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Abstract. Semi-infinite programming (SIP) problems can be efficiently
solved by reduction type methods. Here, we present a new reduction
method for SIP, where the multi-local optimization is carried out with
a multi-local branch-and-bound method, the reduced (finite) problem
is approximately solved by an interior point method, and the global
convergence is promoted through a two-dimensional filter line search.
Numerical experiments with a set of well-known problems are shown.
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1 Introduction

A reduction type method for nonlinear semi-infinite programming (SIP) based
on interior point and branch-and-bound methods is proposed. To allow con-
vergence from poor starting points a backtracking line search filter strategy is
implemented. The SIP problem is considered to be of the form

min f(x) subject to g(z,t) <0, for every t € T (1)

where T'C R™ is a nonempty set defined by T'= {t € R™ : a <t < b}. Here, we
assume that the set T' does not depend on x. The nonlinear functions f : R — R
and g : R" x T — R are twice continuously differentiable with respect to x
and g is a continuously differentiable function with respect to t.

There are many problems in the engineering area that can be formulated as
SIP problems. Approximation theory [14], optimal control [8], mechanical stress
of materials and computer-aided design [37], air pollution control [31], robot
trajectory planning [30], financial mathematics and computational biology and
medicine [36] are some examples. For a review of other applications, the reader
is referred to [5, 14, 23, 26, 32].

The numerical methods that are mostly used to solve SIP problems generate
a sequence of finite problems. There are three main ways of generating the se-
quence: by discretization, exchange and reduction methods [8,23,30]. Methods



that solve the SIP problem on the basis of the KKT system derived from the
problem are emerging in the literature [11-13, 21, 22, 37].

This work aims to describe a reduction method for SIP. Conceptually, the
method is based on the local reduction theory.

Our previous work on reduction type methods uses a stretched simulated
annealing for the multi-local programming phase of the algorithm [19]. This is
a stochastic method and convergence is guaranteed with probability one [10].
In this paper, we aim at analyzing the behavior of a reduction method that
relies on a deterministic multi-local procedure, so that convergence to global
solutions can be guaranteed in a finite number of steps. A practical comparison
between both strategies is also carried out. Our proposal is focused on a multi-
local procedure that makes use of a well-known deterministic global optimization
method - the branch-and-bound method [6, 9]. In the reduction method context,
the solution of the reduced finite optimization problem is achieved by an interior
point method. To promote convergence from any initial approximation a two-
dimensional filter methodology, as proposed in [4], is also incorporated into the
reduction algorithm.

The paper is organized as follows. In Section 2, the basic ideas behind the
local reduction of SIP to finite problems are presented. Section 3 is devoted
to the multi-local procedure and Section 4 briefly describes an interior point
method for solving the reduced optimization problem. Section 5 presents the
filter methodology to promote global convergence, Section 6 lists the conditions
for the termination of the algorithm, and Section 7 contains some numerical
results and conclusions.

2 First-order optimality conditions and reduction method

In this section we present some definitions and the optimality conditions of
problem (1). We denote the feasible set of problem (1) by X, where

X={zeR":g(x,t) <0, for every t € T'}.

A feasible point Z € X is called a strict local minimizer of problem (1) if
there exists a positive value € such that

VieX: fla)—f@) >0 A |lz—F| <eAax#£7

where ||.|| represents the euclidean norm. For Z € X, the active index set, Ty (Z),
is defined by

To(Z) ={t €T :g(z,t)=0}.

We first assume that:

Condition 1 Letz € X. The linear independence constraint qualification (LICQ)
holds at T, i.e., {V,g(Z,t), t € To(Z)} is a linearly independent set.



Since LICQ implies the Mangasarian-Fromovitz Constraint Qualification
(MFCQ) [14], we can conclude that for Z € X there exists a vector d € R” such
that for every t € Ty(Z) the condition V,g(Z,t)Td < 0 is satisfied. A direction
d that satisfies this condition is called a strictly feasible direction. Further, the
vector d € R™ is a strictly feasible descent direction if the following conditions

Vi#)Td <0, Vag(z,t)Td <0, for every t € To(T) (2)

hold. If Z € X is a local minimizer of the problem (1) then there will not exist
a strictly feasible descent direction d € R™\ {0, }, where 0,, represents the null
vector of R™. A sufficient condition to identify a strict local minimizer of SIP
can be described in the following theorem, that is based on Theorem 1 presented
in [14].

Theorem 1. Let T € X. Suppose that there is no direction d € R™\ {0,} satis-
Jying

V@) Td <0 and V,g(z,t)Td <0, for every t € To().

