
Calculating with Lenses
Optimising Bidirectional Transformations

Hugo Pacheco
DI-CCTC, Universidade do Minho, Braga, Portugal

hpacheco@di.uminho.pt

Alcino Cunha
DI-CCTC, Universidade do Minho, Braga, Portugal

alcino@di.uminho.pt

Abstract
This paper presents an equational calculus to reason about bidi-
rectional transformations specified in the point-free style. In par-
ticular, it focuses on the so-called lenses as a bidirectional idiom,
and shows that many standard laws characterising point-free com-
binators and recursion patterns are also valid in that setting. A key
result is that uniqueness also holds for bidirectional folds and un-
folds, thus unleashing the power of fusion as a program optimisa-
tion technique. A rewriting system for automatic lens optimisation
is also presented, to prove the usefulness of the proposed calculus.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data Types and
Structures,Recursion; D.3.4 [Programming Languages]: Proce-
ssors—Optimization; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Algebraic approaches to
semantics; I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation

General Terms Design, Languages, Theory

Keywords Program calculation, Bidirectional transformation,
Point-free programming

1. Introduction
In an heterogeneous world of data formats and programming lan-
guages, data transformation frameworks play an essential role in
facilitating the sharing of information among software applica-
tions. Modifications to the data often break the consistency between
source and target data models; and a key problem with most of
these frameworks is the lack of proper bidirectional mechanisms to
synchronise them. Typically, we end up with ad-hoc solutions like
manually engineering two unidirectional transformations together
so that they are consistent according to the required synchronisation
policy. This introduces a severe maintenance problem: any change
in one of the data models implies a redefinition of both transforma-
tions and a new consistency verification.

In response to this problem, intrinsic bidirectional transforma-
tion [11] frameworks have become increasingly popular in vari-
ous computer science domains, including heterogeneous data syn-
chronisation [4, 14], software model transformation [12, 15, 29],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’11, January 24–25, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0485-6/11/01. . . $10.00

graph transformations [16], schema evolution [2, 10], relational
databases [3] and functional programming [21, 22, 25, 30, 31].
Most of these approaches encompass the design of domain-specific
bidirectional languages in which one expression denotes a con-
nected pair of transformations, whose consistency is guaranteed in
the respective semantic space.

A distinctive contribution to the field is the Focal bidirectional
tree transformation language, proposed by Foster et al [14], whose
building blocks are the so-called lenses. A lens computes a view A
from a concrete data model C , and encompasses three functions:
get : C → A, that abstracts details from a concrete model; create :
A → C , that enriches an abstract model into a new concrete
model; and put : A×C → C , that synchronises a modified view
with the original concrete model. As an example, consider that the
concrete source data model is a list of people containing name and
gender. A possible lens over this data type is the transformation that
counts the number of women, whose get function could be trivially
defined (for example, in Haskell) as follows:

type Person = (Name,Gender) data Gender = M | F
data Nat = Zero | Succ Nat type Name = String
getw :: [Person]→ Nat
getw [] = Zero
getw ((nm,M) : ps) = getw ps
getw ((nm,F) : ps) = Succ (getw ps)

Using a traditional non-bidirectional approach, the programmer
should now define the remaining functions according to sensible
synchronisation requirements. For example, the create function
should, given a natural number, generate a list of women of that
length, according to the lens properties (as formally presented in
Section 2). Given that no other information is available, the only
choice is to generate default names. A possible implementation is

createw :: Nat → [Person]
createw Zero = []
createw (Succ n) = ("Eve",F) : createw n

Since put is expected to reconcile view updates with the source,
it is reasonable to require that, likewise to create , the number of
women in the output must be equal to the updated view. However,
whenever possible, the names of women from the original list
should also be restored. Men names should be restored at least up
to to the original length. Given these requirements, the definition
of put is substantially more intricate. A possible implementation
could be written as follows, but it is no longer trivial to check that
it satisfies all above requirements.

putw :: (Nat , [Person])→ [Person]
putw (Zero, []) = []
putw (Zero, (nm,F) : ps) = []
putw (Zero, (nm,M) : ps) = (nm,M) : putw (Zero, ps)

putw (Succ n, []) = ("Eve",F) : createw n
putw (Succ n, (nm,F) : ps) = (nm,F) : putw (n, ps)
putw (Succ n, (nm,M) : ps) = (nm,M) : putw (Succ n, ps)

These three functions could be packed together as a lens:

data Lens c a = Lens
{get :: c → a, put :: (a, c)→ c, create :: a → c}

women = Lens getw putw createw

Given the requirements on put , it should be now clear that this
conventional approach is bound for failure as model complexity in-
creases. As such, Focal provides a rich set of lens combinators that
allow users to combine primitive lenses into sophisticated bidirec-
tional transformations, that are guaranteed to be consistent (or well-
behaved) according to a precise synchronisation policy. In [25],
we have taken a similar approach, by bidirectionalising some well-
known point-free combinators and recursion patterns: any get func-
tion defined using those combinators specifies a well-behaved lens,
where adequate create and put functions are generated for free.
Using this language, we could redefine the above lens just as

women = length ◦ filter l ◦map (outG ◦ π2
const "Eve")

where filter l filters all left-alternatives from a list, outG :Gender
→ 1+1 exposes the top-level structure of the Gender data type as
a sum-of-products, and π2 projects the second component of a pair
(parameterised by the function const "Eve" to generate the other
component whenever necessary).

Unfortunately, despite the convenience of these compositional
approaches, the resulting transformation can suffer from poor ef-
ficiency, due to the cluttering of intermediate data structures; and
if manual design of bidirectional transformations is tedious and
error-prone, manual optimisation is a much more thankless (not to
say impossible) task. Deeply related to this problem is the lack of
an algebraic calculus to reason directly about lenses: proving bidi-
rectional properties generally requires independent proofs for each
of the three components. In particular, the lack of bidirectional fu-
sion laws prevents the use of the typical optimisation techniques
for functional programs. Quoting Foster et al [14]:

“Is there an algebraic theory of lens combinators that would
underpin optimisation of lens expressions in the same way
that the relational algebra and its algebraic theory are used
to optimise relational database queries? [...] This algebraic
theory will play a crucial role in a more serious implemen-
tation effort.”

