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Abstract

In this paper we examine, by means of Monte Carlo simulation, the properties of several

cointegration tests when long run parameters are subject to structural changes. We allow

for di¤erent types of stochastic and deterministic regime shifts, more speci…cally, changes

governed by Markov chains, martingale parameter variation, sudden multiple breaks and

gradual changes. Our Monte Carlo analysis reveals that tests with cointegration as the null

hypothesis perform badly, while tests with the null of no cointegration retain much of their

usefulness in this context.
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1 Introduction

The concept of cointegration has dominated the debate in time-series econometrics in the past

decade, by stressing the possible existence of long-run equilibrium relationships among non-

stationary variables. More recently, researchers became concerned with the e¤ects that structural

changes may have on econometric models. Indeed, failure to detect and account for parameter

shifts is a serious form of misspeci…cation, thus a¤ecting inference and leading to poor forecasting

performances (see Clements and Hendry, 1999). This is especially relevant for cointegration

analysis, since it normally involves long spans of data, which, consequently, are more likely to

display structural breaks.

In this paper, we investigate, by means of Monte Carlo experiments, the impact of various

forms of parameter changes in the …nite-sample properties of several cointegration tests. Previous

literature on structural change and cointegration has focused on developing procedures to detect

breaks or to estimate the temporal location of eventual shifts. See Hansen (1992), Quintos and

Phillips (1993), Hao (1996), Andrews, Ploberger and Lee (1996), Bai, Lumsdaine and Stock

(1998), Seo (1998) and Kuo (1998), among others, and Maddala and Kim (1998) for a general

survey.

While there is a vast literature on the e¤ect of structural breaks on univariate time series

(see Maddala and Kim, 1998 and Stock, 1994), speci…cally dealing with the e¤ect of parameter

non-constancy on cointegration tests we have the works of Gregory, Nason and Watt (1996),

whose conclusions are supported by Gregory and Hansen (1996), and Campos, Ericsson and

Hendry (1996). However, these studies are somewhat limited in scope, in the sense that they

only address one type of structural break (single deterministic jump) and concentrate on the

properties of the Augmented Engle-Granger (AEG) cointegration test.

Therefore, our paper extend these studies by analyzing the power properties of cointegration

tests with the null hypothesis of no cointegration (namely AEG, Phillips-Ouliaris and Gregory-

Hansen tests), as well as tests with the null of cointegration (Lc test of Hansen, 1992 and the Shin-

Harris-Inder test). If the researcher is interested in using tests for both the null of cointegration

and no cointegration for con…rmatory analysis1 , then it would be important to understand

how these tests are a¤ected by parameter shifts. Furthermore, we consider cointegration models

where parameters are subject to multiple deterministic breaks, gradual shifts, random walk
1 D espite the problems w ith this approach (see discussion in M addala and K im, 1998, p. 126-128).
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variation and Markov regime switching.

While trying to investigate the possible existence of parameter non-constancy in multivariate

models with non-stationary variables, one resorts to instability tests that, in general, will only

be valid if there the variables are, in fact, cointegrated. To verify this, one has to test for

cointegration, hence the importance of understanding the properties of di¤erent cointegration

tests when parameter changes occur. Moreover, our analysis stresses parameter non-constancy

that is empirically plausible and economically meaningful in this context (i.e. not excessively

large breaks), since for big enough breaks the properties of the tests would probably be more

straightforward to examine (see discussion in Hendry, 1999).

The paper proceeds as follows. The next section reviews the cointegration tests of interest.

Section 3 describes the experimental design of our simulations. Section 4 reports and discusses

the results of the experiments and Section 5 concludes.

2 Cointegration Tests

In this section, we provide a necessarily brief description of the cointegration tests examined in

the subsequent Monte Carlo study. Given the model

y1t = ¯0y2t + ut; (1)

where yt = (y1t; y2t) is a k £ 1 vector of I(1) variables, y2t possibly containing deterministic

elements (such as a constant or a trend), the variables in yt will be cointegrated with cointegration

vector (1; ¡¯) if ut is stationary. To test this hypothesis in this paper, we employ ”standard”

tests with the null hypothesis of no cointegration, tests with cointegration as the null, as well as

tests allowing for regime shifts.

