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Abstract. The complete irreducible co-representations of the paramagnetic space group
provide a simple and direct path to explore the symmetry restrictions of magnetically driven
ferroelectricity. The method consists of a straightforward generalization of the method
commonly used in the case of displacive modulated systems and allows us to determine, in a
simple manner, the full magnetic symmetry of a given phase originated from a given magnetic
order parameter. The potential ferroic and magneto-electric properties of that phase can then be
established and the exact Landau free energy expansions can be derived from general
symmetry considerations.

In this work, this method is applied to the case of the orthorhombic rare-earth manganites
RMnO; This example will allow us to stress some specific points, such as the differences
between commensurate or incommensurate magnetic phases regarding the ferroic and
magnetoelectric properties, the possible stabilization of ferroelectricity by a single irreducible
order parameter or the possible onset of a polarization oriented parallel to the magnetic
modulation. The specific example of TbMa@ill be considered in more detail, in order to
characterize the role played by the magneto-electric effect in the mechanism for the
polarization rotation induced by an external magnetic field.

1. Introduction

In the last few years, there has been a great deal of interest in several metal compounds, where
ferroelectricity is induced by a transition to a complex magnetic state. Examples of this class of
materials are systems like RMpQ@R=Gd, Dy or Th), RMgOs (R=Tb or Y), MnWQ, NiVa,Os,

CoCr,0,, CuFeQ CuO or some complex hexagonal ferrites like (BaZBeFe ;0,, [1-9]. In addition,

some of these systenshiow remarkable effects such as the ability of a magnetic field to rotate or
stabilize an electrical polarization, as in the case of ToMw@dMnQ, respectively [10-12].

In this class of materials, and in contrast with conventional multiferroics like Bi#eBIMnO;,
the paramagnetic phase is also paraelectric and the ferroelectric polarization is driven by a modulated
magnetic order parameter. This improper ferroelectricity reveals therefore a close resemblance with
that originated from lattice modulations, as in the case of systems like@&hZAC(NHs)4).CoCl, or
(CH3)sNCH,COO0.CaCJ.2H,0 [13-15].

The first efforts to understand this magnetically driven ferroelectricity have been mainly based on
the search for microscopic mechanisms coupling magnetic moments and lattice displacements, such as
the symmetric superexchange striction or the anti-symmetric exchange (Dzyaloshinskii-Moriya
mechanism [16-17]). Also, phenomenological approaches like the so called “spin current” [18] or the
“spiral formulation”[19] have been explored. Here, a spiral magnetic structure with a rotation axis
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€ and modulation wavevectde breaks inversion and gives rise to a polarizafléhe x k . However,
a satisfactory and integrated description of the effect has not yet been achieved.

Establishing the symmetry constrains upon the onset of a polarization vector, toroidal moment or
lattice distortion as a result of the stabilization of a given magnetic structure, independently of the
microscopic mechanisms involved, is a valuable contribution to further understand the phenomena.
Symmetry imposes a rigid framework for the possible interactions between the different degrees of
freedom and guarantees the overall consistency of the observed laws. Moreover, given the direct
connection between symmetry and phenomenology, via Landau theory, this represents a first step to
establish more detailed models and to further elucidate the relevant microscopic mechanisms involved.

The analysis of the symmetry requirements for a magnetically driven ferroelectricity has been
pursued in a number of studies which have followed different approaches [20-23]. In this work, the
method adopted uses the complete irreducible co-representations (CICR’s) of the magnetic space
group G of the parent structure, in order to determine the full symmetry of a given modulated
magnetic phase. The specific example of the orthorhombic rare-earth manganitegviRIMadOw us
to stress some aspects related to the possible ferroic properties of these compounds and to emphasize
several points, such as the role of the magneto-elastic coupling, the essential differences between
commensurate and incommensurate modulations regarding the ferroic and magneto-electric properties
or the possible onset of an improper polarization due to one irreducible magnetic order parameter. The
specific case of TbMnOwill be further considered, in order to establish the role of the magneto-
electric effect in the mechanism for the polarization rotation induced by an external magnetic field.