Then T is a strict local minimizer of SIP.

Since Condition 1 is verified, the set Tp(Z) is finite. Suppose that Tp(Z) =
{t1,...,tp}, then p < n.If Z is a local minimizer of problem (1) and if the MFCQ
holds at z, then there exist nonnegative values \; for ¢ = 1, ..., p such that

V@) + Y NiVag(Z,t;) = 0,. (3)

i=1

This is the Karush-Kuhn-Tucker (KKT) condition of problem (1).

Many papers exist in the literature devoted to the reduction theory [2,7,8,
20, 23, 27]. The main idea is to describe, locally, the feasible set of the problem (1)
by finitely many constraints. Assume that Z is a feasible point and that each
t; € T = T(z) is a local maximizer of the so-called lower level problem

rgleagg(m, t), (4)

satisfying the following condition
l9(z, 1) —g*| <6MF, 1=1,... L, (5)

where L > p and L represents the cardinality of T, 6™ % is a positive constant
and ¢g* is the global solution value of (4).

Condition 2 For any fired T € X, each t; € T is a strict local mazimizer, i.e.,
30 >0,vteT: gz, t) >g(Z,t) N|lt—tl <d At#t.

Since the set T is compact, Z is a feasible point and Condition 2 holds, then
there exists a finite number of local maximizers of the problem (4) and the im-
plicit function theorem can be applied, under some constraint qualifications [14].
So, it is possible to conclude that there exist open neighborhoods U, of Z, and
Vi, of t;, and implicit functions ¢1(z),...,t;(z) defined as:



i) t,:U—=V,NT, forl=1,...,L;
it) t(z) =t;, forl=1,...,L;
iii) Vo € U, t;(x) is a non-degenerate and strict local maximizer of the lower
level problem (4);

so that
{xeU:g(x,t) <0, foreveryt € T} < {x € U : g(z,t;(x)) <0,l=1,...,L}.

So it is possible to replace the infinite set of constraints by a finite set that
is locally sufficient to define the feasible region. Thus the problem (1) is locally
equivalent to the so-called reduced (finite) optimization problem

min f(z) subject to g;(z) = g(z,t;(x)) <0,1=1,...,L. (6)
zeU

A reduction method then emerges when any method for finite programming
is applied to solve the locally reduced problem (6). This comes out as being
an iterative process, herein indexed by k. Algorithm 1 below shows the main
procedures of the proposed reduction method:

Algorithm 1 Global reduction algorithm
Given 20 feasible, SML > 0, k™ > 0, €4, €5, €, > 0 and i™> > 0; set k = 0.

k

1. Based on x*, compute the set T*, solving problem

k
rtnea;cg(x i), (7)

with condition |g(a:k,tl) —g*| < MLt € TF (g* is the global solution
of (7)).

2. Set %0 = 2F and i = 1.

2.1. Based on the set T*, compute an approzimation x**, by solving the re-
duced problem

min f(x) subject to g/(z) = g(z,t;) <0, t; € T*.

2.2. Stop if i > i™**; otherwise set i =i+ 1 and go to Step 2.1.

3. Based on d¥ = x5 — 20 compute a new approzimation x*+1 that improves

significantly over x* using a globalization technique. If it is not possible, set
d* = dk1 (d*1 s the first computed direction in Step 2.1) and compute a new
approzimation x*t1 that improves significantly over z* using a globalization
technique.

4. Stop if termination criteria are met or k > k™2, otherwise set k = k + 1
and go to Step 1.



The remaining part of this paper presents our proposals for the Steps 1, 2, 3
and 4 of the Algorithm 1 for SIP.

An algorithm to compute the set 7% is known in the literature as a multi-
local procedure. In this paper, a multi-local branch-and-bound (B&B) algorithm
is implemented. The choice of a B&B type method is based on the fact that
this is a deterministic method. Typically deterministic methods converge (with
theoretical guarantee) to a global solution in a finite number of steps [6].

To solve the reduced problem (6) an interior point method is proposed. This
type of methods have been implemented in robust software for finite optimization
problems [29, 35]. They have shown to be efficient and robust in practice.

Finally, convergence of the overall reduction method to a SIP solution is
encouraged by implementing a filter line search technique. The filter here aims
to measure sufficient progress by using the constraint violation and the objec-
tive function value. This filter strategy has been shown to behave well for SIP
problems when compared with merit function approaches ([17, 18]).