The point-free style is characterised by a rich set of algebraic
laws, making it very amenable for program calculation. Thus, we
are particularly well positioned to answer this question: the first
goal of this paper is precisely to determine which algebraic laws
characterising the point-free combinators (and recursion patterns)
can be lifted to lenses. Apart from few side-conditions to control
the non-determinism in backward transformations, this algebraic
theory will enable us to calculate with lenses using only the get
point-free specification. For example, using the bidirectional fold
fusion law presented in Section 3, we will be able to show that
the map-fusion law is also valid on lenses, by performing the
conventional proof:

map (δ ◦ τ) = map δ ◦map τ map-FUSION

The second goal of this paper is to employ this bidirectional
calculus as the kernel of an automatic optimisation tool for point-
free lenses, thus combining the simplicity and elegance of a com-
binatorial approach with the efficiency of manually-crafted trans-
formations. For instance, we can show that, after optimisation, the
point-free specification of the women example performs neck-to-
neck with the original handwritten definition. The implementation

id : A→ A
(◦) : (B → C)→ (A→ B)→ (A→ C)
(4) : (A→ B)→ (A→ C)→ (A→ B × C)
π1 : A× B → A
π2 : A× B → B
(×) : (A→ B)→ (C → D)→ (A× C → B ×D)
(∇) : (A→ C)→ (B → C)→ (A + B → C)
i1 : A→ A + B
i2 : B → A + B
(+) : (A→ B)→ (C → D)→ (A + C → B + D)

ap : BA ×A→ B

· : (A× B → C)→ (A→ CB)

·• : (B → C)→ (BA → CA)
! : A→ 1
· : A→ (1→ A)

Figure 1. Point-free combinators

of this tool builds on a successful rewrite system for transforma-
tion of point-free programs [6, 9], extending it to support lenses.
Of course, optimisation could be attempted independently at the
three components of a lens, since they are also defined in the point-
free style: we initially followed that approach but, unfortunately,
the complexity of the put function prevented the automatic spot-
ting of many optimisation opportunities. We ended up with a mixed
approach: the bulk of optimisations is performed directly at the lens
level (namely, all fusions involving recursion patterns), with some
minor optimisations performed later at each component separately.

In the next section (Section 2), we briefly review the point-free
lens combinators first presented in [25] and introduce the algebraic
laws that characterise them. Section 3 reviews the construction of
recursive lenses and studies the uniqueness properties of bidirec-
tional folds and unfolds. In Section 4, we show how to harness these
laws, in particular fusion, into an effective rewrite system for the
simplification of bidirectional transformations and discuss the im-
plementation of this rewrite system (using the functional program-
ming language Haskell), together with the speedup results for a
complex transformation scenario. Section 5 compares related work
and Section 6 concludes the paper with a synthesis of the main con-
tributions and directions for future work.

2. Point-free Combinators as Lenses
Before presenting the building blocks of our lens language, we need
to set the semantic space where they exist. In this work, the seman-
tic domain for functions will be the SET category, with sets (types)
as objects and total functions as arrows. Being a “well-behaved”
category, with products, co-products and terminal object, we im-
mediately get a powerful set of point-free combinators for build-
ing complex functions out of simpler ones (Figure 1). Moreover,
these constructs enjoy universal laws that enable reasoning by cal-
culation. For example, the existence of categorical products ensures
that there is a unique way to combine two functions with a shared
domain into a function that applies both in order to produce a pair:

f = g4 h⇔π1 ◦ f = g ∧ π2 ◦ f = h

As expected, not every combination of get , put and create
functions builds a reasonable lens. Several properties will be re-
quired of these functions in order to get a “well-behaved” lens
(henceforward denoted just as “lens”). Using the point-free style,
we can now give a precise definition of such properties.

Definition 1 (Lens). A well-behaved lens δ, denoted by δ : C Q A,
is a bidirectional transformation that comprises three total func-
tions getδ : C → A, putδ : A×C → C and createδ : A → C ,
satisfying the following properties:

getδ ◦ createδ = id CREATEGET

getδ ◦ putδ = π1 PUTGET

putδ ◦ (getδ4 id) = id GETPUT

Property CREATEGET guarantees that get is an abstraction
function, this is, A contains at most as much information as C .
PUTGET guarantees that the lens is acceptable, i.e., updates to a
view cannot be ignored and must be translated exactly. Finally,
GETPUT states that the lens should be stable, i.e, if the view does
not change, then neither should the source.

In [25] our research question was: which morphisms in SET also
denote lenses? In order to answer this question, each primitive func-
tion and combinator of Figure 1 was scrutinised and, whenever pos-
sible, bidirectionalised to a primitive lens or lens combinator. Being
the point-free style so intertwined with algebraic calculation, the
followup question must necessarily be: are the laws characterising
the standard point-free combinators also valid in the lifted lenses?
One of the objectives of this paper is precisely to answer this ques-
tion. In the remaining of this section we will briefly recall the work
presented in [25], but now stating for each bidirectionalised combi-
nator the laws that characterise it. To avoid introducing a different
notation, the lifted lens combinators are represented using the same
notation but, to disambiguate lens laws from the standard point-free
laws, lens variables will be denoted by greek letters (δ, τ, φ, ψ, ...).

2.1 Basic lens combinators
The fundamental point-free combinators are identity and function
composition. Both can be lifted to lenses as follows:

id : C Q A
get = id
put = π1

create = id

∀δ : B Q A, τ : C Q B . (δ ◦ τ) : C Q A
get = getδ ◦ getτ
put = putτ ◦ (putδ ◦ (id × getτ)4π2)
create = createτ ◦ createδ

The identity and associativity axioms that characterise these
combinators are also valid for the lifted versions:

id ◦ δ = δ = δ ◦ id id -NAT

δ ◦ (τ ◦ φ) = (δ ◦ τ) ◦ φ ◦-ASSOC

Since both these laws are valid, a category of lenses can be defined,
whose objects are the same objects of SET and morphisms are well-
behaved lenses.

Proof. Two lenses δ and τ are equal iff getδ = getτ , putδ = putτ ,
and createδ = createτ . The first equality is always trivially true
because the get function has exactly the same point-free definition
as the lens itself. The trickiest part is always proving that both
puts are equal (especially when involving lots of compositions).
For example, for ◦-ASSOC such proof can done as follows:

putδ◦(τ◦φ)
= {definition of put }

putτ◦φ ◦ (putδ ◦ (id × getτ◦φ)4π2)
= {definition of put }
putφ ◦ (putτ ◦ (id × getφ)4π2) ◦ (putδ ◦ (id × getτ◦φ)4π2)
= {×-FUSION;×-ABSOR;×-CANCEL}
putφ ◦ (putτ ◦ (putδ ◦ (id × getτ◦φ)4 getφ ◦ π2)4π2)
= {definition of get }
putφ ◦ (putτ ◦ (putδ ◦ (id × getτ ◦ getφ)4 getφ ◦ π2)4π2)
= {×-FUSION;×-FUNCTOR-COMP;×-CANCEL}
putφ ◦ (putτ ◦ (putδ ◦ (id × getτ)4π2) ◦ (id × getφ)4π2)

= {definition of put }
putφ ◦ (putδ◦τ ◦ (id × getφ)4π2)
= {definition of put }

put(δ◦τ)◦φ

Note that these equalities are proven using laws valid for functions
on SET (see [25] for a compendium). Throughout the paper, we
will use the same name to denote laws valid both on lenses and
functions. Disambiguation should be trivial from the context. The
proofs for create of the law id -NAT are trivial and will be elided.
Due to space constrains, the proofs of the remaining laws intro-
duced in this section will not be presented. Although some of them
are a bit more complex than the one above, they are still fairly easy,
at least for someone experienced with the point-free style.