2. Themethod for the symmetry analysis: the case of the RM nOs; compounds
The approach of working with the CICR's allows us to use full imagé iof the order parameter

space instead of considering only the unitary small representation of the \Eactqnossibly
complemented by thad-hoc inclusion of spatial inversion [20]. This has a number of advantages. In

general, this method incorporates in a natural way the physical representations rekataddok ,
even if inversion is not a symmetry operation®fAlso, by integrating the full magnetic symmetry,
this method allows us to analyze the possible stabilization of the different ferroic parameters, which
are precisely distinguished by their different behaviour under spatial inversion and time reversal.
Finally, the use of the CICR’s allows us to deal with commensurate and incommensurate phases in an
unified way, to stress their differences regarding the possible magneto-electric coupling and to use the
concept of superspace groups in the case of a magnetic incommensurate order parameter.

Let us consider the example of the orthorhombic rare-earth manganites;RNe1®, G is the

paramagnetic groupPnma)”, Rl =J(T)a" (which corresponds to thE line in the reciprocal cell),
the star is{E;}={|21 =I2;I22 =—IZ} and the small co-representations are one-dimensional. The
magnetic modulation in a given ordered phase will be described by the field

e ik, T =
S(Tv)=>s,&€" " where&, (K., j) are the eigenvectors of the mode Jabels the spins in
n,j

the reference unit cell arifi denotes a given unit cell of the original structure. The f@ldepresents
the magnetic order parameter (OP).
The complete co-representation Gfin the OP space will be formed by the set of matrices

Do, (Izl,{R; f}) representing the symmetry operatic{ﬁéf} [l G in the vector space generated by the
componentsS; . The normal co-ordinates of the active mode, expressed in the same basis, will then be
transformed, under the action {6&‘, f} ,as S, = lDop (Izl,{R; f})Jmnij S, This means that the

knowledge of the matrice®,,, (IZ ,{R; f}) will allow us to characterize how the order parameter is
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transformed under the different symmetry operationsGoind to establish, consequently, the
symmetry of the modulated phase.

For the RMnQ@compounds, and in the case of one irreducible OP, theﬁéfd, V) can be simply
written as S(X) = S*® + S'e 7™ Here, S = S,€®is the eigenvector of the mode ahdits phase,
defined with respect to the underlying discrete lattice. Note é(ét) is real (§E = é—k) and, given

its magnetic nature, odd under time reve&(x) = —S(X).
There are 12 irreducible magnetic eigenvectors generated by thdr@apins per unit cell. If one

labels the spins located at (0,0,%2), (¥2,0,0), (0,%2, %) and (%2, 1/z,§.3) §2~3 i and S, , respectively,
then these eigenvectorg correspond to the components of the modeélFF(§2+§3+§4),
G( §1 - §2 - §3 + §4), C(§1 - §2 + §3 - §4) and A(§1 + §2 - §3 - §4) . Each of these eigenvectors
is transformed according to one of the four CICR SGoéit K = & G,.C,. A - A(A)),
G,.F, A - 8,(By)), (F.C,,A - As(By)) and (G,,C,,F, - A,(By)). Therefore, the

set of matrices{ﬁ(g)} specifying how the symmetry operations@fact on the vector space of a

particular irreducible OP will correspond to a particular set of CICR matrices. These sets can be
readily obtained by following standard methods [24]. For the case of the magnetic space group
(Pnma)”, the CICR matrices are listed, for example, in the table 1 of [23]. For a reducible OP, the

Do, (IZ ,{R; t }) matrices can be constructed from appropriate direct sums of the CICR matrices.

If the modulation wavevectdE1 is commensurate, the magnetic space group of the ordered phase
G’ will be formed by the set of unitary and anti-unitary operations that leave the OP invirgris,

if [3(g) and [3(6(;) are respectively the matrices induced by the unitary and the anti-unitary
operations{g;f} and {ég;f} of G in the vector space generated by the components of the OP, and if
the conditionsT xD(g)xS=S or TxD(&) xS =S hold, then{g;f +f} or {6g;f +f} will

belong to G.

