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Abstract

Let (T1, T2) be gap times corresponding to two consecutive events, which are ob-

served subject to (univariate) random right-censoring. The censoring variable cor-

responding to the second gap time T2 will in general depend on this gap time. Sup-

pose the vector (T1, T2) satisfies the nonparametric location-scale regression model

T2 = m(T1) + σ(T1)ε, where the functions m and σ are ‘smooth’, and ε is indepen-

dent of T1. The aim of this paper is twofold. First, we propose a nonparametric

estimator of the distribution of the error variable under this model. This problem

differs from others considered in the recent related literature in that the censoring

acts not only on the response but also on the covariate, having no obvious solution.

On the basis of the idea of transfer of tail information (Van Keilegom and Akritas,

1999), we then use the proposed estimator of the error distribution to introduce

nonparametric estimators for important targets such as: (a) the conditional distri-

bution of T2 given T1; (b) the bivariate distribution of the gap times; and (c) the

so-called transition probabilities. The asymptotic properties of these estimators are

obtained. We also illustrate through simulations, that the new estimators based on

the location-scale model may behave much better than existing ones.
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1 Introduction

Consider two random variables T1 and T2, that represent the duration times between

successive events. This is often encountered in practice. Consider e.g. an AIDS study,

where T1 represents the time between HIV infection and AIDS, and T2 represents the

time between development of AIDS and death of the patient. This model, also called a

progressive three state-model in the context of multi-state models, is also encountered in

studies where T1 is the time between diagnosis of a disease and transplantation, and T2 is

the survival time after transplantation, or in studies where T1 is the time until recurrence

of a disease, and T2 is the time from recurrence to death. Other examples include studies

where one reports the time patients stay in a certain stage of a disease, and studies where

recurrent events are observed (like infections, asthma attacks, ...).

The fact that the variables T1 and T2 are recorded successively, rather than simultane-

ously, is important when the variables are subject to censoring. We consider here random

right censoring. Let C be the (univariate) censoring variable, supposed to be independent

of (T1, T2). When T1 and T2 would be recorded simultaneously, we would observe T1 ∧C,

T2∧C and the corresponding censoring indicators. However, in the present context of suc-

cessive events, we only observe the second gap time if the first failure time is uncensored.

More precisely, the observable variables are given by (T̃1, T̃2,∆1,∆2), where T̃1 = T1 ∧C,

∆1 = I(T1 ≤ C), T̃2 = T2 ∧ C2 and ∆2 = I(T2 ≤ C2), where C2 = (C − T1)I(T1 ≤ C)

is the censoring variable for the second gap time. Note that ∆2 = 1 implies ∆1 = 1.

Hence, ∆2 = ∆1∆2 = I(Y ≤ C) is the censoring indicator pertaining to the total time

Y = T1 + T2. Let (T̃1i, T̃2i,∆1i,∆2i), 1 ≤ i ≤ n, be i.i.d. data with the same distribution

as (T̃1, T̃2,∆1,∆2).

Due to the independence assumption between C and (T1, T2), the marginal distribution

of the first gap time T1 can be consistently estimated by the Kaplan-Meier estimator

based on the (T̃1i,∆1i)’s. Similarly, the distribution of the total time may be consistently

estimated by the Kaplan-Meier estimator based on the (T̃1i + T̃2i,∆2i)’s, since T1 + T2 is

independent of C. However, since T2 and C2 will in general be dependent, the estimation

of the marginal distribution of the second gap time is not such a simple issue. For the same

reason, it is not clear in principle how the conditional distribution F (y | x) = P (T2 ≤ y |
T1 = x) can be efficiently estimated. This situation has been discussed in several papers,

see for example Wang and Wells (1998), Lin et al. (1999), Schaubel and Cai (2004) or

Van Keilegom (2004).

In this paper we will propose and study estimators of the conditional distribution
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F (y | x) = P (T2 ≤ y | T1 = x) of T2 given T1 = x, the bivariate distribution F (x, y) =

P (T1 ≤ x, T2 ≤ y) of T1 and T2, and the so-called transition probabilities (see (2.2), (2.3)

and (2.4) below for their definitions). We will estimate these quantities assuming that the

relationship between the gap times T1 and T2 is given by the following model :

T2 = m(T1) + σ(T1)ε, (1.1)

where the error ε is independent of T1, and where
∫ 1

0
F−1
ε (s)J(s)ds = 0 and

∫ 1

0
F−1
ε (s)2J(s)ds

= 1 (Fε being the distribution of the error ε). Here, J is a score function satisfying∫ 1

0
J(s)ds = 1. This implies that m and σ are L-functionals, given by

m(x) =

∫ 1

0

F−1(s | x)J(s)ds, (1.2)

σ2(x) =

∫ 1

0

F−1(s | x)2J(s)ds−m2(x), (1.3)

where F−1(s | x) = inf{t : F (t | x) ≥ s} is the quantile function of T2 given T1 = x.

Note that when J(s) = I(0 ≤ s ≤ 1), then m(x) = E(Y |x) and σ2(x) = Var(Y |x).

Expressions (1.2) and (1.3) are motivated by the fact that under right censoring, it is

in general impossible to consistently estimate the conditional mean and variance in a

completely nonparametric way, whereas the above choices of m and σ can be estimated

consistently, provided the score function J is chosen appropriately. Model (1.1) has been

extensively studied in Van Keilegom and Akritas (1999) when T1 is completely observed

and T2 is subject to random right censoring.

Note that one often transforms the variable T2 (which is usually positive) in such

a way that the transformed variable ranges from −∞ to +∞ (use e.g. a logarithmic

transformation). We will continue denoting the response by T2, but should keep in mind

that this might represent a transformation of T2.

To explain the motivation for model (1.1), consider for simplicity the case where T1 and

T2 are positively correlated. Then, the higher the value of T1, the higher the probability

that T1 is censored (since T1 and C are independent), and also the higher the probability

that T2 is censored (note that whenever T1 is censored, T2 is also censored). This means

that for large values of T1, the conditional distribution F (y|x) of T2 given T1 = x will be

hard to estimate in a completely nonparametric way, especially in the right tail, whereas

this will not be the case for small values of T1. Under model (1.1) these conditional

distributions are given by

F (y | x) = Fe

(
y −m(x)

σ(x)

)
, (1.4)
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where Fe(y) = P (ε ≤ y), so an estimator for F (y | x) can be obtained by plugging in

proper estimators of the error distribution and of the location and scale functions. Since

the error distribution can be estimated globally (i.e. by using all data points, not only

those in a neighborhood of x), we will be able to estimate well the conditional distribution

even for large values of T1.

Before concluding this section, note that the validity of the location-scale model (1.1)

needs to be verified for a particular data set. This problem has been considered for the

case where all data are completely observed in Einmahl and Van Keilegom (2008a, 2008b)

and Neumeyer (2009). The extension of the tests proposed in these papers to the current

situation of censored data, can be considered but will not at all be straightforward.