The bang combinator is a lens that ignores all the concrete
information:

∀f :1→C . !f : C Q 1
get = !
put = π2

create = f

Here, f : 1 → C is a function that generates default concrete
values. Due to this parameter function, we cannot state that 1 is a
proper terminal object of our category of lenses, because there is
more than one lens with type C Q 1. Nonetheless, we can phrase a
lifted version of the uniqueness law for !:

δ = !createδ⇔ δ : A Q 1 !-UNIQ

2.2 Products
Unfortunately, our category of lenses is not as “well-behaved” as
SET. For example, as discussed in [25], there are no categorical
products because in general it is not possible to define the split lens
δ4 τ : A Q B ×C , given lenses δ : A Q B and τ : A Q C ; there
are no lenses of type A Q A × A (unless A is the unit type 1),
because the view is not an abstraction of the source. Thus, although
id : A Q A is a well-behaved lens, id4 id : A Q A × A is
not. However, we do have the product bi-functor and projections
as valid lenses, defined as follows:

∀f :A→B. π1
f : A×B Q A

get = π1

put = id × π2

create = id4 f

∀f :B→A. π2
f : A×B Q B

get = π2

put = swap ◦ (id × π1)
create = f 4 id

∀δ : C Q A, τ : D Q B . δ × τ : C ×D Q A×B
get = getδ × getτ
put = (putδ × putτ) ◦ distp
create = createδ × createτ

In the projections, the parameter f is a function that generates
default values for the deleted component of the pair. swap : A ×
B → B×A and distp :(A×B)×(C×D)→ (A×C)×(B×D)
are standard isomorphisms.

The following laws guarantee that the product lens is also a bi-
functor in the category of lenses:

id × id = id ×-FUNCTOR-ID

(δ × τ) ◦ (φ× ψ) = δ ◦ φ× τ ◦ ψ ×-FUNCTOR-COMP

Projections also enjoy a kind of naturality law, with a precise
characterisation of how the default generation function must be
adapted.

π1
f ◦ (δ × τ) = δ ◦ π1

createτ◦f ◦getδ π1-NAT

π2
f ◦ (δ × τ) = τ ◦ π2

createδ◦f ◦getτ π2-NAT

2.3 Sums
Similarly to products, categorical sums do not exist in the cate-
gory of lenses, this time because the injections i1, i2 are not sur-
jective functions and thus not definable as lenses. Notwithstanding,
the sum bi-functor and either combinators denote valid lenses, as
defined below:

∀p:A→2, δ : C Q A, τ : B Q A. (δ∇ τ)p : C + B Q A
get = getδ∇ getτ
put = (putδ + putτ) ◦ distr
create = (createδ + createτ) ◦ p ?

∀f :A×D→C , g:B×C→D, δ : C Q A, τ : D Q B .

getδ◦f=π1 ∧ getτ◦g=π1 ⇒ (δ + τ)f ,g : C + D Q A + B
get = getδ + getτ
put = (putδ∇ f + g ∇ putτ) ◦ dists
create = createδ + createτ

In these definitions, distr : (A + B) × C → A × C + B × C
and dists : (A + B) × (C + D) → (A × C + A × D) +
(A × C + A × D) are isomorphisms that distribute products
over sums, while (?) lifts a predicate of type A → 2 to a more
useful input-preserving function of type A → A + A. The either
combinator is parameterised by a predicate p that dictates the
choice of left or right alternatives in create . We will denote by
•∇ and ∇• the versions when the predicate always returns true or
false, respectively. In the sum combinator, the parameter functions
specify how to reconstruct concrete values whenever the abstract
and concrete sums are “out of sync”. The conditions getδ ◦ f =
π1 and getτ ◦ g = π2 force these functions to be acceptable
(likewise to put), i.e., the view cannot be ignored when computing
the defaults. Useful candidates that satisfy these restrictions are
createδ ◦π1 and createτ ◦π1, respectively, and when superscripts
are omitted from the sum these are assumed to be the parameters.

Likewise to its functional counterpart, the either lens combina-
tor also satisfies fusion and absorption laws:

δ ◦ (τ ∇φ)p = (δ ◦ τ ∇ δ ◦ φ)p◦createδ +-FUSION

(δ∇ τ)p ◦ (φ+ ψ)f ,g = (δ ◦ φ∇ τ ◦ φ)p +-ABSOR

Note how the first law constrains the new predicate to be coherent
with the create of the fused lens. Compositions of sums can be
fused according to the following law, that states how the new
parameter functions can be deduced:

(δ + τ)f ,g ◦ (φ+ ψ)h,i = (δ ◦ φ+ τ ◦ ψ)j ,k

⇔
j=h◦(f ◦(id×getψ)4π2) ∧ k=i◦(g◦(id×getφ)4π2)

+-COMP

If the parameters are the standard create◦π1 we have the following
simplified version:

(δ + τ) ◦ (φ+ ψ) = δ ◦ φ+ τ ◦ ψ +-FUNCTOR-COMP

Together with the following law, this ensures that the sum combi-
nator is also a bi-functor.

(id + id)f ,g = id +-FUNCTOR-ID

2.4 Isomorphisms as lens combinators
The simplest cases of bidirectional transformations are isomor-
phisms. Given a bijective function f :A→ B (with inverse f −1 :B
→ A), we can trivially define a lens isomorphism f : A Q B as:

get = f

put = f −1 ◦ π1

create = f −1

It is trivial to prove that f ◦ f −1 = f −1 ◦ f = id is also valid

at the lens level. There are many useful examples of such lens
isomorphisms, such as the following:

swap : A×B Q B×A
assoc : A×(B×C) Q (A×B)×C
coswap : A + B Q B + A
coassoc : A + (B + C) Q (A + B) + C
distl : (A + B)×C Q A×C + B×C
distr : A×(B + C) Q A×B + A×C

Since splits and injections are not valid lenses, these lens iso-
morphisms play an important role in extending the expressivity
of our point-free lens language. For example, all lenses that rear-
range nested pairs can be defined as compositions of swap, assoc,
assoc−1 and products [23].

A natural lens η between functors F and G , denoted by η :
F Q̇ G , is a lens that transforms instances of F into instances of
G , while preserving the inner instances of the polymorphic type
argument. It assigns to each type A an arrow ηA : F A Q G A
such that, for any lens δ :A Q B , the following naturality condition
holds:

η ◦ F δ = G δ ◦ η η-NAT

This concept can be generalised to functors of higher arity. If a
natural lens η is also an isomorphism, then it is called a natural lens
isomorphism. Such is the case of all the above lenses. For example,
the following bidirectional naturality laws are also valid:

swap ◦ (δ × τ) = (τ × δ) ◦ swap swap-NAT

coswap ◦ (δ + τ)f ,g = (τ + δ)g,f ◦ coswap coswap-NAT

The naturality law for distl is a bit more tricky:

distl ◦ ((δ + τ)f ,g × φ) = (δ × φ+ τ × φ)h,i ◦ distl
⇔

h=(f×putφ)◦distp ∧ i=(g×putφ)◦distp

distl -NAT

Many other useful laws can be proved about these lens isomor-
phisms, such as the following cancelation laws:

π1
f ◦ swap = π2

f ∧ π2
f ◦ swap = π1

f swap-CANCEL

(δ∇ τ)p ◦ coswap = (τ ∇ δ)coswap◦p coswap-CANCEL

(π2
f ∇π2

g)p ◦ distl = π2
(f+g)◦p? distl -SND-CANCEL

2.5 Higher-order lens combinators
Higher-order lenses are also definable in our category of lenses
through exponentiation. The exponentiation type BA denotes all
functions with domain A and codomain B, and is characterised by
an operation f A :BA → CA, where f :B → C . Replacing the type
superscript by the symbol •, the exponentiation lens can be defined
as follows:

∀δ : B Q C . δ• : BA Q CA

get = getδ
•

put = putδ
• ◦ 4̂

create = createδ
•

Here 4̂ = (ap × ap) ◦ ((π1 × id)4 (π2 × id)) denotes the
uncurried version of the split combinator [7]. Again, exponentiation
is a functor in the lens category:

id• = id •-FUNCTOR-ID

(δ ◦ τ)• = δ• ◦ τ• •-FUNCTOR-COMP

The ap combinator can also be lifted to a lens. The point-free
definition is a bit tricky, and thus we just present the point-wise
version for better comprehension:

∀f :B→A. apf : BA×A Q B
get (g , x) = g x
put (y , (g , x)) = (λz → if x = z then y else g x , x)
create y = (const y , f y)

Note how the put function updates the original function with a new
result for the input value that was applied. The parameter function
f is used in create to choose a value of the domain A. Application
cancels exponentiation, according to the law:

apf ◦ (δ• × id) = δ ◦ apf ◦getδ •-CANCEL

Unfortunately, we also do not have categorical exponentiation in
the category of lenses because the curry of a well-behaved lens
may not be a well-behaved lens. For example, note that, although
π2 : A× B Q B is a lens, π2 : A→ BB is not surjective and thus
cannot be made into a lens (given a value of type A it returns the
function id).

3. Recursion Patterns as Lenses
Concerning recursion, most inductive datatypes can be defined as
fixpoints of polynomial functors (sums of products). Each datatype
comes equipped with an isomorphism outF :µF → F µF that can
be used to expose its top-level structure (in a sense, encoding pat-
tern matching over that type), and its converse inF : F µF → µF
that determines how values of that type can be constructed. Being
isomorphisms, these functions can trivially be lifted to lenses. Be-
sides uniquely determining a type (up to isomorphism), a functor
also dictates a unique way of consuming and producing values of
that type: the well-known recursion patterns fold and unfold. For
example, given an algebra g : F A → A, the fold ([g]) : µF → A
is the unique function satisfying the following universal law:

f = ([g])⇔ f ◦ inF = g ◦ F f

From this we can derive the well known fold fusion law. As we will
see in this section, this universal law is also valid for lenses: it will
enable us to apply fusion directly to lenses, thus streamlining the
optimisation process.

Building on the results of the previous section, we first define a
polytypic (polynomial) functor map over lenses:

∀δ : C Q A. F δ : F C Q F A
Id δ = δ
T δ = id
(F ⊗G) δ = F δ ×G δ
(F ⊕G) δ = F δ + G δ
(F �G) δ = F (G δ)

This definition trivially satisfies the following laws:

F id = id FUNCTOR-ID

F δ ◦ F τ = F (δ ◦ τ) FUNCTOR-COMP

In order to bidirectionalise recursion patterns, in [25] we intro-
duced a polytypic functor zipping function fzipF : (A → C) →
F A× F C → F (A× C) that satisfies the following laws:

putF δ = F putδ ◦ fzipF createδ fzip-PUT

F π1 ◦ fzipF f = π1 fzip-CANCEL

fzipF f ◦ (F g4F h) = F (g4 h) fzip-SPLIT

One of the key results in [25] is that the fold can be bidirection-
alised using an unfold for the put function:

∀δ : F A Q A. ([δ])F : µF Q A
get = ([getδ])F
put = let g = putδ ◦ (id × F get)4π2

in bd(fzipF create ◦ g ◦ (id × outF))ceF
create = bd(createδ)ceF

In [25] we have also shown that this definition yields a well-
behaved lens whenever the unfold terminates. We will now prove
that it also has uniqueness:

δ = ([τ])F ⇔ δ ◦ inF = τ ◦ F δ ([·])-UNIQ

Proof. This proof can be factorised in the following three lemmas:

getδ = get([τ])F ⇔ getδ◦inF = getτ◦F δ

createδ = create([τ])F
⇔ createδ◦inF = createτ◦F δ

putδ = put([τ])F ⇔ putδ◦inF = putτ◦F δ ⇐
getδ=get([τ])F

createδ=create([τ])F

Again, the first follows directly from the unidirectional uniqueness.
The proof of the remaining is presented in Figure 2.

In [25] we have also shown how to bidirectionalise the unfold
using an hylomorphism (a composition of a fold after an unfold)
for put . Due to space constrains we will not present the definition.
Likewise to the fold, it is possible to prove that the bidirectional
version of unfold also has uniqueness:

δ = bd(τ)ceF ⇔ outF ◦ δ = F δ ◦ τ bd(·)ce-UNIQ

From uniqueness it is trivial to derive the following laws, more
amenable for equational reasoning:

([inF])F = id ([·])-REFLEX

([τ])F ◦ inF = τ ◦ F ([τ])F ([·])-CANCEL

δ ◦ ([τ])F = ([φ])F ⇐ δ ◦ τ = φ ◦ F δ ([·])-FUSION

bd(outF)ceF = id bd(·)ce-REFLEX

outF ◦ bd(τ)ceF = F bd(τ)ceF ◦ τ bd(·)ce-CANCEL

bd(τ)ceF ◦ δ = bd(φ)ceF ⇐ τ ◦ δ = F δ ◦ φ bd(·)ce-FUSION

3.1 Algebraic laws for lenses over lists
Lists are ubiquitous in functional programming. As a demonstra-
tion of the usefulness of our bidirectional calculus, we will now
show how some standard operations over lists can be defined in our
language and prove some properties about them. In particular, the
lenses used in our introduction example can be defined as follows:

lengthA : [A] Q Nat

lengthv = ([inN ◦ (id + π2
v◦!)])L

map : (A Q B)→ ([A] Q [B])
map δ = ([inL ◦ (id + δ × id)])L
filter l : [A + B] Q [A]
filter l = ([(inL •∇π2) ◦ coassoc ◦ (id + distl)])L

The parameter in length is the default value of type A to be inserted
in the source list when the target length increases. In the introduc-
tory example it was omitted because it was the sole inhabitant of
type 1. Many more lenses over lists can be found in the Haskell
pointless-lenses library introduced in [25]. Some of the usual
laws that can be proved about these functions are presented in Fig-
ure 3. Since map is defined exactly as its unidirectional version, the
following map fusion laws can be trivially proven from uniqueness.