2.1 Standard Cointegration Tests

The AEG and the Z® and Zttests of Phillips and Ouliaris (1990) are unquestionably the most

popular cointegration tests, having been extensively discussed in the literature. They may be

viewed as an application of their unit-root counterparts (Augmented Dickey-Fuller and Phillips-

Perron tests) to test whether the residuals et = y1t ¡ ^̄0y2t from (1) have a unit-root or, by

contrast, are stationary. While the AEG test corrects for serial correlation by adding lagged

¢et terms in the test regression ¢et = (® ¡ 1)et¡1 + ´t, Phillips-Ouliaris tests make use of a
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nonparametric modi…cation, which involves the estimation of ¾2´, the long run variance of the

second-stage errors ´t.

To select an appropriate lag length for the AEG test, we follow a t-test downward selection

procedure, by setting the maximum lag equal to 6 and then testing downward until a signi…cant

last lag is found, at the 5% level. Finite-sample critical values computed as in MacKinnon (1991)

will be used in our experiments. Turning to the Z® and Zt tests, the long run variance ¾2´ is

estimated by means of a prewhitened quadratic spectral kernel with an automatically selected

bandwidth estimator, using a …rst-order autoregression as a prewhitening …lter, as recommended

in Andrews and Monahan (1992).

2.2 Gregory-Hansen Tests

Gregory and Hansen (1996) generalized the standard cointegration tests by considering an al-

ternative hypothesis in which the cointegration vector may su¤er a regime shift at an unknown

timing. They analyzed models that accommodate, under the alternative, the possibility of

changes in parameters, as, for example, the ”regime shift” model

yt = ¹1 + ¹2Dt + ®t + ¯01xt + ¯02xtDt + ut; t = 1; :::; T; (2)

where xt is a k-dimensional vector of I(1) variables, ut should be stationary and Dt is a dummy

variable of the type

Dt =

8
><
>:

0; if t > [T¿ ]

1; if t � [T¿ ] :
(3)

Here, ¿ 2 J denotes the unknown relative timing of the break point and [:] denotes the integer

part. Several types of models may be considered, for instance, a deterministic trend may be

included, or the shift a¤ects only the intercept, or only the slope coe¢cient, and son on.

As the previous tests, these are residual-based cointegration tests that evaluate if the error

term is I(1) under the null. In this framework, however, since the change point or its occurrence

are unknown, the testing procedures involve the computation of the usual statistics for all pos-

sible break points ¿ 2 J and then selecting the smallest value obtained, since it will potentially

present greater evidence against the null hypothesis of no cointegration. Therefore, one should

observe the values of

Z¤® = inf
¿2J

Z®;

Z¤t = inf
¿2J

Zt;
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AEG¤ = inf
¿2J

AEG:

The trimming region de…ned by J may be any compact set of (0; 1);but following earlier litera-

ture, Gregory and Hansen (1996) propose J = (0:15; 0:85). Nevertheless, it should be pointed

out that these tests possess power against other alternatives, namely, ”stable” cointegration.

Hence, a rejection of the null hypothesis does not necessarily imply changes in the cointegration

vector, since an invariant relationship might be the cause of the rejection.

These test statistics possess non-standard limiting distributions with no closed form and,

therefore, critical values were obtained resorting to simulation methods. In this paper, we

examine a type of structural break that is not tabulated, which is the change in slope alone.

For proper comparison, and following Gregory and Hansen (1996), we obtained critical values

for this type of change, with a single regressor, using the same response surface: with 10 000

replications for sample sizes T = 50; 100; 150; 200; 250 and 300, critical values at the p percent

level are obtained and then the regression

C(p; T ) = Ã0 + Ã1T
¡1 + error,

is run. The critical values at the 1%, 5% and 10% signi…cance levels are, respectively, ¡5:268,

¡4:685 and ¡4:394 for the AEG¤ and Z¤t tests, and ¡49:159, ¡39:172 and ¡34:011 for the Z¤®

test.

