: 1 Liδ δ δ< ≤ 2

)( ) (1δ δ= + s
tr Li tr tr LiL L L            (23) 

and the force transferred by bond to the surrounding concrete is: 
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The maximum value of the transfer length that can undergo softening and the relevant value 
of the force transferred to the surrounding concrete are the following invariants: 
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        (25) 

2.3.3 Softening friction phase 
When the imposed slip is larger than the value at which softening friction begins, 

2δ δ δ< ≤Li , the solving differential equation becomes (see Fig. 2c): 

( ) ( )2
3 2

32 2 2
2 1

1 with 1 δ δδ δ δ
γ γ

−
⋅ + = =

⋅

sf
sf sf

sf

d x
dx Jτ

      (26) 

and the boundary conditions, for a reference system sfox  that originates at the point of the 
infinite bond length where slip is equal to 2δ , are: 
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The integration constants are: 
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The expression for the interfacial slip is: 
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The expression of the transfer length ( )δsf
tr LiL  corresponding to the amount of length 

undergoing softening friction is: 
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with: 
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The overall transfer length, for , is: 2 3< ≤Liδ δ δ
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and the value of force transferred by bond to the surrounding concrete: 
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The maximum value of the infinite bond length that can undergo softening friction and the 
relevant value of the force transferred to the surrounding concrete are: 

( ) ( ),
3 3 3   and   sf bd bd sf

tr trL L V Vδ δ= =        (35) 

2.3.4 Free slipping phase 

When the imposed slip is larger than the value at which free slipping begins, 3δ δ>Li , the 
solving differential equation becomes (see Fig. 2d): 
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and the boundary conditions, for a reference system fsox  that originates at the point of the 
bond length where slip is equal to 3δ , are: 
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Li trx x L          (37) 

The integration constants are: 
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The expression for the interfacial slip is: 
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The expression of the transfer length ( )fs
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undergoing free slipping is: 
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The overall transfer length, for , is: 3Liδ δ>
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and the force transferred by bond to the surrounding concrete: 
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2.4 Debonding process for a finite bond length 
Once the constants defining the debonding process have been determined as above specified, 
based on the input parameters, the values of the transfer length (, ;tr i Rfi LiL L δ , the 

corresponding force ( ;bd )fi Rfi LiV L δ  transferred by bond, and the free end slip ( );Fi Rfi LiLδ δ  for 

an imposed slip Liδ  can be determined for whatever value of the resisting bond length RfiL  as 
hereafter specified. Debonding propagation can be thought of as a constant “wave” 
progressing from the loaded end inwards, towards the free extremity of the NSM strip 
(Fig. 3). For the sake of brevity, the expressions for the evaluation of the progressive value of 
force transferred to the surrounding concrete are herein omitted but can be found elsewhere 
[2]. 
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Fig. 3. Debonding process for a finite bond length:  

“bond wave” progressing towards the free end.  



2.4.1 Elastic phase 

If the imposed slip is 10 δ δ≤ ≤Li , the corresponding value of ( )δtr LiL  is calculated by 

Eq. (14) and then, if ( )δ≥Rfi tr LiL L , it is: 
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2.4.2 Softening phase 

If the imposed slip is 1 Li 2δ δ δ< ≤ , the corresponding value of ( )tr LiL δ  is calculated by 

Eq. (23) and then, if (Rfi tr LiL L )δ≥ , it is: 
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2.4.3 Softening friction phase 

If the imposed slip is 2 Li 3δ δ δ< ≤ , the corresponding value of ( )tr LiL δ  is calculated by 

Eq. (33) and then, if (Rfi tr LiL L )δ≥  it is: 
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( ) ( ) ( ) ( ) ( )
2

1

, 1; ; ; ; ;
sf

sf

x
bd sf sf sf sf sf

tr i Rfi Li Rfi fi Rfi Li p Fi Rfi Li
x

L L L V L L x dx L xδ δ τ δ δ= = ⋅ ⋅ =∫ δ

2

               (51) 

with ( ) ( )1 1
sf

tr Li tr tr Rfix L L L Lδ= − + +  and ( ) ( )2 1
sf

tr Li tr tr 2x L L Lδ= − + . 