([τ]) ◦map δ = ([τ ◦ (id + δ × id)]) ([·])-MAP-FUSION

map δ ◦ bd(τ)ce = bd((id + δ × id) ◦ τ)ce bd(·)ce-MAP-FUSION

createδ = create([τ])F

⇔{definition of create }
createδ = bd(createτ)ceF
⇔{bd(·)ce-UNIQ}
outF ◦ createδ
= F createδ ◦ createτ
⇔{definition of create }
createinF ◦ createδ
= createF δ ◦ createτ
⇔{definition of create }
createδ◦inF = createτ◦F δ

putδ = put([τ])F
⇔{definition of put }
putδ = fzipF create([τ])F

◦ (putτ ◦ (id × F get([τ])F)4π2) ◦ (id × outF)

⇔{bd(·)ce-UNIQ}
outF ◦ putδ = F putδ ◦ fzipF create([τ])F

◦ (putτ ◦ (id × F get([τ])F)4π2) ◦ (id × outF)

⇔{get([τ])F = getδ; create([τ])F
= createδ }

outF ◦ putδ = F putδ ◦ fzipF createδ ◦ (putτ ◦ (id × F getδ)4π2) ◦ (id × outF)
⇔{fzip-PUT; definition of get }
outF ◦ putδ = putF δ ◦ (putτ ◦ (id × getF δ)4π2) ◦ (id × outF)
⇔{definition of put ;×-REFLEX}
outF ◦ putδ = putτ◦F δ ◦ (id × outF)
⇔{in-ISO;×-FUNCTOR-COMP; LEIBNIZ}
outF ◦ putδ ◦ (id × inF) = putτ◦F δ

⇔{×-CANCEL; definition of put }
put inF ◦ (putδ ◦ (id × inF)4π2) = putτ◦F δ

⇔{definition of get ; definition of put }
putδ◦inF = putτ◦F δ

Figure 2. Proof of ([·])-UNIQ

map id = id map-ID

map δ ◦map τ = map (δ ◦ τ) map-FUSION

map δ ◦ cat = cat ◦ (map δ ×map δ) map-CAT

map δ ◦ concat = concat ◦map (map δ) map-CONCAT

filter l ◦map (δ + τ)f ,g = map δ ◦ filter l filter l -MAP

lengthv ◦ cat = plus ◦ (lengthv × lengthv) length-CAT

lengthv ◦map δ = lengthcreateδ v length-MAP

lengthv ◦ concat = sum ◦map lengthv length-CONCAT

Figure 3. Lens laws for common operations over lists.

For example, using ([·])-MAP-FUSION the proof of length-MAP
can be done as follows:

lengthv ◦map δ
= { length -DEF; ([·])-MAP-FUSION}

([inN ◦ (id + π2
v◦!) ◦ (id + δ × id)])L

= {+-FUNCTOR-COMP;π2-NAT}
createδ ◦ v ◦ ! ◦ get id
= {·-COMP; definition of get }
createδ v ◦ !

([inN ◦ (id + π2
createδ v◦!)])L

= { length -DEF}
lengthcreateδ v

Some of these properties can be generalised for arbitrary recur-
sive data types. For example, we can define generic mapping lens
([25]) for polymorphic types viewed as fixed points of bi-functors.
In the next section, we will discuss how bidirectional laws can be
harnessed into a rewrite system for lens optimisation. These list
lenses and laws will be particularly useful in order to agilise the
definition and optimisation of lenses over lists.

4. Implementation
The main difference between equational reasoning and term rewrit-
ing [1] is that bidirectional equations of the form f = g are adapted

into unidirectional rewrite rules of the form f g (read f leads
to g), indicating that a term f can be substituted by a term g , but
not otherwise. For the goal of simplification, the general idea is
to substitute terms by simpler terms (for most cases). In our case,
this corresponds to view the equational laws from Sections 2,3 as
rules oriented from left-to-right. In this section, we explain the im-
plementation (in Haskell) of the rewrite system that is in the core
of our lens optimisation tool, walk through a complex transforma-
tion scenario, and compare the performance of optimised and non-
optimised lenses to demonstrate the usefulness of the tool.

4.1 Mechanising Fusion
Laws like the ones presented in Figure 3 allow us to optimise lenses
over recursive data types without using the fusion laws ([·])-FUSION
and bd(·)ce-FUSION directly. This is particularly useful because this
fusion laws imply “guessing” the algebra (or co-algebra) of the re-
sulting fold (or unfold). To be more specific, consider the bidirec-
tional fold fusion law.

δ ◦ ([τ])F = ([φ])F ⇐ δ ◦ τ = φ ◦ F δ

Reading this law as a rewrite rule, in order to perform the reduction
δ ◦ ([τ])F ([φ])F , one must compute a lens φ such that δ ◦ τ =
φ ◦ F δ holds. Unfortunately, we cannot always avoid the need
to use fusion, and thus some technique must be implemented in
order to mechanise it. This research topic received some attention
in the past: one of the most successful implementations is the
MAG system [28], which views the guessing step as a higher-order
matching problem. However, MAG is not fully automatic and thus
not suitable for our optimisation tool: the user must have some idea
of the steps of the proof to provide sufficient hints to proceed with
the derivation.

Similarly to [27], our approach is to reduce the hard guessing
step to a simple rewriting problem that, although not as general as
MAG, is fully automatic and works in practice for many examples.
In the above fusion law, if the converse of δ could be computed as
δ◦, then φ could trivially be defined as δ ◦ τ ◦F δ◦. Of course, this
is just an alternative formulation of the guessing step and useless
per se. However, if δ◦ is left opaque (just denoting the tagging
of expression δ), and by applying our standard rewrite system,
temporarily augmented with rules δ ◦ δ◦ id and δ◦ ◦ δ id ,
we manage to get rid of δ◦, then we get the desired algebra. This

idea is embodied in the following rewrite rule, where we test that
δ◦ does not occur in the normal form of δ ◦ τ ◦ F δ◦.

δ ◦ ([τ])F ([φ])F ⇐ δ ◦ τ ◦ F δ◦
∗
 φ ∧ δ◦ 6∈ φ ([·])-FUSION

As an example of this technique, Figure 4 presents the rewrite
trace for one of the fusions needed to optimise the example in
the introduction (indentation in the trace indicates the rewriting of
side-conditions). To make the presentation clear, in this trace we
mention the inverse of some rules (corresponding to the respective
laws oriented from right-to-left). Obviously, to ensure termination,
these rules are not encoded as such in our rewrite system. Instead,
we have generalised rule versions that covers additional cases such
as the following for distl -NAT (the definitions of f and g can be
easily computed, but are omitted to simplify the presentation):

distl ◦ (id × δ) (id × δ + id × δ)f ,g ◦ distl

distl ◦ ((δ + τ) ◦ φ× ψ) (δ × ψ + τ × ψ)f ,g ◦ distl ◦ (φ× id)

4.2 Encoding in Haskell
In previous work [25], we have developed the pointless-lenses
library for defining complex lens transformations as point-free
lenses in Haskell. A straightforward method to optimise these
lenses would be to specify the laws described in this paper as
GHC rewrite rules [18], and allow their use by the GHC com-
piler. However, this approach provides little control over the rewrite
strategy and is not capable of implementing laws such as !-UNIQ
and ([·])-FUSION, since it does not support type-directed rewrit-
ing nor side-conditions. In order to harness the full power of our
algebraic laws, we instead recover a successful type-safe, type-
directed rewriting system for transformation of point-free pro-
grams [6, 9], and extend it to support bidirectional lenses. Instead
of the shallow embedding of lenses as Haskell functions used in
pointless-lenses, this rewrite system makes use of a deep em-
bedding, where the objects and arrows of the target lens language
are encoded as Haskell datatypes.