2.3 Tests with Cointegration as the Null Hypothesis

The tests described in the previous sections are based on the principle of testing for a unit

root in the residuals of the cointegrating regression. Other tests have been developed which

test the stationarity of the residuals and, therefore, have cointegration as the null hypothesis.

Since we are interested in the e¤ects of neglected parameter changes, it is interesting to consider

cointegration tests that may be derived from structural change tests.

Hansen (1992) proposed some LM-type structural change tests in cointegrated models, mak-

ing use of the Fully-Modi…ed OLS method. An versatile feature of those tests is the possibility

of using them as cointegration tests. In fact, if the alternative hypothesis is that the intercept

follows a random walk, then structural change testing becomes cointegration testing, albeit with

the null hypothesis of cointegration. Rewriting model (1) as yt = ¯1 + ¯02x2t + ut, if yt and x2t

are not cointegrated, then the error term ut is integrated of order one. Decomposing ut such
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that ut = wt + vt; being wt a random walk and vt a stationary term, the model then becomes

yt = ¯1t + ¯02x2t + vt; (4)

with ¯1t = ¯1 + wt; that is, the intercept ”absorbs” the random walk wt when there is no

cointegration.

Having this fact in consideration, Hansen (1992) suggested the use of the statistic

Lc = T¡1
TX

t=1

Ŝt
0V̂ ¡1
t Ŝt;

to test the null of cointegration, where Ŝt represents the scores of the FM-OLS estimates and

V̂ ¡1
t is a weighting matrix based upon an estimate of the covariance matrix of the second-order

errors. However, this statistic was designed to test the stability of the whole cointegration vector,

so there are advantages in regarding a version that tests only (partial) structural change in the

intercept. Hao (1996) has shown that such a test may be carried out by employing a known

statistic, already used by Kwiatkowski, Phillips, Schmidt and Shin (1992) to test for stationarity,

as well as Shin (1994) and Harris and Inder (1994) to test for the null of cointegration. Here,

we use the latter version based on the FM-OLS estimator,

S+ =
T¡2

PT
t=1(

Pt
i=1 û+i )2

!̂21:2
;

where û+i represents the fully-modi…ed residuals from the cointegrating regression and !̂21:2 an

estimate of the long run variance of ut conditional on ¢xt. As with the Phillips-Ouliaris tests,

the same non-parametric procedure described earlier is used in the FM-OLS estimation.

It is important, however, to stress that a researcher should be cautious in interpreting these

tests, since a rejection does not entangle the immediate acceptance of the alternative hypothesis

for which they were constructed. For instance, a rejection by the Shin-Harris-Inder (SHI) test

does not mean that there is no cointegration, since it also has power against parameter instability.

The only plausible conclusion one can draw is that the traditional speci…cation of a cointegration

model such as (1) (assuming parameter stability) is not supported by the data. The same applies

to structural change tests used as cointegration tests.

3 Monte Carlo Analysis

In this section, we use Monte Carlo methods to evaluate the …nite-sample properties of the cointe-

gration procedures discussed above, when we allow for cointegration with changes in parameters.
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First, we describe the di¤erent data-generating processes (DGP) and the experimental design

used in the simulations. This is followed, in the next section, by a discussion of the numerical

results.

We base our experiments on a simple, general model,

yt = ¹t + ¯txt + ut; (5)

xt = xt¡1 + ºt; t = 1; :::; T;

where yt and xt are both scalar and ºt » n:i:d:(0; 1), uncorrelated with ut. For every DGP, the

error term ut is generated as an autoregressive process ut = ½ut¡1 + "t; "t » n:i:d:(0; 1), with

½ = 0; ½ = 0:5 and ½ = 12. The idea is to evaluate the tests properties with di¤erent error

structures, since in an applied work context the disturbances are likely to be, at least, serially

correlated. The selected sample sizes are T = 50; 100; and 200:

We study the performance of the tests with changes occurring in the intercept (¹t), or

in the intercept and the slope coe¢cient (¯t). The shifts are generated by di¤erent types of

mechanisms: random walk parameter variation, sudden and gradual deterministic breaks and

Markov regime changes, as described next.