The paper is organized as follows. In the next section, we introduce some notations and

give the precise definitions of the estimators of Fe(y), F (y|x), F (x, y) and of the transition

probabilities. Section 3 deals with the asymptotic properties of these estimators, while

their finite sample performance is investigated in Section 4. Finally, the proofs of the

asymptotic results are collected in the Appendix.

2 The estimators

We will assume throughout that the support of T1 lies in (0,∞), whereas T2 is defined on

(a subset of) (−∞,+∞). This is because T2 is allowed to represent a transformation of

the second gap time (see Section 1 for more details).

Since C and (T1, T2) are independent, and since the error ε is independent of the ‘co-

variate’ T1, we have that ε and (T1, C) are independent. As a result, the error distribution

based on those errors for which T1 is uncensored (i.e. T1 ≤ C) coincides with the true

error distribution. Moreover,

Fe(y) = P (ε ≤ y) = P (ε ≤ y | ∆1 = 1) = P (ε ≤ y | ∆1 = 1, T1 ≤ τ1),

for any constant τ1, since ε and T1 are independent. This relation will be used to estimate

Fe(y). To do so, we first need to estimate m(·) and σ(·), for which we follow the approach

used in Van Keilegom and Akritas (1999), but with the Beran (1981)-estimator replaced

by a proper conditional distribution which copes with the censoring on the covariate.

More precisely, we define

m̂(x) =

∫ 1

0

F̃−1(s | x)J(s)ds, σ̂2(x) =

∫ 1

0

F̃−1(s | x)2J(s)ds− m̂2(x),
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where

F̃ (y | x) = 1−
∏

T2i≤y,∆2i=1

[
1− Bni(x; an)∑n

j=1 Bnj(x; an)I(T2j ≥ T2i)

]

for y ≤ T2(n) (the largest order statistic of the T2i’s), and F̃ (y | x) = 1 for y > T2(n). Here

Bni(x; an) =
∆1iK ((x− T1i) /an)∑n
j=1 ∆1jK ((x− T1j) /an)

,

an stands for a sequence of bandwidths, K is a probability density function (kernel),

and by convention 0/0 = 0. Note that Bni(x; an) = 0 whenever ∆1i = 0. This is

justified by the fact that, under independence of C and (T1, T2), we have that F (y | x) =

P (T2 ≤ y | T1 = x,∆1 = 1), and so one can restrict to the uncensored ‘covariates’. See

also Van Keilegom (2004).

Now, define

Êi =
T̃2i − m̂(T̃1i)

σ̂(T̃1i)

(i = 1, . . . , n) and let F̂e be the Kaplan-Meier estimator of Fe (which we suppose to be

continuous) based on the (Êi,∆2i)’s for which ∆1i = 1 and T̃1i ≤ τ1, i.e.

F̂e(y) = 1−
∏

Ê(i)≤y,∆2(i)=1

(
1− 1

Nuτ − i+ 1

)
(2.1)

for y ≤ Ê(Nuτ ), and F̂e(y) = 1 for y > Ê(Nuτ ). Here, Ê(i) (i = 1, . . . , Nuτ ) is the i-th order

statistic of the Êj, j = 1, . . . , n, for which ∆1j = 1 and T̃1j ≤ τ1, ∆2(i) is the corresponding

censoring indicator, and Nuτ =
∑n

i=1 I(∆1i = 1, T̃1i ≤ τ1). The restriction to T̃1i’s that

are smaller than τ1 is purely of technical nature (it has to do with the uniform consistency

of m̂(x) and σ̂(x), which is only established on a compact interval), and can be dropped

when T̃1 has bounded support. We will see below that τ1 can be chosen arbitrarily close

to the right endpoint of the support of the variable T̃1, and is therefore of no importance

in practical calculations.

When P (∆1 = 1) = 1 and T̃1 has bounded support, asymptotic properties of F̂e

were investigated in Van Keilegom and Akritas (1999). By following similar arguments,

properties for the current, more general case, will be derived. However, we will have to

cope with the risk of censoring on the ‘covariate’ T1. As is clear from (2.1), the censored

T̃1i’s are not used to estimate Fe(y). However, they will play a role when computing the

empirical version of the bivariate distribution and the transition probabilities.
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The estimator F̂e(y) defined in (2.1), together with relation (1.4), is the key for the

construction of an estimator of F (y | x) :

F̂ (y | x) = F̂e

(
y − m̂(x)

σ̂(x)

)
.

This estimator will be more efficient than F̃ (y | x), since it allows for the transfer of tail

information from lightly censored areas to heavily censored ones. See Van Keilegom et al.

(2001) for illustrative simulation results in this regard, in the case where the covariate is

uncensored.

Next, we estimate the bivariate distribution F (x, y). First, note that

F (x, y) =

∫ x

0

F (y | u)F1(du) =

∫ x

0

Fe

(
y −m(u)

σ(u)

)
F1(du),

where F1(x) = P (T1 ≤ x) is the marginal distribution of T1. We estimate F1(x) by the

Kaplan-Meier estimator based on the (T̃1i,∆1i)’s :

F̂1(x) = 1−
∏

T̃1(i)≤x,∆1(i)=1

(
1− 1

n− i+ 1

)

for x ≤ T̃1(n), and F̂1(x) = 1 for x > T̃1(n). Here, T̂1(i) (i = 1, . . . , n) is the i-th order

statistic of the T̂1j, j = 1, . . . , n and ∆1(i) is the corresponding censoring indicator, and

define

F̂ (x, y) =

∫ x

0

F̂ (y | u) F̂1(du) =

∫ x

0

F̂e

(
y − m̂(u)

σ̂(u)

)
F̂1(du).

Note that the estimation of the bivariate distribution from censored gap times has been

considered in several papers, including Wang and Wells (1998) and Lin et al. (1999).

Recently, de Uña-Álvarez and Meira-Machado (2008) introduced a simple method which

(unlike previous proposals) leads to a proper distribution function, avoiding the negative

weighting of data points. In Section 4 we carry out some simulations which will indicate

that the estimator F̂ (x, y) based on the location-scale model is more efficient.

Consider now the problem of estimating a transition probability pij(s, t). In general,

pij(s, t) stands for the probability of being in state j at time t, conditionally on being

in state i at time s. The transition probability is defined for a stochastic process that

at any point in time may occupy one state among a discrete set of states. This type of

process is modelled through the so-called multi-state models (see for example Hougaard,

2000), and then the survival prognosis is performed via the estimation of these transition

probabilities or related curves (such as the transition intensities). Recurrent events data
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(or gap times) may be seen as arising from a three-state model, in which state 1 represents

‘no event’, and states 2 and 3 represent the occurrence of the first and the second events,

respectively. Possible transitions are from state 1 to state 2, and from state 2 to state 3.