Representation of objects and arrows As defined in [9], the typed
representation of objects (types and functors) uses generalised al-
gebraic data types (GADTs) [19]:

data Type a where
Int :: Type Int
One :: Type 1
...
Prod :: Type a → Type b → Type (a, b)
Data :: String → Functor (F a)→ Type a
Fun :: Type a → Type b → Type (a → b)
Lens :: Type a → Type b → Type (Lens a b)

data Functor (f :: ∗ → ∗) where
I :: Functor Id
K :: Type c → Functor c
(�) :: Functor f → Functor g → Functor (f ⊗ g)
(�) :: Functor f → Functor g → Functor (f ⊕ g)
(�) :: Functor f → Functor g → Functor (f � g)

The above definitions provide value-level constructors for base
types, sums, products, user-defined types, functions, lenses, and
polynomial functors. For example, the value Prod Int Int rep-
resents the type (Int , Int). Note that the Functor value in the
definition of Data is not arbitrary: somehow, we must ensure that
it is the base functor of the user-defined type a . This relation is
established by the type family [26] F a , that acts as a type-level
function from types to their base functors, as exemplified for lists:

type family F a :: ∗ → ∗
type instance F [a] = 1⊕ a ⊗ Id

For example, Data "[Int]" (K 1�K Int � I) is the represen-
tation of datatype [Int]. Moreover, when applying a functor to a
type, we want to get an isomorphic sum-of-products type capable
of being processed with point-free combinators. To this extent, we
add the Rep f a type family that, given a functor f and a type a ,
returns the equivalent “flat” type:

type family Rep (f :: ∗ → ∗) a :: ∗
type instance Rep Id a = a
type instance Rep (g ⊗ h) a = (Rep g a,Rep h a)
...

Point-free expressions can also be represented in a type-safe
manner using a GADT:

data PF f where
Id :: PF (c → c)
Fst :: PF ((a, b)→ a)
Bang :: PF (a → 1)
...
IdL :: PF (Lens c c)
FstL :: PF (a → b)→ PF (Lens (a, b) a)
BangL :: PF (1→ c)→ PF (Lens c One)
CataL :: PF (Lens (Rep (F a) b) b)→ PF (Lens a b)
...

Note that the inhabitants of type PF f are the point-free repre-
sentations of both unidirectional functions and bidirectional lenses.

Rewrite rules and systems In our implementation, rules are rep-
resented by monadic type-preserving functions that, given a type
representation and a point-free expression, return a new expression
of the same type:

type Rule = ∀f ◦ Type f → PF f → RewriteM (PF f)

RewriteM is a stateful monad that keeps a trace of the applied
rules and is an instance of MonadPlus , thus modelling partial-
ity in rule application: the monadic function success updates the
RewriteM monad to keep trace of a successful reduction; failure
is signalled with mzero. For example, we can encode a rewrite rule
for !-UNIQ as follows:

bang uniq :: Rule
bang uniq (Lens) (BangL f) = mzero
bang uniq (Lens a One) l = do

let createl = createof (Lens a One) l
g ← optimise fun (Fun One a) createl
success "!-Uniq" (BangL g)

bang uniq = mzero

The first case of this rule avoids a rewriting loop (application of
banqUniq to ! itself. The third catch-all case indicates that the rule
fails for any other input. The second case reveals the two-layered
architecture of our rewrite system: the strategy optimise fun sim-
plifies function representations, of the form PF (a → b), and the
strategy optimise lens rewrites lens representations, of the form
PF (Lens a b). To mediate between these two classes, the pro-
cedures getof ,createof and putof take the representation of a lens
and return the representations of the corresponding get ,put and
create functions. As a general methodology, whenever a unidirec-
tional function is created inside a lens rule, we apply optimise fun
to simplify it.

The rewrite systems themselves are built using strategic term
rewriting [20], where the combination of a standard set of basic
rules allows the simple design of flexible rewriting strategies. Some
standard strategic combinators are = , � and nop, that encode se-
quential composition, choice and identity. From these, other com-
binators can be derived, such as try r = r � nop. Examples

length ◦ filter l
 {filter l -DEF; ([·])-FUSION; +-FUNCTOR}

length ◦ (inL •∇π2
b◦!) ◦ coassoc ◦ (id + distl) ◦ (id + id × length◦))

 {+-FUNCTOR-COMP; +-FUNCTOR-ID−1; distl -NAT; +-FUNCTOR-COMP−1}
length ◦ (inL •∇π2

b◦!) ◦ coassoc ◦ (id + (id × length◦ + id × length◦)(π1×put length◦)◦distp,(π1×put length◦)◦distp) ◦ (id + distl)
 {coassoc-NAT; +-ABSOR}
length ◦ (inL ◦ (id + id × length◦) •∇π2

b◦! ◦ (id × length◦)) ◦ coassoc ◦ (id + distl)
 { + -FUSION; length -DEF; ([·])-CANCEL}
(inN ◦ (id + π2

!) ◦ (id + id × length) ◦ (id + id × length◦) •∇ length ◦ π2
b◦! ◦ (id × length◦)) ◦ coassoc ◦ (id + distl)

 { + -FUNCTOR-COMP;×-FUNCTOR-COMP; length ◦ length◦ id }
(inN ◦ (id + π2

!) •∇ length ◦ π2
b◦! ◦ (id × length◦)) ◦ coassoc ◦ (id + distl)

 {π2-NAT; length ◦ length◦ id }
create id ◦ b ◦ ! ◦ get length◦ {definition of create; !-UNIQ} b ◦ !

(inN ◦ (id + π2
!) •∇π2

b◦!) ◦ coassoc ◦ (id + distl)

([(inN ◦ (id + π2
!) •∇π2

b◦!) ◦ coassoc ◦ (id + distl)])L

Figure 4. Fusion mechanisation example

name

actor

played

year title role awarddirector

review

show

boxoffice

country value

imdb
* *

*

* *

*
tv

season

year episode

movie
*

*

+
year title

user comment
?

year awname

*

Figure 5. A movie database schema, inspired by IMDb.

of strategic combinators that traverse the structure of datatypes are
once , that applies its argument rule exactly once according to a
top-down traversal and outermost , that performs exhaustive rule
application. Using these strategic combinators, we can construct
complete transformation strategies, such as

optimise lens = outermost opt = rec
where opt = nat id � bang uniq � ...

rec = try (once fuse = optimise lens)
fuse = cata fusion � ana fusion � ...

This strategy exhaustively applies the set of rewrite rules for
lenses described across this paper, and some more. Some of these
rules (particularly fusion rules) are evidently more expensive, due
to the intermediate rewriting of side-conditions, and are deferred
inside the strategy until no other rule can be applied.