The most extreme case of parameter change is a model where parameters vary with each

time period t. We stipulate that the parameter non-constancy takes the form of a random walk,

with the slope evolving as

¯t = ¯t¡1 + ³t; ³ t » n:i:d:(0; ¾2³) (6)

and set ¾³ = 0:2 and ¾³ = 0:05, following Kuo (1998). We concentrate only on changes in the

slope coe¢cient, since this type of instability in the intercept would just be equivalent to no

cointegration.

In addition, we specify a model where the coe¢cients shift twice, with the jumps speci…ed

as

¹t =

8
>>>><
>>>>:

¹0

¹0 + ¢¹1

(¹0 + ¢¹1) + ¢¹2

; ¯t =

8
>>>><
>>>>:

¯0

¯0 + ¢¯1

(¯0 + ¢¯1) + ¢¯2

;

t � [T¿1]

[T¿1] < t � [T¿2]

t > [T¿2]

:

The possible combinations in this case are innumerous. The sizes of the …rst break are ¢¹1 =

(1; 3) and ¢¯1 = (0:5; 1), while the size of the second shift varies with ¢¹2 = (¡3;¡1; 1; 3) and

2 T he case ½ = 1 corresponds to no cointegrat ion and is generated in order to compute empirical sizes for tests

w ith no cointegrat ion as the null hy pothesis.
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¢¯1 = (¡1;¡0:5; 0:5; 1), with initial values ¹0 = ¯0 = 1. For a given break point ¿1 = 0:25 or

¿1 = 0:5, the second break point ¿2 can take values ¿2 = 0:5; 0:75.

In many situations, changes are more likely to be gradual rather than sudden, due to ad-

justment costs or anticipation e¤ects. Thus, it seems reasonable to include in this study a DGP

where parameters change gradually. Regarding this, we use a transition function discussed in

Lin and Teräsvirta (1994), for example, based upon the smooth transition function

F (t) = [1 + expf¡°(t ¡ ¿)g]¡1;

where ° is a ”speed of adjustment” parameter, around the break point ¿ , implying an immediate

jump as ° ! 1. The experiments were performed with ° = 0:5 and with a slower ”speed of

adjustment” ° = 0:1, with changes in parameters derived from

¹t =

8
><
>:

¹0

¹0 + ¢¹F (t)
; ¯t =

8
><
>:

¯0

¯0 + ¢¯F (t)
;

t � [T¿ ]

t > [T¿ ]
;

for ¿ = 0:25; 0:5 and 0:75 and break sizes ¢ = (¢¹;¢¯) 2 f(1; 3); (0:5; 1)g, with ¢¹ = ¹1 ¡ ¹0

and ¢¯ = ¯1 ¡ ¯0.

Finally, we consider Markov-switching cointegration, as in Hall, Psaradakis and Sola (1997),

where long run parameters switch between di¤erent cointegrating regimes. We continue to

assume that xt is generated by a driftless random walk, whereas yt is now given by

yt = ¹(st) + ¯(st)xt + ut;

with

¹t = ¹(st) = ¹0 + (¹1 ¡ ¹0)(st ¡ 1);

¯t = ¯(st) = ¯0 + (¯1 ¡ ¯0)(st ¡ 1);

where st is a binary random variable in S = f0; 1g, indicating the unobserved regime or state

of the cointegrating relationship, at date t. It is postulated that fstg is a stationary …rst-order

Markov chain in S with transition matrix P = (pij), where

pij = Pr(st = jjst¡1 = i); i; j 2 S:

Furthermore, it is assumed that fstg is independent of futg. In this way, the (now stochas-

tic) cointegration equation will undergo discrete shifts induced by the values of the Markov

chain fstg, with the cointegration vector changing stochastically between (1;¡¹0;¡¯0) and
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(1;¡¹1;¡¯1); with ut representing the extent to which the system is out of long-run equilib-

rium.