3 The multi-local procedure

The multi-local procedure is used to compute the set T% i.e., the local solutions
of the problem (4) that satisfy (5). Some procedures to find the local maximizers
of the constraint function consist of two phases: first, a discretization of the set
T is made and all maximizers are evaluated on that finite set; second, a local
method is applied in order to increase the accuracy of the approximations found
in the first phase (e.g. [3]). Other proposal combines the function stretching
technique, proposed in [16], with a simulated annealing (SA) type algorithm -
the ASA variant of the SA in [10]. This is a stochastic point-to-point global
search method that generates the elements of T* sequentially [19].

In this work, to compute the solutions of (4) that satisfy (5), the branch-
and-bound method is combined with strategies that keep the solutions that
are successively identified during the process. The branch-and-bound method is
a well-known deterministic technique for global optimization whose basic idea
consists of a recursive decomposition of the original problem into smaller disjoint
subproblems. The method avoids visiting those subproblems which are known
not to contain a solution [6,9].

So, given z*, the main step of the multi-local B&B method is to solve a set
of subproblems described as

max g(z",t) for t € I for i=1,...,n; (8)
where [ = [li’j,ui’j] X ... x [lb3 ubd], and the sets I, for i = 1,...,n;,

represent a list of sets, denoted by £7, that can have a local solution that satisfies
condition (5).

The method starts with the list £°, with the set 11 = T, as the first element
and stops at iteration j when the list £/+! is empty. Furthermore, the algorithm
will always converge due to the final check on the size of the set I7. A fixed
value, § > 0, is provided in order to guarantee a d-optimal solution.



The generic scheme of the multi-local B&B algorithm can be formally de-
scribed as in the Algorithm 2.

Algorithm 2 Multi-local BB algorithm
Given zF, € >0, § > 0.

1. Consider go the solution of problem (8), for I** =T. Set j =0 and ng = 1.
2. Split each set I' into intervals, fori=1,...,n;;

set LIt! = {Il’j‘H, R ACER TV A
3. Solve problem (8), for all sets in LI+, Set G1s--->9n;,, to the obtained

mazima values.
4. Set go = max; {g;} for i =0,....,nj41. Select the sets I*7T1 that satisfy the
condition:

l90 — gil <e.

Reorganize the set LI11; update Njy1.
If L3t = 0 or maxi{Hui’j —l””} < 0 stop the process; otherwise set
j=7+1 and go to Step 2.

SEENG

4 Finite optimization procedure

The sequential quadratic programming method is the most used finite program-
ming procedure in reduction type methods for solving SIP problems. L; and L,
merit functions and a trust region framework to ensure global convergence are
usually proposed [3,20,27]. Penalty methods with exponential and hyperbolic
penalty functions have already been tested with some success [18, 19]. However,
to solve finite inequality constrained optimization problems, interior point meth-
ods [1,24, 25,28, 29] and interior point barrier methods [1, 33-35] have shown to
be competitive and even more robust than sequential quadratic programming
and penalty type methods. Thus, an interior point method is incorporated into
the proposed reduction algorithm aiming to improve efficiency over previous
reduction methods.

When using an interior point method, the reduced problem (6) is reformu-
lated in a way that the unique inequality constraints are simple nonnegativ-
ity constraints. So, the first step is to introduce slack variables to replace all
inequality constraints by equality constraints and simple nonnegativity con-
straints. Hence, adding nonnegative slack variables w = (wq, w1, .. .,kaH)T
to the inequality constraints, the problem (6) is rewritten as follows

min f(z) subject to gi(z) +w; =0, w; >0, 1=0,....,.LF+1, (9)
zEUF weRLF+2
where go(z) = g(x,a) and grr 1(x) = g(x,b) correspond to the values of the
constraint function g(z,t) at the lower and upper limits of set 7. In an interior
point barrier method, the solution of the problem (9) is obtained by computing
approximate solutions of a sequence of (associated) barrier problems

min &(z,w; p) subject to gi(x) +w; =0,1=0,...,LF+1, (10)

zeUk weRLF+2



for a decreasing sequence of positive barrier parameters p \, 0, while maintaining
w > 0, where
LF41

B(x,wip) = f(z) —p Y log(w)
=0

is the barrier function [1]. For a given fixed value of p, the Lagrangian function
for the problem is

L(z,w,y) = ®(z,w; p) + y" (9(z) + w)

where y is the Lagrange multiplier vector associated with the constraints g(z) +
w = 0, and the KKT conditions for a minimum of (10) are

Vf(x)+ Vg(z)y =0
—uW=le+y=0 (11)
g(x) +w=0

where V f(x) is the gradient vector of f, Vg(x) is the matrix whose columns

contain the gradients of the functions in vector g, W = diag(w, ..., wrr 1) is

a diagonal matrix and e € RE*+2 ig a vector of ones. Note that equations (11)
are equivalent to

Vf(x)+ Vg(z)y =0

z—y=0

—pe+Wz=0

g(x) +w =0,

(12)

where z is the Lagrange multiplier vector associated with w > 0 in (9) and, for
p = 0, together with w, z > 0 are the KKT conditions for the problem (9). They
are the first-order optimality conditions for problem (9) if the LICQ is satisfied.