4.3 Application scenario
We will now present some examples and compare the performance
between automatically optimised lenses and their original point-
free specifications. Consider the XML schema shown in Figure 5
for storing information about movies and actors in an IMDb like
database. By representing this schema in Haskell (with sequences
represented by left-nested tuples, multiple occurrences by lists,
choices by left-nested Eithers, and optional elements by Maybe),
we can use our lens language to define views of the data. As an
example, imagine that we want to summarise the information about
movies and actors stored in our IMDb, according to the following
lens transformation:

imdb = shows × actors
shows = map ((id × reviews)× id) ◦ filter l

◦ map distr ◦map (id × (movie + tv))

name awnamecomment

imdb
* *

* *
title directoryear boxvalue

 movie actor

Figure 6. A view of the original schema.

reviews = lengthcreview ◦ concat ◦map π2
duser

movie = id × boxoffices

boxoffices = sum ◦ filter r ◦map (outM ◦ π2
dcountry)

tv = concat ◦map π2
dyear

actors = map (id × awards)

awards = map π2
dyear ◦ concat ◦map π2

dytr

Here, duser , dyear , creview , ..., denote default functions and
values, and dytr accounts for (dyear 4 dtitle)4 drole; outM :
Maybe A → 1 + A is the deconstructor for the type Maybe A.
The resulting schema is depicted in Figure 6. Our transformation
comprises two main lenses applied in parallel to the lists of shows
and actors. For each show, we first calculate the total box office
value if it is a movie, or collect a list of episodes if it is a TV series.
Then, we select only movies, count the number of comments for
each review, and return the resulting list of movies. For each actor,
we gather a list of all names of the awards he/she has won.

Obviously, the above specification is not very efficient: not
only it relies on a heavily compositional style, but it also contains
a redundant transformation. Fortunately, our rewrite system can
apply several optimisations to this example. For instance, using fold
fusion, it is able to reduce the boxoffices lens to a single traversal.
Also, it can fuse consecutive mappings in shows and discard the
redundant computation over TV series.

We have measured space and time consumption for this exam-
ple, and the results are presented in Figure 7. Most of a lens in-
efficiency comes from the complex synchronising behaviour of its
put function. Therefore, to better quantify the speedup achieved
by our optimisation technique, we have compared the runtime
behaviour of the put function before (specification) and af-
ter optimisation (optimised). We compiled each function using
GHC 6.12.1 with optimisation flag O2. Each example was tested
with pre-compiled input databases of increasing size (measured in
MBytes needed to store their Haskell definitions), randomly gener-

Figure 7. Benchmark results for the imdb example.

Figure 8. Benchmark results for the women example.

ated with the QuickCheck testing suite [5]. As expected, the original
specification performs much worse than the optimised lens, by fac-
tors of 3.6 in time and 7.9 in space for the biggest sample, and the
loss factor grows with the database size.

The reader may question why the benchmark results do not in-
clude a comparison with an handwritten definition. The answer is
embarrassingly simple: it is extremely complex to hand-code the
put function of the imdb lens, let alone an efficient version. How-
ever, we did compare the point-free (specification) and hand-
written (handwritten) definitions for the women example from
Section 1 and post the results in Figure 8. Below the optimised lens
(optimised), we introduce another measure for the output of a
second optimisation phase performed on the point-free definition of
the put function (optimised pf). Even for this simple example,
the optimised put allocates nearly half the memory and performs
very close to the handwritten definition, both in time and space.
This additional speedup reported in optimised pf is mainly due
to the optimisation of expressions involving “opaque” lens isomor-
phisms, such as assoc or distl .

5. Related Work
This paper builds on the work first presented in [25], stating for
each lens combinator the laws that characterise it and harnessing
these into a lens optimisation framework. This quest for algebraic
laws lead to pithy changes in the definitions of some combinators:
we generalised the either combinator to subsume the left- and right-
biased instances; the parameters of the sum combinator were also
generalised but restricted to be acceptable, a desired property for
calculation; the i1∇ id and id ∇ i2 primitive combinators were
eliminated because they can be defined as (id •∇ id + id)◦coassoc
and (id + id ∇• id) ◦ coassoc−1, respectively. The exponentiation
combinators are also new to this paper.

Unlike bidirectional interpreters, such as [21, 30], that exe-
cute the backward transformation by stepwise interpretation of the
forward specification, algebraic bidirectionalisation techniques are
concerned with deriving backward implementations by calculation.
In [23], researchers from the University of Tokyo propose a point-
free language of injective functions whose put functions can be
calculated by inverting the specification of get . In [22], they bidi-
rectionalise a restricted first-order functional language based on a

notion of view-update under constant complement: after deriving a
complement function getc , put can be calculated from the speci-
fication (get4 getc)−1 ◦ (id × getc), by resorting to tupling and
inversion techniques. In principle, the inferred backward transfor-
mation could also be optimised using a rewrite system similar to
ours, but that path was not explored and no clues are given about
how to reason directly at the bidirectional level.

In the context of model-driven development, [29] discusses the
inherent problems of existing bidirectional model transformation
tools, and [12] proposes an algebraic framework for classifying
the properties of bidirectional model transformations. Nevertheless,
only consistency properties are considered, and no algebraic laws
for calculation and optimization of bidirectional languages are dis-
cussed. A lens language for the bidirectionalisation of graph trans-
formations is proposed in [16]. The key construct of this language
is the structural recursion operation on graphs, that enjoys a fusion
law on the underlying unidirectional graph algebra: two consec-
utive structural recursions rec e2 ◦ rec e1 can be replaced by a
single structural recursion rec (rec e2 ◦ e1) that avoids computing
an intermediate result, if the expression e2 does not depend on its
argument graph. This calculational law is applied to the get trans-
formation in [16], before bidirectionalisation. However, unlike in
our setting, this optimisation is not stated bidirectionally and may
yield different behaviours in the backward transformation.

In independent work, Hoffmann et al [17] study the fundamen-
tal properties of a symmetric generalisation of traditional lenses,
from a category-theoretic perspective. Many of their results corrob-
orate our own conclusions, such as the existence of tensor products
and sums (but not categorical sums and products), and the ability to
define recursive lenses with folds and unfolds that satisfy unique-
ness (given certain termination considerations similar to [25]). Un-
like us, categorical exponentiations were not studied and they have
not shown how to harness their results into an effective lens opti-
misation framework.

In previous work, we have proposed a two-level bidirectional
framework (2LT) for the point-free specification of data refine-
ment transformations [2, 10]. Since the synchronisation behaviour
is much simpler, optimisation of these bidirectional transformations
can be done independently at the functional level for each compo-
nent of the transformation [8, 9]. Here we not only tackle the dual
problem of data abstraction, but also perform optimisation directly
at the bidirectional level, due to the high complexity of compos-
ite put transformations. In the future, we intend to incorporate our
results into the 2LT framework, thus enlarging the scope of model
transformation scenarios to which it can be applied.

