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1 Introduction

Bamboo is one of the fastest growing and most

abundant woody plants in tropical countries [1].

The rate of growth, up to 1 m per day, is very at-

tractive for commercial applications. Therefore,

bamboo is gaining increasing attention as an alter-

native crop with multiple utilizations. It is estimat-

ed that there are up to 1500 bamboo species having

commercial potential [2]. Bamboo has recently at-

tracted a great deal of attention as a natural, green

and eco-friendly new-type raw material for textile

applications. The relatively long length of bamboo

monofilaments (1.5–3.2 mm) [3] coupled with its

antibacterial properties make it suitable for spe-

cialty textile materials such as sanitary napkins,

bandages, surgical clothes and food-packing bags.

Recently its potential value for textile yarn produc-

tion has emerged [4–7].

Traditionally bamboo fiber is obtained through

alkaline hydrolysis followed by multiple chemical

bleaching steps; however, these processes are ex-

pensive and have negative effects on the environ-

ment.Therefore, alternative green technologies are
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being investigated. Nevertheless, until now only a

few studies have been dedicated to developing bi-

ological processes for bamboo fiber recovery

[8–11], whereas extensive research has been con-

ducted into enzymatic wood pulping [12–18]. Ret-

ting, based on enzymes (e.g., hemicellulases, cellu-

lases, oxidoreductases, and pectinases) produced

by an indigenous complex bacteria community

(e.g., fermenting, homoacetogenic, syntrophic, and

acetate-utilizing bacteria) to degrade cellular tis-

sues and pectins, gums, etc., is gaining potential as

a pretreatment step to obtain fibers from raw bast

materials (e.g., jute, flax, hemp and kenaf). It facil-

itates separation of cellulose fiber bundles from the

matrix [19–22] and has been shown to play an im-

portant role in determining the quality and yields

of jute fiber [23]. Although retting is a crucial step

for the production of fiber bundles, the available

reports on the bacterial communities in the retting

environments are scarce, with most literature com-

ing from flax [24–27] and jute retting [20, 28]. The

current knowledge of the microbial community is

mainly based on culture-dependent studies [22, 25,

29–31]. However, cultivation-based approaches fa-

vor the growth of only certain community mem-

bers, while a great part of the population is over-

looked [32]. In fact, culture-based methods are re-

ported to only account for 1% of the microorgan-

isms present in an ecosystem and the remainder

(99%) of the microorganisms can not be character-

ized using the traditional culture techniques [33,

34]. Culture-independent 16S rRNA gene-based

studies of bacteria communities from various habi-

tats have provided scientists with crucial informa-

tion on the diversity and dynamics of these com-

munities. For example, the potential applications of

culture-independent studies (PCR assays targeting

bacterium 16S rRNA genes) during the retting of

jute provided insight into the changes in the bacte-

ria communities during the retting process [23].

The use of such knowledge is expected to improve

fiber bundle extraction in terms of quality and

quantity.The present study was aimed at gaining an

insight into the microbial communities and their

changes during the retting of bamboo, making use

of PCR assays targeting 16S rRNA genes and the

single-strand conformation polymorphism (SSCP)

gel analysis of the PCR-amplified 16S rRNA frag-

ments. The SCCP profiling technique was chosen

rather than denaturing gradient gel electrophore-

sis (DGGE) and temperature gradient gel elec-

trophoresis (TGGE) because of its simplicity, the

fact that it did not require a gradient, the absence

of GC clamps and the ability to provide valuable in-

formation on changes in bacteria communities [32,

35, 36]. To the best of our knowledge, the present

study is the first attempt to use culture-independ-

ent methods to monitor changes occurring in bac-

teria communities during the retting of bamboo.We

are convinced this study will enable us to identify

key microoganisms involved at every stage of the

retting process. The universal bacteria community

primers, as well as three other specific bacteria

community primers (bacillus, actinomycete and al-

phaproteobacteria), which had been present in

other retting systems [20, 23, 37, 38], were used.

Furthermore, dominant bands were sequenced to

provide information about the identity of the

microorganism.

2 Materials and methods

2.1 Sampling

One-year old Moso bamboo (Phyllostachy) culms

were harvested from bamboo gardens in Jiangxi

Province, P. R. China.The culms from two different

gardens were cut into small pieces and placed in

two 2-L Erlenmeyer flasks with 1 L sterilized water

as two independent retting systems. The flasks

were incubated at 28°C with shaking at 150 rpm in

a chamber with controlled humidity at 60%. The

water lost due to potential evaporation was read-

justed every 2 weeks. Samples (including bamboo

and liquid) from the retting systems were with-

drawn at different time intervals when observable

changes of culm morphology were noted (i.e., after

1.5, 4 and 5 months).

2.2 Bacterial community analysis

2.2.1 Extraction and purification of total genomic DNA
The bacterial communities for the bamboo retting

process were analyzed by culture-independent tools

based on the PCR amplification of the 16S rRNA

fragments and subsequent partial sequencing.

The DNA of the microbial community of the

bamboo retting system was extracted by mechani-

cal disruption and homogenization of 2 g samples

including retted bamboo and retting liquid using a

FastPrep Instrument (BIO 101 Systems: Qbiogene,

Carlsbad, CA, USA) for 30 s at speed 5.0 and 400 mg

sample per time point. The total genomic DNA of

bacterial-cell consortia was recovered using the

FastDNA Spin Kit for Soil (Bio101, Carlsbad, CA)

following the manufacturer’s protocol and purified

by the GENECLEAN Turbo kit (MP Biomedicals,

Illkirch, France) containing the special binding

buffer guanidine thiocyanate for the removal of hu-

mic acids.The quality and concentration of extract-

ed DNA were estimated by electrophoresis on a
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0.8% agarose gel running at 90 V for 30 min at room

temperature and analyzed after ethidium bromide

staining under ultra violet (UV) emission.