In this model, there are essentially three transition probabilities to estimate (with s < t)

(note that p23(s, t) = 1− p22(s, t), p13(s, t) = 1− p11(s, t)− p12(s, t) and p33(s, t) = 1) :

p11(s, t) = P (T1 > t | T1 > s) =
1− F1(t)

1− F1(s)
, (2.2)

p12(s, t) = P (T1 ≤ t, T1 + T2 > t | T1 > s)

=
1

1− F1(s)

∫ t

s

[1− F (t− u | u)]F1(du), (2.3)

p22(s, t) = P (T1 ≤ t, T1 + T2 > t | T1 ≤ s, T1 + T2 > s)

=

∫ s

0

[1− F (t− u | u)]F1(du)

/∫ s

0

[1− F (s− u | u)]F1(du) . (2.4)

Replace F1 by F̂1 and F (y | x) by F̂ (y | x) to get the following estimators:

p̂11(s, t) =
1− F̂1(t)

1− F̂1(s)
,

p̂12(s, t) =
1

1− F̂1(s)

∫ t

s

[
1− F̂ (t− u | u)

]
F̂1(du),

p̂22(s, t) =

∫ s

0

[
1− F̂ (t− u | u)

]
F̂1(du)

/∫ s

0

[
1− F̂ (s− u | u)

]
F̂1(du) .

In Section 3 the asymptotic properties of a slightly modified version of these estima-

tors are derived. Interestingly, these properties do not rely on the Markov assumption,

typically used in multi-state models, nor on any other simplifying assumption. Since

p̂11(s, t) is a simple function of ordinary Kaplan-Meier estimators, it will not be consid-

ered anymore in this manuscript. Simulations reported in Section 4 compare p̂22(s, t) to

the non-Markovian estimator introduced in Meira-Machado et al. (2006), which does not

make use of the information contained in the location-scale model. These simulations

suggest that the transfer of tail information may improve dramatically the estimation of

the transition probabilities.

3 Main results

In this section we state the asymptotic expansion and the weak convergence of the es-

timators of Fe(y), F (y|x), F (x, y), p12(s, t) and p22(s, t). The asymptotic expansion is
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useful, since it decomposes the estimator in a sum of i.i.d. terms and a remainder term of

smaller order. Based on this decomposition, the weak convergence of the estimator can

then be established. This weak convergence result immediately leads to the construction

of uniform confidence bands and test statistics for hypotheses concerning the functions of

interest.

The notations used in the asymptotic results below are given in Appendix A, whereas

the assumptions under which these results are valid are stated in Appendix B.

Theorem 3.1 Assume (A1)-(A4).

(i) Then,

F̂e(y)− Fe(y) = (np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)ϕ(T̃1i, T̃2i,∆2i, y) +Rn(y),

where sup{|Rn(y)|;−∞ < y ≤ τe} = oP (n−1/2).

(ii) The process n1/2(F̂e(y) − Fe(y)) (−∞ < y ≤ τe) converges weakly to a zero-mean

Gaussian process Z(y) with covariance function

Cov(Z(y), Z(y′)) = p−2
1τ E

{
I(∆1 = 1, T1 ≤ τ1)ϕ(T̃1, T̃2,∆2, y)ϕ(T̃1, T̃2,∆2, y

′)
}
.

Note that, for the usual Kaplan-Meier estimator, the function ϕ in the above i.i.d

representation needs to be replaced by the function ξe defined in Appendix A (see Lo and

Singh (1986)). The extra term in the representation above is caused by the fact that our

estimator of Fe(y) is based on the estimated quantities (T̃2i − m̂(T̃1i))/σ̂(T̃1i), instead of

the unobserved (T̃2i −m(T̃1i))/σ(T̃1i) (i = 1, . . . , n).

Theorem 3.2 Assume (A1)-(A4).

(i) Then,

F̂ (y|x)−F (y|x) = (nanp1)−1h1|u(x)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)hx,y(T̃2i,∆2i)+Rn(y|x),

where sup{|Rn(y|x)|;−∞ < (y −m(x))/σ(x) ≤ τe and x ≤ τ1} = oP ((nan)−1/2).

(ii) The process (nan)1/2(F̂ (y|x)−F (y|x)) (x ≤ τ1 fixed, (y−m(x))/σ(x) ≤ τe) converges

weakly to a zero-mean Gaussian process Z(y|x) with covariance function

Cov(Z(y|x), Z(y′|x)) = p−2
1 h1|u(x)−1‖K‖2

2E[I(∆1 = 1)hx,y(T̃2,∆2)hx,y′(T̃2,∆2)|T̃1 = x],

where ‖K‖2
2 =

∫
K2(u) du.
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Next, we give the asymptotic analysis for the bivariate distribution function estimator.

In the spirit of Akritas (1994) and Van Keilegom and Akritas (1999), the results will be

established for the following slightly modified version of F̂ (x, y):

F̂τ (x, y) =

∫ x

0

F̂ (y ∧ Tt|t) dF̂1(t),

where Tt ≤ τeσ(t) + m(t) of all t. Actually, this F̂τ (x, y) is an estimator for Fτ (x, y) =∫ x
0
F (y∧Tt|t) dF1(t). Note, however, that Fτ (x, y) can become arbitrarily close to F (x, y)

if inf{y;He(y) = 1} = inf{y;Fe(y) = 1} and Tt, respectively τe, is chosen sufficiently close

to τeσ(t) +m(t), respectively inf{y;He(y) = 1}, for all t.

Theorem 3.3 Assume (A1)-(A4).

(i) Then,

F̂τ (x, y)− Fτ (x, y) = n−1

n∑
i=1

gx,y(T̃1i,∆1i, T̃2i,∆2i) +Rn(x, y),

where sup{|Rn(x, y)|; y ∈ IR and x ≤ τ1} = oP (n−1/2).

(ii) The process n1/2(F̂τ (x, y) − Fτ (x, y)) (x ≤ τ1, y ∈ IR), converges weakly to a zero-

mean Gaussian process Z(x, y) with covariance function

Cov(Z(x, y), Z(x′, y′)) = E{gx,y(T̃1,∆1, T̃2,∆2)gx′,y′(T̃1,∆1, T̃2,∆2)}.

As for the bivariate distribution, the results pertaining to the transition probabilities

imply preliminary modification of the estimators. Introduce

p̂12,τ (s, t) =
1

1− F̂1(s)

∫ t

s

[
1− F̂ ((t− r) ∧ Tr | r)

]
F̂1(dr),

p̂22,τ (s, t) =

∫ s

0

[
1− F̂ ((t− r) ∧ Tr | r)

]
F̂1(dr)

/ ∫ s

0

[
1− F̂ ((s− r) ∧ Tr | r)

]
F̂1(dr),

and define also

p12,τ (s, t) =
1

1− F1(s)

∫ t

s

[1− F ((t− r) ∧ Tr | r)]F1(dr)

p22,τ (s, t) =

∫ s

0

[1− F ((t− r) ∧ Tr | r)]F1(dr)
/ ∫ s

0

[1− F ((s− r) ∧ Tr | r)]F1(dr).
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Theorem 3.4 Assume (A1)-(A4).