This type of model is very ‡exible, encompassing the regime-shift models discussed by Gre-

gory and Hansen (1996) when p11 = 1 or p00 = 1. This speci…cation also allows for a wide range

of regime changes, depending on the values of the transition probabilities. In our simulations, the

values of the transition probabilities are taken from (p00; p11) 2 f(0:98; 0:98); (0:9; 0:9); (0:9; 0:5)g.

We attempt here to experiment di¤erent settings for the pij’s without neglecting their empirical

congruence . The …rst pair of transition probabilities (p00; p11) = (0:98; 0:98) implies highly

persistent, almost absorbing regimes, with very few shifts, each regime persisting on average

50 time periods. The pair (p00; p11) = (0:9; 0:9), on the other hand, is less persistent, with an

average regime duration of 10 time periods. While the …rst two pairs allow for symmetry in the

persistence of the states, the (p00; p11) = (0:9; 0:5) implies that the second regime is less likely

than regime 0, with a mean duration of two time periods, therefore originating a more volatile

cointegrating relationship. Concerning the shifts in the coe¢cients, these are again chosen by

the grid ¢ = (¢¹;¢¯) 2 f(1; 3); (0:5; 1)g. It should be emphasized that both the number and

the location of regime shifts are not speci…ed in this DGP.

In all experiments, the number of replications is 2500. In order to attenuate the e¤ect

of initial values of the random number generator, 50 + T observations are generated in each

replication (setting x1 = 0), but the …rst 50 observations are discarded. Since there are no

qualitative di¤erences, we only report the results at the 5% level of signi…cance, although results

at the 1% and 10% levels are available upon request.

4 Numerical Results

Given the extension of this study and in order to save space, we have to restrict our attention to

some particular experiments and, therefore, only a selection of results is reported here. Tables 1

to 13 display estimates of rejection frequencies of the di¤erent tests at the 5% level of signi…cance.

The column ½ = 1 allows for the estimation of the size of the null-of-no-cointegration (NNC) tests,

while representing the ”empirical power” of the null-of-cointegration (NC) tests. Conversely, the

columns ½ = 0 and ½ = 1 show the empirical power of NNC tests and size estimates for NC

tests. Size-adjusted power is also calculated for NNC tests (in parentheses in the tables), the

adjustments being based on the corresponding ½ = 1 results of each table.
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Before discussing the results for each set of experiments, it is interesting to highlight some

general common features in the simulations. First, the performance of NC tests is clearly weak,

lacking robustness to parameter non-constancy. Both tests display severe size distortions by

rejecting the null of cointegration far more often than they should, especially with changes

in the intercept (although larger breaks and autocorrelation reduce, to a small extent, these

distortions). On the other hand, the power of the SHI and Lc tests rarely goes beyond 30%

and 10%, respectively, except for the DGPs with Markov shifts and less persistent regimes.

This evidence suggests that these tests, due to the way they are constructed, tend to behave as

structural change tests rather than cointegration tests.

Unlike previous …ndings in the literature, our experiments reveal that the AEG test generally

under-rejects the null of no cointegration, and this conservatism is not dissipated asymptotically

(except, again, for Markov changes with more volatile regimes). However, these simulations

con…rm the conclusion of Gregory and Hansen (1996) regarding their tests, that is, the AEG¤

test produces the largest size distortions and Z¤® is conservative in small samples, while we …nd

that Z®, Zt and Z¤t show mild size distortions. It is also clear that, in general, the estimated

Type-I error probabilities tend to approach the nominal value of 5% as the sample size increases.