6. Conclusion
In this paper, we proposed an equational calculus to reason directly
about lenses defined in the point-free style. This calculus allows us
to hide the complexity of backward transformations, and calculate
with lenses by reasoning only about the simple forward specifica-
tion. The main result is the existence of uniqueness for bidirectional
folds and unfolds, thus unleashing the power of fusion to optimise
bidirectional programs, while preserving their semantics.

To prove the usefulness of this calculus, we have emloyed it at
the kernel of an automatic optimisation tool for point-free lenses.
This tool is implemented as an extension of a previous rewrite
system [9], and both the updated lens library and the rewrite system
for lens optimisation (including the encoding of the algebraic laws)
are available through the Hackage package repository under the
names pointless-lenses and pointless-rewrite, honouring
a common joke about the point-free style.

In our current language, the nonexistence of splits and injections
triggered the definition of several opaque primitive isomorphism
combinators to regain expressiveness. In order to alleviate this

problem, we are considering migrating to a point-free relational
setting (as shown by Oliveira [24]). In particular, we intend to
explore the calculation of invariants over target data structures, so
that the above-mentioned combinators can be defined as total lenses
for particular domains, with corresponding algebraic laws holding
for such domains. Similarly, in Focal these restricted domains are
built into the framework and enforced by a complex set-based
type system, for each lens combinator. We also intend to use the
powerful relational calculus to derive backward transformations
that are correct by construction, thus avoiding the well-behavedness
proofs (an approach similar to [22], but in a relational setting).

Lenses, as a framework for data abstraction, could also be of
great value in scything through the complexity of large software
systems [13]. However, in order to express transformations over
these systems, structure-shyness of the specifications is impera-
tive to reduce the specification cost and foster the reusability. To
this extent, it would be interesting to extend our point-free bidi-
rectional language with strategic lens combinators: this could en-
able the bidirectionalisation and subsequent optimisation of exist-
ing generic functional programs and structure-shy querying lan-
guages such as XPath.

References
[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge

University Press, 1998.
[2] P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled Schema

Transformation and Data: Conversion for XML and SQL. In Pro-
ceedings of the 9th International Symposium on Practical Aspects
of Declarative Languages, volume 4085 of LNCS, pages 290–304.
Springer, 2007.

[3] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses:
a language for updatable views. In Proceedings of the 25th ACM
SIGMOD Symposium on Principles of Database Systems, pages 338–
347. ACM, 2006.

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: resourceful lenses for string data. In Proceedings of
the 35th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 407–419. ACM, 2008.

[5] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In Proceedings of the 5th ACM SIG-
PLAN international conference on Functional programming, pages
268–279. ACM, 2000.

[6] A. Cunha and H. Pacheco. Algebraic Specialization of Generic Func-
tions for Recursive Types. In Proceedings of the 2nd Workshop on
Mathematically Structured Functional Programming, 2008.

[7] A. Cunha and J. S. Pinto. Point-free program transformation. Funda-
menta Informaticae, 66(4):315–352, 2005.

[8] A. Cunha and J. Visser. Strongly Typed Rewriting For Coupled
Software Transformation. Electronic Notes in Theoretical Computer
Science, 174(1):17–34, 2007.

[9] A. Cunha and J. Visser. Transformation of structure-shy programs
with application to XPath queries and strategic functions. Science of
Computer Programming, In Press, Corrected Proof, 2010.

[10] A. Cunha, J. N. Oliveira, and J. Visser. Type-safe Two-level Data
Transformation. In Proceedings of the 14th International Symposium
on Formal Methods, volume 4085 of LNCS, pages 284–299. Springer,
2006.

[11] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger. Bidirectional Transformations: A Cross-Discipline Perspec-
tive. In Proceedings of the 2nd International Conference on Theory
and Practice of Model Transformations, volume 5563 of LNCS, pages
260–283. Springer, 2009.

[12] Z. Diskin. Algebraic Models for Bidirectional Model Synchronization.
In Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems, volume 5301 of LNCS, pages
21–36. Springer, 2008.

[13] A. Egyed. Automated abstraction of class diagrams. ACM Trans-
actions on Software Engineering and Methodology, 11(4):449–491,
2002.

[14] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM Transactions on
Programming Languages and Systems, 29(3):17, 2007.

[15] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a compositional
approach to model transformation for software development. In Pro-
ceedings of the 24th ACM Symposium on Applied Computing, pages
468–475. ACM, 2009.

[16] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Program-
ming, pages 205–216. ACM, 2010.

[17] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric Lenses, 2010.
Submitted for publication.

[18] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting
as a practical optimisation technique in GHC. In Proceedings of the
2001 ACM SIGPLAN Haskell Workshop, pages 203–233. ACM, 2001.

[19] S. P. Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the
11th ACM SIGPLAN international conference on Functional pro-
gramming, pages 50–61. ACM, 2006.

[20] R. Lämmel. Typed generic traversal with term rewriting strategies.
Journal of Logic and Algebraic Programming, 54(1-2):1 – 64, 2003.

[21] D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of
XQuery. In Proceedings of the 2007 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation,
pages 21–30. ACM, 2007.

[22] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidi-
rectionalization transformation based on automatic derivation of view
complement functions. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, pages 47–58.
ACM, 2007.

[23] S.-C. Mu, Z. Hu, and M. Takeichi. An Algebraic Approach to Bi-
Directional Updating. In Proceedings of the 2nd Asian Symposium
on Programming Languages and System, volume 3302 of LNCS.
Springer, 2004.

[24] J. N. Oliveira. Data Transformation by Calculation. In Proceedings
of the 2nd International Summer School on Generative and Transfor-
mational Techniques in Software Engineering, volume 5235 of LNCS,
pages 139–198. Springer, 2007.

[25] H. Pacheco and A. Cunha. Generic Point-free Lenses. In Proceedings
of the 10th International Conference on Mathematics of Program
Construction, volume 6120 of LNCS, pages 331–352. Springer, 2010.

[26] T. Schrijvers, S. M, S. P. Jones, and M. T. Chakravarty. Towards Open
Type Functions for Haskell. In Proceedings of the 19th International
Symposium on Implementation and Application of Functional Lan-
guages, pages 233–251, 2007.

[27] T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings
of the 1993 conference on Functional Programming Languages and
Computer Architecture, pages 233–242. ACM, 1993.

[28] G. Sittampalam and O. de Moor. Mechanising Fusion. In J. Gibbons
and O. de Moor, editors, The Fun of Programming, chapter 5, pages
79–104. Palgrave Macmillan, 2003.

[29] P. Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions. In Proceedings of the 10th International
Conference on Model Driven Engineering Languages And Systems,
volume 4735 of LNCS, pages 1–15. Springer, 2007.

[30] J. Voigtländer. Bidirectionalization for free! (Pearl). In Proceedings
of the 36th Annual ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 165–176. ACM, 2009.

[31] J. Voigtländer., Z. Hu, K. Matsuda, and M. Wang. Combining Syn-
tactic and Semantic Bidirectionalization. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Program-
ming, pages 181–192. ACM, 2010.