(i) Then,

p̂12,τ (s, t)− p12,τ (s, t)

= n−1{1− F1(s)}−1

n∑
i=1

[
ls,t(T̃1i,∆1i, T̃2i,∆2i) + p12,τ (s, t)ξ1(T̃1i,∆1i, s)

]
+ R̃n(s, t),

where sup{|R̃n(s, t)| : 0 ≤ s < t ≤ τ1} = oP (n−1/2).

(ii) The process n1/2(p̂12,τ (s, t) − p12,τ (s, t)) (0 ≤ s < t ≤ τ1) converges weakly to a

zero-mean Gaussian process Z̃(s, t) with covariance function

Cov(Z̃(s, t), Z̃(s′, t′))

= {1− F1(s)}−1{1− F1(s′)}−1E
{[
ls,t(T̃1,∆1, T̃2,∆2) + p12,τ (s, t)ξ1(T̃1,∆1, s)

]
×
[
ls′,t′(T̃1,∆1, T̃2,∆2) + p12,τ (s

′, t′)ξ1(T̃1,∆1, s
′)
]}

.

Theorem 3.5 Assume (A1)-(A4).

(i) Then,

p̂22,τ (s, t)− p22,τ (s, t)

=
{∫ s

0

[1− F ((s− r) ∧ Tr | r)]F1(dr)
}−1

×n−1

n∑
i=1

[
l∗s,t(T̃1i,∆1i, T̃2i,∆2i)− p22,τ (s, t)l

∗
s,s(T̃1i,∆1i, T̃2i,∆2i)

]
+R∗n(s, t),

where sup{|R∗n(s, t)| : 0 ≤ s < t ≤ τ1} = oP (n−1/2).

(ii) The process n1/2(p̂22,τ (s, t) − p22,τ (s, t)) (0 ≤ s < t ≤ τ1) converges weakly to a

zero-mean Gaussian process Z∗(s, t) with covariance function

Cov(Z∗(s, t), Z∗(s′, t′))

=
{∫ s

0

[1− F ((s− r) ∧ Tr | r)]F1(dr)
}−1{∫ s′

0

[1− F ((s′ − r) ∧ Tr | r)]F1(dr)
}−1

×E
{[
l∗s,t(T̃1,∆1, T̃2,∆2)− p22,τ (s, t)l

∗
s,s(T̃1,∆1, T̃2,∆2)

]
×
[
l∗s′,t′(T̃1,∆1, T̃2,∆2)− p22,τ (s

′, t′)l∗s′,s′(T̃1,∆1, T̃2,∆2)
]}

.
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4 Simulation study

In this section we carry out some simulations to demonstrate the behavior of the proposed

estimators for finite sample sizes. For comparison purposes, we include in the simulations

some existing estimators for the conditional and the bivariate distribution functions, as

well as estimators for the transition probabilities, which do not use the information given

by the location-scale model. In this way we can get an idea of the improvement associated

with the transfer of tail information. We concentrate on the estimation in the case of

heavy censoring, because the methods proposed in this paper are mainly relevant when

the uncensored information is scarce. An exception to this will be the simulations for the

transition probabilities, for which the effect of an increasing censoring level will be fully

illustrated.

The vector of gap times (T1, T2) is simulated as follows. The first gap time T1 is

simulated according to an Exp(1) distribution. Given T1 = x, the second gap time T2

is drawn from an exponential distribution with rate parameter 1/(1 + 5x + 2x2). The

censoring time C is independently generated following also an exponential distribution,

with rate chosen in order to get a pre-determined censoring proportion on the total time

Y = T1 + T2: 25% (3.7% and 22.1% for the first and second gap times, respectively),

50% (11.4% and 43.6%) and 75% (28.3% and 65.1%). We consider sample sizes n = 100

and n = 150. The number of replications is 500. For the kernel weights in the Beran-

type estimator we use the biquadratic kernel K(u) = (15/16)(1 − u2)2I(|u| ≤ 1), while

the bandwidth sequence an is chosen by minimizing the asymptotic mean-squared error

(AMSE):

AMSE(an) = AsVar(F̃ (y|x)) +
(
AsBias(F̃ (y|x))

)2
= (nan)−1s2(y|x) + a4

nb
2(y|x),

where the formulas for s(y|x) and b(y|x) are given in Van Keilegom et al. (2001). The

only difference with that paper is that here the variable T1 is subject to censoring, and

therefore we restrict attention to the subsample where ∆1i = 1. Hence the optimal choice

for the bandwidth sequence is given by

an = an(y|x) =
( s2(y|x)

4b2(y|x)

)1/5

n−1/5.

Further details about the choice of the optimal bandwidth and its implementation to real

data sets can be found in Van Keilegom et al. (2001).

For the score function J(·) we follow Remark B.1 with δ = 0, i.e. we take J(s) = I(a ≤
s ≤ b)/(b − a), where a = 0 and b = mini F̃ (+∞|Xi). Note that since F̃−1(s|x) is only
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defined for s less than F̃ (+∞|x), this choice of b ensures that m̂(x) and σ̂(x) are always

defined.

To show that the location-scale model T2 = m(T1) + σ(T1)ε, ε independent of T1,

holds in the simulated scenario, it suffices (as noted by Van Keilegom et al., 2001) to

check the model when m(x) is the conditional mean function and σ(x) is the conditional

standard deviation. This follows easily by showing that P (ε ≤ y | T1 = x) = {1 −
exp [−(y + 1)]}I(y ≥ −1), which is independent of x.

In Table 1 we report the mean, the standard deviation, and the mean squared error

(MSE) of the estimator F̂ (y | x) for x = 0.5, for percentiles 80, 90 and 99% of the

conditional distribution, and the heavily censored case (75% of censoring). We focus on

the right tail of the distribution, because the censoring effects are strong at those points.

We also give the figures pertaining to the Beran-type estimator F̃ (y | x) of the conditional

distribution, adapted to censoring of the covariate (Van Keilegom, 2004). Note that the

latter estimator does not rely on the location-scale model. From Table 1 we see that the

new method outperforms the Beran-type estimator. This is particularly clear at the far

right tail (percentile 99%), where the Beran estimator shows a large bias and a relative

efficiency (measured as the ratio of the MSE’s) of about 50% or below. We have also

performed simulations in the case of light (25%) and medium (50%) censoring (results

not shown). In these cases, the use of transfer of tail information in the estimation of

F (y | x) does not improve the efficiency so clearly. We note, however, that if the location-

scale model does not hold, then the proposed estimator may not perform as well as the

Beran-type estimator.