Turning to …nite-sample power properties, the size of the break clearly matters here, with

larger breaks leading to a considerable loss in power. Furthermore, it appears that all tests have

less power when breaks occur both in the intercept and slope, even for small changes in the slope,

compared to the case of shifts in the intercept only. In terms of relative (size-corrected) power,

Z¤® and Z¤t generally perform better that other tests, including AEG¤, and Z® and Zt are more

powerful than AEG. However, on some occasions with T = 50, standard tests (in particular

Phillips-Ouliaris tests) seem to do better than Gregory-Hansen tests. Moreover, autocorrelation

in the errors (½ = 0:5) a¤ect the power of GH tests to a greater extent than standard tests.

Nevertheless, this becomes less problematic as the sample size grows.

Concerning the results for each DGP, Table 1 reports the rejection frequencies when the

slope of model (5) follows a random walk. NNC tests are successful in terms of power when the

parameter variation is relatively small (¾³ = 0:05), even with ½ = 0:5. If, however, the variance

of ³t in (6) is larger (¾³ = 0:2), power is substantially reduced. Noticeably, asymptotics does

not seem to play a role in this case: higher powers are attained when the sample size is 100.

Tables 2 to 5 show the results for the double shift case. The location of the breaks a¤ects

the power of NNC tests, but not in a very signi…cant way. Excluding the case of T = 50, all
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tests perform reasonably well with small changes, but larger breaks worsen power. In contrast,

for shifts in the intercept, larger second breaks a¤ect standard tests, while having little e¤ect

on GH tests.

For gradual shifts (Tables 6 to 9), the power of standard tests in small samples decreases

as the speed of adjustment grows from ° = 0:1 to ° = 0:5. In contrast, the power of GH tests

stays very much the same. It is interesting to notice that increasing the sample size is not very

relevant in terms of power, particularly for Z® and Zt tests. In terms of the break location, one

cannot distinguish a general pattern of its e¤ects on the set of tests under study. Nevertheless,

we may point out that, for instance, the AEG test seems to perform worse with early breaks in

the intercept, while AEG and Phillips-Ouliaris tests are less powerful when breaks occur towards

the middle and the end of the sample. Overall, and despite this, it appears that the di¤erences

in power resulting from di¤erent shift locations are not very signi…cant.

Finally, Tables 10 to 13 show the results of the simulations for Markov changes. They reveal

that standard NNC cointegration tests, especially Z® and Zt, perform as well as or better than

Gregory-Hansen tests. However, for larger shifts, the size distortions are quite substantial for

all NNC tests, increasing whit less persistent regimes, namely with (p00; p11) = (0:9; 0:5); and

especially for changes in the intercept and slope. Not unexpectedly, these distortions are not

attenuated asymptotically, in fact worsening for some tests. This may be explained by the fact

that the number of breaks in the sample does not remain constant, increasing as the sample

size increases, even for more persistent regimes. As said before, NC tests are more powerful

and more robust in this context of Markov changes and more volatile regimes, but still not very

successful with the smaller sample sizes.

5 Conclusion

In this paper, we have investigated the …nite-sample properties of cointegration tests when the

cointegration vector is subject to regime shifts. In our experiments, we have found that tests with

no cointegration as the null hypothesis have reasonable power for a range of di¤erent parameter

shifts. In particular, the Z¤t test seems to be the most well-balanced test among all others, in

terms of size and power, which con…rms the …ndings of Gregory and Hansen (1996) in a less

broad context. However, it is clear that the size of the breaks is a determinant factor for power,

which decreases for larger shifts, as well as the number of shifts, attending to the results with
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Markov changes and regimes of shorter duration. On the other hand, the relative location of

the break in the sample appears to be less signi…cant. Our experiments also reveal that the use

of tests with the null of cointegration should be avoided, given their discouraging performance

in terms of power and size.

Recent empirical research shows that it is relevant to consider structural changes in many

univariate and multivariate non-stationary time series (see some of the works cited before). Al-

though the majority of these works concentrates on detecting breaks, we may also …nd some

attempts to model economic relationships subject to parametric shifts, in a cointegration frame-

work (see Hall et al.,1997, Krolzig, 1997 and Hansen, 1999). Notwithstanding this, an appro-

priate empirical modelling strategy accounting for structural changes is yet to be de…ned. This

paper sought to contribute further to this discussion.
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