If kK, is incommensurate, the symmetry of the ordered phase will be described by a magnetic

superspace group. The reasoning leading to the notion of a superspace group can be entirely based on
the invariance properties of the Landau free energy and it is essentially independent of the fact that the

order parameter is of displacive or magnetic nature [25]. Evidentl;kz1 iis incommensurate,

translational symmetry is lost along certain spatial directions. Consequently, the symmetry of the
incommensurate phase cannot be described by one magnetic space group. However, the
incommensurability of the structure in the ordered phase allows us to shift the phase of the order

parameter without changing the free energy of the system. If a certain set of phase trar{fﬂ}itions
can be combined with a s{ag;f} of symmetry operations of G, in such a way that the generalized
operations{ o:t, f} keep the free energy and the OP invariant and, in addition, obey the product rule
(R, x{R;E, 7} = {RR;T, + R, 7, + O(R,)7,}, then these operations can be seen as
symmetry elements of the incommensurate structure. The miatrigiven above is defined by the

action of Ron the wavevectors of the sl{aﬁf } according to the procedure described in [25].
Similar to the case of a commensurate wavevector, the incommensurate order parameter will be
invariant under the action of the unita{'g;f,f(g)} or the anti-unitary{ég;f,f(ég)} operations if
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f(f) X [3(g) xS=S or I:(f) X [3(6(;) xS = S. Here, I:(f) represents the matrix that expresses, in

the space of the order parameter, the phase translation of the magnetic modulation. The set of the
symmetry operations that verify these conditions and obey the product rule given above, form the
magnetic superspace group of the incommensurate phase.

3. Someresultsfor the RMnO3; compounds

A detailed analysis of the symmetry, ferroic properties and free energy expansions of the magnetically
modulated phases allowed in the case of the rare-earth manganites will not be considered here. In the
following, we will focus on the results concerning some specific points.

3.1. Ferroelectricity can be induced by an irreducible and commensurate magnetic order parameter.

The application of the method outlined above to the case of one irreducible and incommensurate
(INC) order parameter shows that all the symmetry operatio@sgdfe rise to generalized symmetry
operations of the incommensurate phase. There is, in this case, a one-to-one relationship between

CICR's and magnetic superspace groups-P,(P]7), A—P,(PY), A—P,(PL) and

111 118 ss

A— P, (P ! . In particular, spatial inversion and time reversal are kept as symmetry operations of

the incommensurate structure, when complemented by a phase shift of the modulation corresponding
to dor 7, respectivelyﬁ DOQCD} {9 DOQ1/2}). This means that, in the case of the RMnO
compounds, one irreducible and incommensurate phase can never give rise to a pol&ization
magnetizationM or a toroidal momentT. Also, the linear magneto-electric tensor must be null.
Homogeneous lattice deformations of symmé{yyare allowed, together with the lattice modulations

ell(ZnIZ), €, (2nk) or €53 (2nl2), with n integer. Among these, the more important will be those

with n=1, which correspond to the elastic modulations with one-half of the wavelength of the
magnetic modulation detected experimentally. These lattice modulations are secondary distortions and
play no role in the definition of the ferroic properties of a given phase.

However, ferroelectricity can arise in the case of one irreducible GP=ifd" is commensurate
(C). In this case, the symmetry of the modulated phase will depend on the type of the modulation
wavevector (that is, on the odd (even) value of the integers in the fraction desgibthg CICR of
the OP and the global phase. In the case o = (A +1)/2m and ® = (4 +1)72/4m (I andm

integers), the possible magnetic space group£atPnm2;) andP, (Pna2,), if the order parameter

has a symmetryA, or A, and A, or A,, respectively. Here, a polarizatidd, is allowed. The
possibility that a polarization may result from an irreducible magnetic OP and the role played by the
global phase® of the OP have been often overlookeddlE (4 +1)/2m and ® =0, the phase

will be ferroelastic ¢,, # 0), regardless of the symmetry of the OP. Ferrotoroidal moments and the
linear magnetoelectric effect can occur onlydf= (4 +21)/(2m+1) or 6 =2 /(2m+1) when

@® # 0, while ferromagnetism is possible for this type of wavevector only®iE 0. These
conclusions stress the essential difference between C and INC phases regarding the possible secondary
parameters.

' Here, P,(PC*), for example, denote i X[{E DOQ(}) {6’ DOO,l/Z}], where P is the unitary

1s1
superspace group.
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3.2. The case of a reducible and incommensurate OP

The possible superspace groups obtained for one incommensurate and reducible OP will depend not
only on the irreducible representations chosen but also on the phase difference between the irreducible
components of the modulation. The different possible symmetries of magnetic phases resulting from
the combinations of different pairs of irreducible co-representations show that a polarization can arise
in the cases anticipated from the “spiral picture”: if the phase difference between the components is
AD = 71/2, the magnetic superspace groups allow spontaneous polarizations albraxighé¢in the

cases A, +4A,, P,(P2*), and A,+A,;, P,(P/2%)) or along thec-axis (in the cases

A +A,,P(PT), andA, + A4, P, (P2)). In addition, a polarization parallel to the modulation

wavevector can arise, if the modulated phase originates from two components of the same symmetry.
For example, the OF5, +C, (symmetry A, +A;) will give rise to a phase with the symmetry

P,(P*™)and, consequently, to a polarizat @, if A® # 0.