[Insert Table 1 here]

Table 2 displays the results achieved by the estimator of the bivariate distribution

F̂ (x, y). As (x, y)-pairs we take (0.500, 2.157), (1.000, 5.400) and (4.000, 12.870), giving

respectively F (x, y)-values of 0.25, 0.50 and 0.80. In this case, we consider the simple

estimator F̃ (x, y) of the bivariate distribution introduced in de Uña-Álvarez and Meira-

Machado (2008) as a natural competitor. This latter estimator is constructed by attaching

to each pair of observed gap times (T̃1i, T̃2i) the ordinary Kaplan-Meier weight of T̃1i+ T̃2i

when estimating the distribution of the total time Y = T1 + T2. As was the case for

the conditional distribution, the simulation results indicate that the location-scale model

leads to more efficient estimation of the bivariate distribution. Results obtained for other

censoring levels confirm this finding (results not included).
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[Insert Table 2 here]

The performance of the empirical transition probability p̂22(s, t) in the simulations is

summarized in Tables 3 and 4. Three different values of p22(s, t) are considered, corre-

sponding to s = 0.5 and t = 3.709 (p22(s, t) = 0.25), t = 2.022 (p22(s, t) = 0.50), and

t = 1.112 (p22(s, t) = 0.75). The results refer to three censoring levels (25%, 50% and

75%). In Table 3, we provide the mean and the standard deviation (along the 500 trials)

for p̂22(s, t) and also for two different estimators, p̃22(s, t) and p̂AJ22 (s, t). The notation

p̂AJ22 (s, t) stands for the Aalen-Johansen estimator of p22(s, t), see Aalen and Johansen

(1978), which is a consistent estimator when the gap times satisfy the Markov assump-

tion. Our simulated scenario is non-Markov, a fact that can be easily checked by using

the exponential distribution of T2 given T1 = x. The estimator p̃22 is that proposed in

Meira-Machado et al. (2006), and is defined as a ratio of two multivariate Kaplan-Meier

integrals with respect to the marginal distribution of the total time Y = T1 + T2. This is

justified because

p22(s, t) =
E [I(T1 ≤ s, Y > t)]

E [I(T1 ≤ s, Y > s)]
.

The censoring on T1 is overcome because, in the context of our model for gap times,

T1 is uncensored whenever this is the case for Y . See Meira-Machado et al. (2006) for

more details. The estimator p̃22 was proposed as an alternative to the Aalen-Johansen

estimator p̂AJ22 in non-Markov situations. Of course, unlike p̂22(s, t), p̃22(s, t) and p̂AJ22 (s, t)

do not make use of the location-scale model.

[Insert Tables 3 and 4 here]

From Table 3 we see that the Aalen-Johansen estimator is systematically biased. This

is because the non-Markov nature of the simulated gap times. When comparing p̂22(s, t)

and p̃22(s, t), we see that the estimator based on the location-scale model behaves more

efficiently. This is more clearly seen in Table 4, where the MSEs of both estimators are

compared. Indeed, Table 4 suggests that using the information contained in the location-

scale model is more relevant in the heavily censored case, and for the estimation of large

values of p22(s, t). Interestingly, the relative efficiency of p̃22(s, t) is as poor as about 30%

in some cases.
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Appendix A: Notations

In this Appendix we collect all the notations that are needed for the asymptotic results

stated in Section 3. The notations are introduced in the order in which they are required

in Section 3.

Let p1 = P (∆1 = 1), p1τ = P (∆1 = 1, T1 ≤ τ1), with τ1 < inf{t;H1(t) = 1}, where

H1(t) = P (T̃1 ≤ t). Furthermore, E = (T̃2 −m(T1))/σ(T1), He(y) = P (E ≤ y|∆1 = 1),

τe < inf{y;He(y) = 1}, Hu
e (y) = P (E ≤ y,∆2 = 1|∆1 = 1), He(y|x) = P (E ≤ y|∆1 =

1, T1 = x), Hu
e (y|x) = P (E ≤ y,∆2 = 1|∆1 = 1, T1 = x), H(y|x) = P (T̃2 ≤ y|∆1 =

1, T1 = x), and Hu(y|x) = P (T̃2 ≤ y,∆2 = 1|∆1 = 1, T1 = x). Also, let he(y|x) and

hue (y|x) denote the probability (sub)density functions attached to He(y|x) and Hu
e (y|x),

respectively. Moreover, introduce the functions

ξe(t, δ, y) = (1− Fe(y))

{
−
∫ y∧t

−∞

dHu
e (s)

(1−He(s))2
+
I(t ≤ y, δ = 1)

1−He(t)

}
,

ξ(t, δ, y|x) = (1− F (y|x))

{
−
∫ y∧t

−∞

dHu(s|x)

(1−H(s|x))2
+
I(t ≤ y, δ = 1)

1−H(t|x)

}
,

η(t, δ|x) =

∫ +∞

−∞
ξ(t, δ, v|x)J(F (v|x)) dv σ−1(x),

ζ(t, δ|x) =

∫ +∞

−∞
ξ(t, δ, v|x)J(F (v|x))

v −m(x)

σ(x)
dv σ−1(x),

γ1(y|x) =

∫ y

−∞

he(s|x)

(1−He(s))2
dHu

e (s) +

∫ y

−∞

d hue (s|x)

1−He(s)
,

γ2(y|x) =

∫ y

−∞

she(s|x)

(1−He(s))2
dHu

e (s) +

∫ y

−∞

d (shue (s|x))

1−He(s)
,

and let with Se = 1− Fe,

ϕ(t1, t2, δ2, y) = ξe

(
t2 −m(t1)

σ(t1)
, δ2, y

)
− Se(y)η(t2, δ2|t1)γ1(t2|t1)

−Se(y)ζ(t2, δ2|t1)γ2(t2|t1).

Introduce H1|u(t) = P (T̃1 ≤ t|∆1 = 1), and let fe(y) and h1|u(t) denote the probability

density functions attached to Fe(y) and H1|u(t), respectively. Furthermore, let Hu
1 (t) =

P (T̃1 ≤ t,∆1 = 1), and define

hx,y(t, δ) = fe

(y −m(x)

σ(x)

)[
η(t, δ|x) +

y −m(x)

σ(x)
ζ(t, δ|x)

]
.
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In addition, let

gx,y(t1, δ1, t2, δ2) =
3∑
j=1

gjx,y(t1, δ1, t2, δ2),

where

g1
x,y(t1, δ1, t2, δ2) = p−1

1τ I(δ1 = 1, t1 ≤ τ1)E
{
ϕ
(
t1, t2, δ2,

y ∧ TT1 −m(T1)

σ(T1)

)
I(T1 ≤ x)

}
g2
x,y(t1, δ1, t2, δ2) = p−1

1 I(δ1 = 1)ht1,y∧Tt1 (t2, δ2)I(t1 ≤ x)

g3
x,y(t1, δ1, t2, δ2) =

∫ x

0

Fe

(y ∧ Tt −m(t)

σ(t)

)
dξ1(t1, δ1, t),

and

ξ1(t, δ, x) = (1− F1(x))
{
−
∫ x∧t

0

dHu
1 (s)

(1−H1(s))2
+
I(t ≤ x, δ = 1)

1−H1(t)

}
.