Applying Newton’s method to solve the system (11), we obtain a linear sys-
tem to compute the search directions Az, Aw, Ay

H(z,y) 0 Vg(z) | [ Az V() + Vg(z)y
0 uw=2 I Aw | = — y—puW-le (13)
Vg(x)t T 0 Ay g(z) +w

k
where H(z,y) = V2f (x) + X2 uiV2qu(x).
Let the matrix N = N(x,w,y) = H(z,y) + uVg(z)W 2Vg(z)T denote the
dual normal matrix.

Theorem 2. If N is nonsingular, then system (13) has a unique solution.

Proof. From the second equation of (13), Aw can be eliminated giving
Aw = p W2 (—y — Ay) + We

and the reduced system

H(z,y) Vg(z) Az | Vf(z)+Vg(z)y
Vy(z)" —p=tW? ] [Ay} - {g(w)+w+We—u‘1W2y ' (14)



Solving the second equation in (14) for Ay we obtain:
Ay = pW =2 ((g(x) +w) + We — p~ ' Wy + Vg(z)" Az) (15)
and substituting in the first equation

H(z,y)Az + pVg(z)W 2 ((g(z) + w) + We —p~ W2y + Vg(z)" Az)
= —(Vf + Vg(z)y)

yields an equation involving only Az that depends on N:
N(z,w,y)Ax = =V [ — pVg(a)W *(g(z) +w) — uVg(x)W " 'e.
From here, Ay and Aw could also be determined depending on N.
|

It is known that if the initial approximation is close enough to the solution,
methods based on the Newton’s iteration converge quadratically under appro-
priate assumptions. For poor initial points, a backtracking line search can be
implemented to promote convergence to the solution of problem (6) [15]. After
the search directions have been computed, the idea is to choose o' € (0,al,,.],
at iteration i, so that z®"t1 = k' 4+ oAz’ Wt = WP + o’ Aw' and
yPitl = ¢k 4 of Ay® improve over an estimate solution (mk7i7wk’i,yk’i) for
problem (6). The index i represents the iteration counter of this inner cycle.
The parameter o, represents the longest step size that can be taken along the

directions before violating the nonnegativity conditions w > 0 and y > 0.

5 Globalization procedure

To achieve convergence to the solution within a local framework, line search
methods use, in general, penalty or merit functions. A backtracking line search
method based on a filter approach, as a tool to guarantee global convergence in
algorithms for nonlinear constrained finite optimization [4, 33], avoids the use of
a merit function. A filter method uses the concept of nondominance, from multi-
objective optimization, to build a filter that is able to accept approximations if
they improve either the objective function or the constraint violation, instead of
a linear combination of those measures present in a merit function. So the filter
replaces the use of merit functions, avoiding the update of penalty parameters.

This new technique has been combined with a variety of optimization meth-
ods to solve different types of optimization problems. Its use to promote global
convergence to the solution of a SIP problem was originally presented in [17,
18]. We also extend its use to the herein proposed branch-and-bound reduc-
tion method. Its practical competitiveness with other methods in the literature
suggests that this research is worth pursuing and the theoretical convergence
analysis should be carried out in a near future.

To define the next approximation to the SIP problem, a two-dimensional filter
line search method is implemented. Each entry in the filter has two components,



one measures SIP-feasibility, ©(z) = || maxscr (0, g(z,t)) |2, and the other SIP-
optimality, f (the objective function). First we assume that d* = 2% — 2" where
1 is the iteration index that satisfies the acceptance conditions that decide that
an improvement over a previous estimate z* is achieved. Based on d*, the below
described filter line search methodology computes the trial point 2**! = zF 4 ¢*
and tests if it is acceptable by the filter. However, if this trial point is rejected,
the algorithm recovers the direction of the first iteration, d* = z*! — 2, and
tries to compute a trial step size o such that 2**1 = 2% + o*d" satisfies one of
the below acceptance conditions and it is acceptable by the filter.