1
The generalized time reversal operatikﬂ‘uDOO,l/Z}, denoted by the prefiR, in the labeling of

the symmetry groups given above, is always a symmetry operation of this type of magnetic phase.
Consequently, homogeneous magnetizations, toroidal moments and linear magneto-electric
coefficients are forbidden by symmetry. For example, in the case of the cycloidal phase of;sTbMnO

(symmetryA, +A;, OP A + A, A® =71/2), the magnetic superspace grouﬂs(PI”:sla). This

phase is polar along theaxis (P, # 0), as observed, but it is neither magneto-electric nor multi-
2
ferroic. If A® =0, the superspace group would l@nglllg) and a homogeneous lattice deformation

e,, would occur. For a general phase difference between the two components of the order parameter,

the superspace group Ea(Pilllg)and, in addition to the secondary modgsand e, previously

mentioned Py is also possible. Only in the case of a gen&@l, the system is an elasto-electric bi-
ferroic, as a ferroeastic deformation and a spontaneous ferroelectric polarization co-exist. However,
magneto-electric bi-ferroicity is forbidden.

3.3-Reducible C- phases: a complex landscape

The case of a reducible and commensurate phase is more complex because, in this case, the symmetry
of the modulated phase depends both on the relative and global phases of the irreducible components
of the OP. Let us consider, as illustrative examples, the cases of commensurate phaseslivith

resulting from modulations with symmetr, +A; or A, +A,. In the first case f, +A;), the
possible magnetic space groups de(Pl)if®,=®,=0, P, (P112) if ®,=®, =/8,

P, (P12 if ®,; =0,d,, =77/2 or P,(P)), in the other cases. Note that one OP of this
symmetry can stabilize phases that are polar either alorigakis (P, (P121) ) or along thec-axis

(P, (P112)). Note also that, in the latter case, the components of the OP would be in-phase. In the

second example X, +A,), the possible magnetic space groups would Ibae(Plﬁl) if
m

®,=0, =0, P,(Phm2,) if ®,, =7m/8®,, =57/8(or equivalent domains) df, (PInl), in
the other cases.
In TbMnG;, the phase stable at zero magnetic field belgw28K is a A, +A; (modeA, + A))

incommensurateycloidal phase withA® = 71/2 [26]. As seen, this phase has symmeFPgYPi”;la)
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and it is polar along thé-axis. Above a critical threshold, an external magnetic field induces a
transition to ad = 1/4 commensurate phase, polar along ¢kexis. The magnetic structure of this

field induced phase has recently been identified @s,a+ A, phasgmodeA, + A, ), with A® = 71/2

[27]. Its symmetry may therefore correspond eithePidP1nl) or P, (Pnm2,), depending on the

global phases adopted. Given tRais parallel to the-axis, the latter case must be chosen. Here, the
importance of the global phases is again stressed. In such a case, the field induced transition is

Pa(Pi”;la) — P, (Pnm2,), which impliesa rotation of the plane of the cycloid (in agreement with the
“spiral picture”) and a change of the symmetry of the order parameter, along with a rotation of the
polarization from theb-axis to thec-axis. However, another possibility could be a transition to the
phaseP, (P112) (a A + A, phase with®, =®, =77/8 (or equivalent phaseg2n+1)71/8)),

which would also allow for a polarization strictly directed alongadagis, maintaining the symmetry

A, + A, of the OP. This possibility, for example, is not commonly taken into account and can not be
anticipated from the usual “spiral picture”.

4. Magneto-electric effect and the polarization rotation under field: the example of TboMnO;
In both the cases considered above, a field driven transition fgfR’=*) to P, (Pnm2,) or

P, P112) involves phases with a symmetry that forbids a linear magneto-electric effect. In these

circumstances, can the magneto-electric effect play a relevant role in the mechanism for the field
driven rotation of the electric polarization?