Moreover, we need to introduce

ls,t(t1, δ1, t2, δ2) =
3∑
i=1

{
lit,t(t1, δ1, t2, δ2)− lis,t(t1, δ1, t2, δ2)

}
and

l∗s,t(t1, δ1, t2, δ2) =
3∑
i=1

lis,t(t1, δ1, t2, δ2),

where

l1s,t(t1, δ1, t2, δ2) = −p−1
1τ I(δ1 = 1, t1 ≤ τ1)E

{
ϕ

(
t1, t2, δ2,

(t− T1) ∧ TT1 −m(T1)

σ(T1)

)
I(T1 ≤ s)

}
,

l2s,t(t1, δ1, t2, δ2) = −g2
s,t−t1(t1, δ1, t2, δ2),

l3s,t(t1, δ1, t2, δ2) =

∫ s

0

[
1− Fe

(
(t− r) ∧ Tr −m(r)

σ(r)

)]
dξ1(t1, δ1, r).

B Appendix B: Proofs

In this section, we give the proofs of the results stated in Section 3. The proofs of Theorems

3.1(ii), 3.2(ii), 3.3(ii), 3.4(ii) and 3.5(ii) are similar to the proofs of Corollaries 3.2, 3.4

and 3.6 in Van Keilegom and Akritas (1999) and are therefore omitted.

Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx≤τ1(1−H(T̃x|x)) > 0. The assumptions we need for the proofs of the main results are

listed below.
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(A1)(i) na4
n → 0 and na3+d

n →∞ for some d > 0.

(ii) K has compact support,
∫
uK(u) du = 0 and K is twice continuously differentiable.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx≤τ1 F (T̃x|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx≤τ1 infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable on the interior of its support,
∫ 1

0
J(s) ds = 1

and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iii) Tx is twice continuously differentiable in x.

(A3) H1(x) and H1|u(x) are thrice continuously differentiable, infx≤τ1 h1|u(x)

> 0, and infx≤τ1 σ(x) > 0.

(A4) H(y|x) and Hu(y|x) are thrice continuously differentiable with respect to x and y,

supx,y |y3H ′(y|x)| <∞, and similarly for all other derivatives of H(y|x) and Hu(y|x) with

respect to x and y up to order 3.

Remark B.1 In practice, the function J can be chosen as follows : J(s) = I(a ≤ s ≤
b)/(b − a), where a = δ > 0 and b = mini F̃ (+∞|Xi) − δ. This choice ensures that

conditions (A2)(i)-(ii) are a.s. satisfied, provided that the density f(y|x) is strictly positive

for all y and x. In practice δ can be taken very small, or even equal to zero (as is done in

the simulation study). Also note that the function Tx will be twice differentiable in x (as

is required in (A2)(iii)) when, e.g., Tx is defined as Tx = Teσ(x) +m(x) for some Te < τe

and m(x) and σ(x) are twice differentiable.

For the proofs, we need to introduce the following estimators of Heτ (y) = P (E ≤
y|∆1 = 1, T1 ≤ τ1) and Hu

eτ (y) = P (E ≤ y,∆2 = 1|∆1 = 1, T1 ≤ τ1) : Ĥeτ (y) =

N−1
uτ

∑n
i=1 I(Êi ≤ y,∆1i = 1, T̃1i ≤ τ1) and Ĥu

eτ (y) = N−1
uτ

∑n
i=1 I(Êi ≤ y,∆1i = 1, T̃1i ≤

τ1,∆2i = 1). We start with an auxiliary result, which gives an i.i.d. representation for the

estimators m̂(x) and σ̂(x).

Proposition B.2 Assume (A1)-(A4). Then,

m̂(x)−m(x) = −h1|u(x)−1σ(x)(nanp1)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)η(T̃2i,∆2i|x) +Rn(x),

and

σ̂(x)− σ(x) = −h1|u(x)−1σ(x)(nanp1)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)ζ(T̃2i,∆2i|x) + R̃n(x),
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where sup{|Rn(x)|;x ≤ τ1} = O((nan)−3/4(log n)3/4) a.s., and sup{|R̃n(x)|;x ≤ τ1} =

O((nan)−3/4(log n)3/4) a.s.

Proof. The result is an easy consequence of Theorems 4.8 and 4.9 in Van Keilegom

and Akritas (1999), where representations for m̂(x) and σ̂(x) are obtained when T1 is

completely observed. Consider for example m̂(x). Put Nu =
∑n

i=1 I(∆1i = 1). We have

m̂(x)−m(x) = −h1|u(x)−1σ(x)(Nuan)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)η(T̃2i,∆2i|x) +Rn(x)

= −h1|u(x)−1σ(x)(nanp1)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)η(T̃2i,∆2i|x) +Rn(x),

since

np1

[ 1

Nu

− 1

np1

]
= − 1

np1

n∑
i=1

[I(∆1i = 1)− p1] + oP (n−1/2) = OP (n−1/2). (B.1)

Remark B.3 Propositions 4.5-4.7 in Van Keilegom and Akritas (1999), which deal with

the uniform consistency (with rate of convergence) of m̂(x), σ̂(x) and their derivatives

can be easily adapted to the present context. We omit the details.

Lemma B.4 Assume (A1)-(A4). Then,

sup
−∞<y<+∞

∣∣∣(Nuτ )
−1

n∑
i=1

{
I(Êi ≤ y,∆1i = 1, T̃1i ≤ τ1)− I(Ei ≤ y,∆1i = 1, T̃1i ≤ τ1)

}
−
{
P (Ê ≤ y|Xn,∆1 = 1, T1 ≤ τ1)− P (E ≤ y|∆1 = 1, T1 ≤ τ1)

}∣∣∣ = oP (n−1/2),

where P (Ê ≤ y|Xn,∆1 = 1, T1 ≤ τ1) is the distribution of Ê = (T̃2 − m̂(T1))/σ̂(T1)

conditioning on ∆1 = 1, on T1 ≤ τ1 and on (T̃1j, T̃2j,∆1j,∆2j), j = 1, . . . , n.