Here, a trial step size o is acceptable if a sufficient progress towards either
the SIP-feasibility or the SIP-optimality is verified, i.e., if

OF L < (1—9)0F or fHt! < fh —yOF (16)

holds, for a fixed v € (0,1). ©**! is the simplified notation of ©(z**1). On the
other hand, if

ok <omin (VfTd" <0 and of [~(V)Td¥]" > p[6%]", (@17)

are satisfied, for fixed positive constants @™ 3 and r and ¢, then the trial
approximation z**1 is acceptable only if a sufficient decrease in f is verified

fk—i—l S fk: +nak(vfk)Tdk (18)

for n € (0,0.5). The filter is initialized with pairs (O, f) that have © > @™ > (.
If the acceptable approximation does not satisfy the condition (17), the filter is
updated; otherwise (conditions (17) and (18) hold) the filter remains unchanged.
The reader is referred to [17] for more details concerning the implementation of
this filter strategy in the SIP context.

6 Termination criteria

As far as the termination criteria are concerned, in Step 5 of Algorithm 1, our

reduction algorithm stops at a point 2**1 if the following conditions hold simul-
taneously:
k+1 k+1 A — fH
maX{gl(l' + ),ZZO,...,L + +1} <€g, W <€f
[+t — 2|
d — <
B )

where €4, €5, €, > 0 are given error tolerances.

7 Numerical results and conclusions

The proposed reduction method was implemented in the MatLab programming
language on a Atom N280, 1.66Ghz with 2Gb of RAM. For the computational



experiments we consider eight test problems from the literature [3, 13,21, 22, 37].
Different initial points were tested with some problems so that a comparison with
other results is possible [3,37]. In the B&B type multi-local procedure we fix the
following constants: € = 5.0, § = 0.5 and §™% = 1.0.

In the globalization procedure context, the parameters in the filter line search
technique are defined as follows [35]: v = 107%,n =104, 8 =1,r = 1.1, . = 2.3,
O™ = 10*max {1,0°} and O™ = 10~* max {1,0°}.

In the termination criteria of the reduction method we fix the following con-
stants: €, = € = €, = 107°. Other parameters present in Algorithm 1 are:
k™2* =100 and ¢™?* = 5.

The implementation of the interior point method in the MatLab Optimiza-
tion Toolbox ™ was used.

Table 1. Computational results from B&B reduction method

i
3k

n fr
2[—2.50000F — 01
2| 2.43054F + 00
2| 1.94466E — 01
2| 1.94466F — 01
3| 8.64406E — 01

() 3| 8.64406F — 01
3
3
2
2
3
2

6.49458E — 01
4.30118F + 00
9.71589F 4+ 01
9.71589F + 01
1.00000E + 00
—3.00000F 4+ 00

-
wwww;mwwwwwwg

0 1O O T W WND NN

Table 1 shows the results obtained by the proposed B&B reduction type
method. In the table, P# refers to the problem number as reported in [3].
Problem 8 is from Liu’s paper [13]. n represents the number of variables, f* is
the objective function value at the final iterate and kgys gives the number of
iterations needed by the reduction method. We used the initial approximations
proposed in the above cited papers. Problems 2, 3, 6 and 8 were solved with
the initial approximation proposed in [37] as well. They are identified in Table 1
with (2). When the initial (0,0) (see () in the table) is provided to problem 2
our algorithm reaches the solution obtained in [37].

We also include Table 2 to display the results from the literature, so that a
comparison between the herein proposed reduction method and other reduction-
type methods is possible. The compared results are taken from the cited papers
[3,17,19,20,27]. In this table, ”-” means that the problem is not in the test set
of the paper.

Based on these preliminary tests, we may conclude that incorporating the
B&B type method into a reduction method for nonlinear SIP, significantly re-



Table 2. Results from other reduction type methods

in [19] in [17) in [20] in [27] in [3]

P# nm|krym | krv | Ken | ke [kra
1 21| 48 47 17 17 16
2 22 3 4 8 5 7
3 31 3 21 11 9 10
4 31| 11 - 10 5 5
5 31| 41 - 8 4 4
6 21 7 8 27 16 9
7T 32| 8 7 9 2 3

duces the total number of iterations required by the reduction method. The
herein proposed method implements two new strategies in a reduction method
context:

— a branch-and-bound method to identify the local solutions of a multi-local
optimization problem;

— an interior point method to compute an approximation to the reduced (finite)
optimization problem.

The comparison with other reduction type methods based on penalty techniques
is clearly favorable to our proposal.

We remark that the assumptions that lie in the basis of the method (Condi-
tions 1 and 2) are too strong and difficult to be satisfied in practice. In future
work, they will be substituted by less strong assumptions.

Acknowledgments The authors wish to thank two anonymous referees for
their valuable comments and suggestions.
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