The transition from the cycloidal INC phase to the cycloidal C phase, observed in Tlolkih& a
magnetic field, is found to be mediated by an intermediate phase [28]. Therefore, in order to answer

the question above, one must first clarify the origin of a phase squPg(IElgla )- ?- P, (Pnm2,)
and elucidate the nature and the magneto-electric properties of the intermediate phase.
The mechanism for the field induced destabilization of the cyclcﬁga%”;la) phase in ThoMn©@

has been recently analyzed [29]. The form of the free energy expansion for the case of this
incommensurate phase is entirely dictated by the symmetry of the OP:

fo =25+ Lot 4 D5t o s Vogist coseg) + L2 5181 cos (29) +
K, o
X P+

k
+V,P,S,S, sin(@) +V,e,,S,S, cos@p) + Vv,P.SIS? sin@g) + Ey Py2 + > P

(1)

A

+k2e 2 'gM +2M?SS] cose)-MB +...

xy

Here, we have considered the external magnetic Bedohd the induced magnetizatidm together
with a coupling term betweévi and the invariarﬁ‘s,ﬁS%2 COS@y®) , which depends on the relative phase
AD = ¢ . The equilibrium value ofp will depend on the external field and on the relative values of
the expansion coefficients. Ljgt= lyl +vi 12k, —v; /2ke] andy, = [yz + 202 1k, J The higher
symmetry solutiongp =0 or ¢ = 71/2 will be stable if [;71 +y,S.S? cosey) + AB* (¢)]>O or

[;71 +¥,S.S? cos@y) + AB? i (¢)J>0 respectively. At zero field, the latter condition is verified
experimentally, implying thahy1 ,S2S; J>0 . Also, the destabilization of the cycloidal polar phase
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by the external magnetic field requires thAt<0. Under these conditions, the INC phase is
destabilized by a magnetic field > B_,, whereB_, is given by:

71 _72822832

— 22
cl — (IU+|A|SZSS) |A|

(2)

These results have been established in [29]. One can, however, explore a little further this
mechanism. Let us first note that the phgse O is potentially stabilized for fields > B_, , where:

Vit 1SS

e = (U-|AS;SS) 3)

If, for simplicity, we assume that/ >>|A[, so thatfi(@) = i, then B, = B2 + 2,L12;72822832|A|_l

Sincey, >0, B,, > B, . This means that, for the intermediate field radge< B < B_,, the phases

corresponding tog = 71/2 and ¢ =0 will be both unstable and there must necessarily exist an
intermediate phase of lower symmetry. The stability of this intermediate phase requires that:

2 [lelery) .
cos@yp) = 28283{ A (4)

If B=B4, this condition imposeg = 71/2. If B=B, theng = 0. That is, abové,,, the field drives a

continuous variation of the relative phase of the two components of the spin modulation,
from@ =n/2 to ¢ =0. This drift of ¢ reduces, as seen, the symmetry of the phase from

P, (P 2*)to P,(P}2), if we neglect the breaking ({9 0001/ 2} and mirror symmetry induced by the

11S
external magnetic field. This reduction of symmetry costs energy and allows the onset of an effective
and non-linear magnetoelectric coupling. The increase in energy with respect to the polar cycloidal
phaseg¢ = 71/2 can be expressed as a function of the magnetic field as:

= Y= | | 4 _|y p q2q2f? 1 | | 4 4
Afine = Ting (#) = fine( ) yz[,u B [1 yzszse.]} 4y, /1 [B Bcl] (5)

Also, in the intermediate field range, the effective magneto-electric and magneto-elastic coupling can
be explicitly established from the field dependence of the secondary parameters:

v | 1o
P, =-2%|—-|B5-B? (6a)
y ky \/2}/2/12 ( 2 )
|A| \/Bz(Bc21 + Bczz)_ Bc21Bc22 -B* (6b)

kxyz,u
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U A
o, =2 | AL (8% -B2) (6¢)
Yok, \ 2p,uP .
e \&VoH

The increase of the energy of the intermediBt¢P.;2) phase, given by (5), is driven by the

magnetic field via non-linear magneto-electric and magneto-elastic effects. This reduces the relative
stability of the phase with respect to potential competing phases. In this process, the magneto-electric
coupling induces a rotation of the polarization but solely in dbglane. The rotation of the
polarization from thab-plane to thes-axis results from a separate mechanism: the stabilization, via a
first order transition, of a different competing (commensurate) phase.
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