Proof. The expression between absolute values can be written as

(np1τ )
−1

n∑
i=1

{
I(Êi ≤ y,∆1i = 1, T̃1i ≤ τ1)− I(Ei ≤ y,∆1i = 1, T̃1i ≤ τ1)

}
−
{
P (Ê ≤ y|Xn,∆1 = 1, T1 ≤ τ1)− P (E ≤ y|∆1 = 1, T1 ≤ τ1)

}
+
[ 1

Nuτ

− 1

np1τ

] n∑
i=1

{
I(Êi ≤ y,∆1i = 1, T̃1i ≤ τ1)− I(Ei ≤ y,∆1i = 1, T̃1i ≤ τ1)

}
= T1 + T2.
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In a very similar way as in Lemma A.1 in Van Keilegom and Akritas (1999), it can be

shown that T1 = oP (n−1/2) (the only difference with that lemma is the conditioning on

∆1 = 1 and on T̃1 ≤ τ1). For T2, note that

(np1τ )
−1

n∑
i=1

{
I(Êi ≤ y,∆1i = 1, T̃1i ≤ τ1)− I(Ei ≤ y,∆1i = 1, T̃1i ≤ τ1)

}
= P (Ê ≤ y|Xn,∆1 = 1, T1 ≤ τ1)− P (E ≤ y|∆1 = 1, T1 ≤ τ1) + oP (n−1/2) = oP (1),

uniformly in y, where the latter equality follows from the uniform consistency of m̂

and σ̂ (see Remark B.3). Hence, it follows from the analogue of (B.1) for Nuτ , that

T2 = oP (n−1/2). �

Proposition B.5 Assume (A1)-(A4). Then,

Ĥeτ (y)−Heτ (y) (B.2)

= −(np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)
{
η(T̃2i,∆2i|T̃1i) + ζ(T̃2i,∆2i|T̃1i)y

}
he(y|T̃1i)

+(np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)
{
I(Ei ≤ y)−Heτ (y)

}
+Rn(y),

where sup{|Rn(y)|;−∞ < y < +∞} = oP (n−1/2).

Proof. Using Lemma B.4,

Ĥeτ (y)−Heτ (y)

= p−1
1τ

∫ τ1

0

{
He

(
yσ̂(x) + m̂(x)−m(x)

σ(x)

∣∣∣∣x)−He(y|x)

}
dHu

1 (x)

+N−1
uτ

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)
{
I(Ei ≤ y)−Heτ (y)

}
+ oP (n−1/2)

= p−1
1τ

∫ τ1

0

he(y|x)
y(σ̂(x)− σ(x)) + (m̂(x)−m(x))

σ(x)
dHu

1 (x) (B.3)

+
1

2p1τ

∫ τ1

0

h′e(ξ|x)

(
y(σ̂(x)− σ(x)) + (m̂(x)−m(x))

σ(x)

)2

dHu
1 (x)

+ (np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)
{
I(Ei ≤ y)−Heτ (y)

}

+
[
(Nuτ )

−1 − (np1τ )
−1
] n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)
{
I(Ei ≤ y)−Heτ (y)

}
+ oP (n−1/2),
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where ξ is between y and (yσ̂(x) + m̂(x) − m(x))/σ(x). The first term above can be

treated in a very similar way as in the proof of Proposition A.2 in Van Keilegom and

Akritas (1999), and leads to the first term on the right hand side of (B.2), while the

second term is oP (n−1/2) by the rates of the uniform consistency of m̂ and σ̂ (see Re-

mark B.3). For the fourth term, use the derivation in (B.1) together with the fact that

(np1τ )
−1
∑n

i=1 I(∆1i = 1, T̃1i ≤ τ1){I(Ei ≤ y)−Heτ (y)} = oP (1) uniformly in y. �

Remark B.6 In a similar way as has been done in the proofs of Lemma B.4 and Propo-

sition B.5 above, it can be shown that Proposition A.3 and Corollary A.5 in Van Keilegom

and Akritas (1999) can be adapted to the present context. They are needed in the following

proof.

Proof of Theorem 3.1(i). Note that

F̂e(y)− Fe(y)

= −(1− Fe(y))
{

log(1− F̂e(y))− log(1− Fe(y))
}

+ oP (n−1/2)

= −(1− Fe(y))
{

log(1− F̂e(y)) +

∫ y

−∞

1

1−Heτ (s)
dHu

eτ (s)
}

+ oP (n−1/2),

uniformly in y, where the latter equality follows from the independence of ε and {C −
T1 −m(T1)}/σ(T1) given ∆1 = 1 and T1 ≤ τ1. Next, write

log(1− F̂e(y)) +

∫ y

−∞

1

1−Heτ (s)
dHu

eτ (s)

= log(1− F̂e(y)) +

∫ y

−∞

1

1− Ĥeτ (s−)
dĤu

eτ (s)

−
∫ y

−∞

1

1− Ĥeτ (s)
dĤu

eτ (s) +

∫ y

−∞

1

1−Heτ (s)
dHu

eτ (s) +OP (n−1).

Using a Taylor expansion, the first term above can be written as

−1

2

Nuτ∑
i=1

I(Ê(i) ≤ y,∆(2i) = 1)

(Nuτ − i+ 1)2

1

(1−Ri)2
= O(n−1)

a.s., uniformly in y, where Ri is between 0 and (Nuτ − i+ 1)−1. The second term equals

−
∫ y

−∞

[
1

1− Ĥeτ (s)
− 1

1−Heτ (s)

]
dHu

eτ (s)−
∫ y

−∞

1

1−Heτ (s)
d(Ĥu

eτ (s)−Hu
eτ (s))

−
∫ y

−∞

[
1

1− Ĥeτ (s)
− 1

1−Heτ (s)

]
d(Ĥu

eτ (s)−Hu
eτ (s)).
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From Remark B.6 and Corollary A.5 in Van Keilegom and Akritas (1999), it follows that

the last term on the right hand side is oP (n−1/2). Using the consistency of Ĥeτ (which can

be established along the same lines as in Proposition A.3 in Van Keilegom and Akritas

(1999); see Remark B.6), the sum of the first and second terms can be written as

−
∫ y

−∞

Ĥeτ (s)−Heτ (s)

(1−Heτ (s))2
dHu

eτ (s)−
∫ y

−∞

1

1−Heτ (s)
d(Ĥu

eτ (s)−Hu
eτ (s)) + oP (n−1/2)

= −(1− Fe(y))−1(np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)ϕ(T̃1i, T̃2i,∆2i, y) + oP (n−1/2),

where the equality follows by Proposition B.5 and its analogue for Ĥu
eτ . �

Proof of Theorem 3.2(i). The proof of this result is very similar to that of Theorem

3.3 in Van Keilegom and Akritas (1999). The only difference is that the data set is here

restricted to the observations for which ∆1i = 1. Hence, it follows from that theorem that

F̂ (y|x)− F (y|x)

= (Nuan)−1h1|u(x)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)hx,y(T̃2i,∆2i) + oP ((nan)−1/2)

= (nanp1)−1h1|u(x)−1

n∑
i=1

K
(x− T̃1i

an

)
I(∆1i = 1)hx,y(T̃2i,∆2i) + oP ((nan)−1/2),

where the last equality follows from (B.1). �

Proof of Theorem 3.3(i). Write

F̂τ (x, y)− Fτ (x, y)