2.4.4 Free slipping phase 

If the imposed slip is 3Liδ δ> , the corresponding value of ( )tr LiL δ  is calculated by Eq. (41) 

and then, if (Rfi tr LiL L )δ≥  it is: 

( ) ( ) ( ) ( ), 1 2 3; ; ; ; ;δ δ δ δ δ= = + +bd bd bd bd
tr i Rfi Li tr Li fi Rfi Li Fi Rfi LiL L L V L V V V L 0=

)

   (52) 

If (Rfi tr LiL L δ<  and  it is: ( ) 1tr Li Rfi trL Lδ − < L

1δ( ) ( ) ( ) ( ) ( )
1

1

, 2 3; ; ; ; ;δ δ τ δ= = + + ⋅ ⋅ =∫
tr

e

L
bd bd bd e e e e e

tr i Rfi Li Rfi fi Rfi Li p Fi Rfi Li
x

L L L V L V V L x dx δ L x   (53) 

with ( )1 δ= −e
tr Li Rfix L L . If ( )Rfi tr LiL L δ<  and ( ) ( )1 1tr tr Li Rfi tr trL L L L Lδ≤ − ≤ + 2

1δ=

 it is: 

( ) ( ) ( ) ( ) ( )
2

1

, 3; ; ; ; ;δ δ τ δ δ= = + ⋅ ⋅∫
tr

s

L
bd bd s s s s s

tr i Rfi Li Rfi fi Rfi Li p Fi Rfi Li
x

L L L V L V L x dx L x   (54) 

with ( ) ( )1 1δ= − +s
tr Li Rfi trx L L L

)

. 

If (Rfi tr LiL L δ<  and ( ) ( ) ( )1 2 1 2 3tr tr tr Li Rfi tr tr trL L L L L L Lδ+ < − ≤ + +  it is: 

( ) ( ) ( ) ( ) ( )
3

1

, 1; ; ; ; ;
tr

sf

L
bd sf sf sf sf sf

tr i Rfi Li Rfi fi Rfi Li p Fi Rfi Li
x

L L L V L L x dx L xδ δ τ δ δ= = ⋅ ⋅ =∫ δ    (55) 

with ( ) ( )1 1
sf

tr Li tr tr Rfi2x L L L Lδ= − + + . If ( )Rfi tr LiL L δ<  and ( ) ( 1 2 3tr Li Rfi tr tr trL L L L Lδ − > + + ) : 

( ) ( ) ( ) ( ), 1; ; ; 0; ;bd fs fs
tr i Rfi Li Rfi fi Rfi Li Fi Rfi LiL L L V L Lδ δ δ δ= = = xδ      (56) 

with ( ) ( )1 1 2δ= − + + +fs
tr Li tr tr tr Rfi3x L L L L L  

3. Model Appraisal 
The modelling strategy outlined above was appraised on the basis of the experimental results 



of the pull-out bending tests carried out by Sena-Cruz and Barros [8]. In that experimental 
program, those authors intentionally employed fibre reinforced concrete to avoid concrete 
fracture and force debonding to occur. Comparisons between analytical and experimental 
results for some of the specimens tested are plotted in Fig. 4. The generic label adopted for 
each series, composed of three specimens, was fcmXX_LbYY where XX is the concrete 
compressive strength in MPa and YY is the bond length in mm. Herein, the analytical results 
are compared with the experimental recordings regarding the series characterized by concrete 
compressive strength of 45 MPa and with bond lengths 40 and 60 mm, but further 
comparisons can be found elsewhere [2]. The comparison regards both the relationship 
between force and imposed slip and force versus free end slip. From those comparisons, a 
satisfactory data-fitting performance of the proposed model arises. The assumed values of the 
parameters entering the adopted bond stress-slip relationship were: 0τ  equal to 2.0 MPa,  
ranging from 18.0 to 25.0 MPa, 

1τ

2τ  from 7.5 to 11.5 MPa, 1δ  from 0.06 to 0.2 mm, 2δ  from 
0.6 to 0.9 mm and 3δ  from 12.0 to 15.0 mm. Variations in some of those parameters are due to 
inevitable disturbance affecting the experimental results and attributable, for the cases herein 
examined, to the dissymmetrical position of the strip cross section with respect to the groove’s 
and/or some irregularities in the adhesive layer or on either the concrete surface or the 
composite surface. 
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Fig. 4. Appraisal of the proposed model for the pull-out tests [8] for specimens: (a) 
fcm45_Lb40; (b) fcm45_Lb60.  

4. Conclusions 
The need to improve an already existing analytical model developed to predict the NSM shear 
strength contribution for RC beams, led to further address some issues related to debonding 
failure mode. Due to the relative novelty of powerful adhesives in the field of structural 



rehabilitation using FRP composite materials, the necessity arises to further investigate the 
micromechanical and chemical properties of the materials involved. A new physical-
mechanical interpretation of the debonding process and a corresponding simplified analytical 
model of the local ‘bond stress-slip’ relationship were proposed. The entire debonding process 
was described and closed-form analytical expressions to be implemented in the model for 
shear were derived. The comparison between the analytical predictions and some of the most 
accredited experimental results available to date, showed the high level of accuracy of the 
proposed model. 
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