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Abstract. In general, parameters in multi-objective optimization are assumed as deterministic with no uncertainty. However,
uncertainty in the parameters can affect both variable and objective spaces. The corresponding Pareto optimal fronts, resulting
from the perturbed problem, define a cloud of curves. In this work, the main objective is to study the resulting cloud of curves
in order to identify regions of more robustness and, therefore, to assist the decision making process. Preliminary results, for
a very limited set of problems, show that the resulting cloud of curves exhibits regions of less variation, which are, therefore,
more robust to parameter uncertainty.
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INTRODUCTION

Many problems are modeled assuming a deterministic approach in their formulation. For instance, in demand supply
problems, the demand, although stochastic, is formulated as deterministic since this leads to a problem formulation
much easier to solve. Furthermore, in general, although there is uncertainty with respect to the objective functions
parameters, these are assumed fixed and with no uncertainty. Yet, if the parameters are uncertain, this can have
profound implication in the optimization. In this work, our objective is to study the implications of parameter
uncertainty in multi-objective optimization. Parameter uncertainty will affect the optimization at the variable space
but also at the objective space. Uncertainty will change the shape of the Pareto optimal front and, if this is the case,
one important question is to assist the decision making process in the presence of uncertainty. Specifically, as the shape
changes, is it possible to identify regions of greater robustness of the Pareto optimal front? How does this affect the
decision making process? In this preliminary work, we investigate how parameter uncertainty in very simple problems
affects the Pareto optimal front and we propose an approach to deal with uncertainty. Future work, will study more
complex problems, with larger number of objectives.

MULTI-OBJECTIVE OPTIMIZATION

Mathematically, a multi-objective optimization problem with g objectives and n real decision variables can be formu-
lated as, without loss of generality:

minimize  fj(x) k=1,...,q
xeQ
subjectto  h;(x) =0, i=1,....m (1)
gj(x) <0, j=1....p

where x is an n dimensional vector and Q C R" (Q = {x e R" : ] < x < u}), fx(x) are the objective functions, i(x) =0
are the equality constraints and g(x) < 0 are the inequality constraints. The vectors /,u € R" define the lower and upper
bounds on x, respectively.



For a multi-objective minimization problem, a solution x € R" dominates y € R", i.e., x < y if and only if,
Vit g S () < i) A Fikeqr,gy t Ji(x) < fi(y). A solution x € R" is Pareto optimal if and only if, there
is no solution y € R" which dominates x, i.e., A,ern : y < x.

The main goal of a multi-objective algorithm is to find a good and balanced approximation to the Pareto-optimal set.
In order to produce a good approximation to the Pareto optimal front, evolutionary algorithms generate a population
of points [5, 3, 4].

We apply the Multi-objective Elitist Genetic Algorithm (MEGA), described in [3]. This approach [6, 8], in contrast
to other algorithms, does not require any differentiability or convexity conditions of the search space. Moreover, since
it works with a population of points, it can find, in a single run, multiple approximations to the solutions of the Pareto
optimal set without the need of fixing any weights and a well distributed representation of the Pareto optimal front
induced by the use of diversity-preservation mechanisms. We now shortly describe some technical features and the
parameters of the MEGA paradigm (see Algorithm 1).

Algorithm 1 Multi-objective Elitist Genetic Algorithm
Require: ¢e>1,5s>1,0<p, <1,M:>0,0<py <1,My >0, ssp > 5, Oghare > 0
1: k<0
for/=1,...,sdo
Randomly generate the main population P € Q
end for {(Initialization of the population)}
while stopping criterion is not met do
Fitness assignment FA (P, Oshare) for all points in main population P
Update the secondary population SP with the non-dominated points in P
Introduce in P the elite with e points selected at random from SP
Select by tournaments s points from P
10:  Apply SBX crossover [7] to the s points, with probability p.
Apply mutation to the s points with probability p,,
122 k< k+1
13: end while
14: Update the secondary population SP with the non-dominated points in P
15: return Non-dominated points from SP
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MEGA starts from a population of points P of size s. In our implementation, a real representation is used since we
are leading with a continuous problem. Additionally, a secondary population SP that archives potential Pareto optimal
solutions found so far during the search process is maintained. The elitist technique implemented is based on the
secondary population with a fixed parameter e (e > 1) that controls the elitism level, i.e., e is the maximum number
of non-dominated solutions of the secondary population that will be introduced in the main population. These non-
dominated solutions will effectively participate in the search process that is performed using the points of the main
population.

EXPERIMENTAL SETTING

In order to investigate how uncertainty affects the Pareto optimal front we have selected three very simple and well
know problems. The Schaffer(1) problem [1] was modified by introducing uncertainty in a parameter in the second

objective:
min f(x) =x?
min f>(x) = (x—z)? where z ~ N(2,0.1)
The Schaffer(2) problem [1] was modified by introducing uncertainty in a parameter in the second objective:
min fi(x,y) =x*+y?
min f>(x,y) = (x—z)*+ (y—5)* where z~ N(5,1)

The Rendon(1) problem [1] was modified by introducing uncertainty in a parameter in the first objective:

minfl(x,y) = m WhereZNN(],O.5>
min fo(x,y) = (*+y*+1)
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FIGURE 1. Effect on Pareto front and variable space for Schaffer(1).
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FIGURE 2. Effect on Pareto front for Schaffer(2) and Rendon(1).

RESULTS

In order to investigate how the Pareto optimal front changes with parameter uncertainty, we have assumed that the
parameters were perturbed by a normal distribution with mean zero and a given variance. For Schaffer(1) problem,
we have generated a random sample of size 100 of perturbed objective functions. Figure 1 (left hand side) presents
the resulting Pareto optimal fronts. In order to facilitate its reading, we have superimposed the curves corresponding
to the percentiles 5, 50 and 95 of the perturbed parameter. This facilitates the comprehension of the graph. Figure 1
(right hand side) shows how the second objective changes as a result of the perturbation.

For the remaining problems we present only the corresponding Pareto optimal fronts which result from the consid-
eration of the above percentiles (Figures 2).

In all the figures, the resulting Pareto optimal fronts exhibit regions of larger variation and regions where the
variation is much lower. Under the point of view of the decision maker, it is preferable to choose operating points
that correspond to smaller variations in the Pareto optimal front.

CONCLUSIONS AND FUTURE WORK

In this preliminary work we have studied how perturbations in the objective function parameters affect the shape
of the Pareto optimal fronts. In this very simple problems, it can be seen that the perturbations result in cloud of
curves exhibiting different degrees of variation. In order to produce a more robust answer in the presence of parameter
uncertainty, the decision maker should choose operating points which correspond to regions with less variation. In



order to provide a more insightful answer to this problem, future work will focus in problems with a larger number of
objectives as well of decision variables.
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