=

∫ x

0

{
F̂e

(y ∧ Tt − m̂(t)

σ̂(t)

)
− Fe

(y ∧ Tt −m(t)

σ(t)

)}
dF1(t)

+

∫ x

0

{
F̂e

(y ∧ Tt − m̂(t)

σ̂(t)

)
− Fe

(y ∧ Tt −m(t)

σ(t)

)}
d(F̂1(t)− F1(t))

+

∫ x

0

Fe

(y ∧ Tt −m(t)

σ(t)

)
d(F̂1(t)− F1(t))

= T1 + T2 + T3.
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We first consider T3 :

T3 = {F̂1(x)− F1(x)}Fe
(y ∧ Tx −m(x)

σ(x)

)
−
∫ x

0

{F̂1(t)− F1(t)} dFe
(y ∧ Tt −m(t)

σ(t)

)
= n−1

n∑
i=1

ξ1(T̃1i,∆1i, x)Fe

(y ∧ Tx −m(x)

σ(x)

)

−n−1

n∑
i=1

∫ x

0

ξ1(T̃1i,∆1i, t) dFe

(y ∧ Tt −m(t)

σ(t)

)
+ oP (n−1/2)

= n−1

n∑
i=1

g3
x,y(T̃1i,∆1i, T̃2i,∆2i) + oP (n−1/2),

uniformly in x, y, where the second equality follows from Lo and Singh (1986). Next, note

that T1 can be written as

T1 =

∫ x

0

{
F̂e

(y ∧ Tt − m̂(t)

σ̂(t)

)
− Fe

(y ∧ Tt − m̂(t)

σ̂(t)

)}
dF1(t)

+

∫ x

0

{
Fe

(y ∧ Tt − m̂(t)

σ̂(t)

)
− Fe

(y ∧ Tt −m(t)

σ(t)

)}
dF1(t)

= (np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)

∫ x

0

ϕ
(
T̃1i, T̃2i,∆2i,

y ∧ Tt − m̂(t)

σ̂(t)

)
dF1(t)

−
∫ x

0

m̂(t)−m(t)

σ(t)
fe

(y ∧ Tt −m(t)

σ(t)

)
dF1(t)

−
∫ x

0

σ̂(t)− σ(t)

σ(t)

y ∧ Tt −m(t)

σ(t)
fe

(y ∧ Tt −m(t)

σ(t)

)
dF1(t) + oP (n−1/2)

= (np1τ )
−1

n∑
i=1

I(∆1i = 1, T̃1i ≤ τ1)E
[
ϕ
(
T̃1i, T̃2i,∆2i,

y ∧ TX −m(X)

σ(X)

)
I(X ≤ x)

∣∣∣T̃1i, T̃2i,∆2i

]

+(np1)−1

n∑
i=1

I(∆1i = 1)hT̃1i,y∧TT̃1i
(T̃2i,∆2i)I(T̃1i ≤ x) + oP (n−1/2)

= n−1

n∑
i=1

2∑
j=1

gjx,y(T̃1i,∆1i, T̃2i,∆2i) + oP (n−1/2),

where the second equality follows from Theorem 3.1, and the third one follows from

Lemma B.1 in Van Keilegom and Akritas (1999) and from Proposition B.2. Finally, we

consider T2. Write F̂1(x)− F1(x) = [F̂1(x)− F̃1(x)] + [F̃1(x)− F1(x)], where

F̃1(x) =

∫
L
(x− t

h

)
dF̂1(t)
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is a smoothed Kaplan-Meier estimator, with L a given continuously differentiable cumu-

lative distribution function with compact support and h = hn = a2
n. Hence, T2 can be

written as

T2 =

∫ x

0

A(t, y)d(F̂1(t)− F̃1(t)) +

∫ x

0

A(t, y)(F̃ ′1(t)− F ′1(t)) dt,

where A(t, y) = F̂e

(
y∧Tt−m̂(t)

σ̂(t)

)
− Fe

(
y∧Tt−m(t)

σ(t)

)
. The second term above is OP ((nan)−1/2

(nhn)−1/2 log n) = oP (n−1/2) uniformly in x and y, since nanhn(log n)−2 = na3
n(log n)−2 →

∞. This follows from Theorem 3.2 and from the uniform consistency of the kernel density

estimator F̃ ′1(t) (see e.g. Diehl and Stute, 1988). For the first term above note that

F̂1(x)− F1(x) = n−1

n∑
i=1

ξ1(T̃1i,∆1i, x) + oP (n−1/2)

uniformly in x ≤ τ1 (see Lo and Singh (1986)). Moreover, Gijbels and Veraverbeke (1989)

showed that the same asymptotic representation is also valid for F̃1(x)− F1(x), provided

the bandwidth hn satisfies nh2
n = na4

n → 0. Hence, supx≤τ1 |F̂1(x)−F̃1(x)| = oP (n−1/2). It

is now easily seen, using integration by parts, that
∫ x

0
A(t, y)d(F̂1(t)− F̃1(t)) = oP (n−1/2).

�

Proof of Theorem 3.4(i). First note that[
1− F̂1(s)

]
p̂12,τ (s, t)− [1− F1(s)] p12,τ (s, t) = n−1

n∑
i=1

ls,t(T̃1i,∆1i, T̃2i,∆2i) +Rn(s, t),

where

sup {|Rn(s, t)| : 0 ≤ s < t ≤ τ1} = oP (n−1/2).

The proof is similar to that of the bivariate distribution case. By noting that

p̂12,τ (s, t)− p12,τ (s, t)

= {1− F̂1(s)}−1
[
(1− F̂1(s))p̂12,τ (s, t)− (1− F1(s))p12,τ (s, t) + p12,τ (s, t)(F̂1(s)− F1(s))

]
,

the result follows from Theorem 3.3, the representation of F̂1(s) as a sum of i.i.d. terms,

and the fact that

1

1− F̂1(s)
=

1

1− F1(s)
+OP (n−1/2)

uniformly on [0, τ1] . �
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Proof of Theorem 3.5(i). This result can be established as Theorem 3.4, after noting

that

p̂22,τ (s, t)− p22,τ (s, t)

=
{∫ s

0

[
1− F̂ ((s− r) ∧ Tr | r)

]
F̂1(dr)

}−1

×
[∫ s

0

[
1− F̂ ((t− r) ∧ Tr | r)

]
F̂1(dr)−

∫ s

0

[
1− F ((t− r) ∧ Tr | r)

]
F1(dr)

−p22,τ (s, t)

{∫ s

0

[
1− F̂ ((s− r) ∧ Tr | r)

]
F̂1(dr)−

∫ s

0

[
1− F ((s− r) ∧ Tr | r)

]
F1(dr)

}]
.

�
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