2.2.2 Cultivation-independent analysis by SSCP gel
Fingerprinting of the Bamboo bacterial communi-

ties by SSCP was carried out as described by

Schwieger and Tebbe [35] and using the Gene

Ruler 1 kb DNA ladder, Fermentas, as standard.The

reproducibility of the SSCP results was verified in

two independent samplings at three time points

(1.5, 4 and 5 months) during the retting period. Bac-

terial 16S rDNA fragments (positions 515– 927 ac-

cording to Escherichia coli 16S rRNA sequence

numbering) were amplified by PCR with the

primers Unibac-II-515f and Unibac-II-927r-P [39].

Alphaproteobacteria were selectively amplified by

a nested PCR approach with primers ADF

681F/1492r (5’-AGT GTA GAG GTG AAA TT-3’/

5’-TAC GGY TAC CTT GTT ACG ACT T-3’) fol-

lowed by a second PCR with the primers ADF 681F/

Unibac-II-927r-P (5’-CCC GCT AAT TYM TTT

GAC TT-3’) [40]. Bacillus amplicons were obtained

with BLS342f/BACr833-P (5’- CAG CAG TAG GGA

ATC TTC-3’/ 5’-CTA ACA CTT AGC ACT CAT-3’)

primers [40, 41]. For specific patterns of actino-

mycetes, a nested PCR was applied with first PCR

primer pair Eubac1/Eubac2 (5’- GAG TTT GAT

CCT GGC TCA G-3’/5’-AGA AAG GAG GTG ATC

CAG CC-3’), followed by a second PCR primer Acti-

no243f / Actino513r-P (5’-GGA TGA GCC CGC

GGC CTA-3’ / 5’-CGG CCG CGG CTG GTG GCA

CGT A-3’) [42]. The PCR products were purified

using a GeneClean Turbo Kit (Qbiogene, BIO101®),

before exonuclease digestion and DNA single-

strand folding according to Lieber et al. [43]. The

amplicons were separated using the TGGE Maxi

system (Biometra, Göttingen, Germany) at 400 V

and 26°C. Eubacterial as well as bacillus-specific

amplicons were separated in 8% acryl amide gels

for 26 h. DNA fragments of the Alphaproteobacte-

ria- and actinomycete-specific PCR were separat-

ed in 9% acryl amide gels for 16 h.The gels were sil-

ver-stained according to the procedure of Bassam

[44] for subsequent visualization.

2.2.3 Analysis of SCCP profiles
Evaluation of SSCP gel profiles of the bacterial

communities in the bamboo-retting liquid was car-

ried out using the GelCompar program (version 4.1;

Applied Maths, Kortrijk, Belgium). Digitized gel im-

ages were obtained by scanning the silver-stained

SSCP gels (Epson perfection 4990 Photo, Japan) for

the community-fingerprint comparison. Individual

SSCP patterns were normalized and the back-

ground was subtracted as recommended by the

manufacturer. The band-based Dice similarity co-

efficient was applied for similarity matrix calcula-

tion [45].The profiles generated were processed by

UPGMA (Unweighted Pair Group Method with

arithmetic Average) analysis and a dendrogram

was deduced from the matrix of similarities.

2.2.4 Calculation of diversity indices
A diversity index based on the Shannon-Wiener

diversity index (H’) was adopted to characterize the

differences in the genetic diversity of the various

bacterial communities, and calculated as [46]:

(1)

where, ni is the relative abundance of a single tax-

on (intensity of a single SSCP band); N is the total

abundance of all taxa (accumulated band intensi-

ty); S is the total number of abundant species (total

number of bands).

The diversity of the SSCP bands was calculated

using the same GelCompar program mentioned

above.The different peaks of a densitometric curve

of each SSCP lane were analyzed.

2.2.5 Sequence analysis
Dominant bands corresponding to the different

bacterial communities were excised from SSCP

gels and the DNA recovered by elution according to

Schwieger and Tebbe [35]. The gel-extracted DNA

was re-amplified and sequenced. Bacteria were

then identified by comparing the obtained se-

quences with sequences available in the GenBank

database, using the NCBI BLAST program at

http://www.ncbi.nlm.nih.gov/BLAST [47].

3 Results

3.1 Bamboo retting process

Morphological studies showed that retting resulted

in the separation of fiber bundles from bamboo

culm, regardless of bamboo source. The general

process of bamboo retting is summarized in

Figs. 1A–C.At the initial stage (Fig. 1A), the bamboo

culms were intact, while with prolonged incubation

the culms started to be loosen innerly (Fig. 1B).

Further incubation led to the untwisting of the fiber

bundles at the node level and separation of the

bundles from the culm since the materials sur-

rounding the fiber bundles were degraded

(Fig, 1C). Microscopic inspection (Fig. 2) confirmed

that a single bamboo bundle in a hollow structure
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contained many monofilaments with lumen and

smooth surface.

3.2 Bacterial community analysis

3.2.1 Universal bacteria community analysis
SCCP profiles of universal bacteria community in

both retting systems showed high reproducibility

within replicates (Fig. 3), indicating that DNA sam-

ples were of high quality for further analysis. The

partial sequence analyses and tentative close rela-

tions of specified SSCP bands are summarized in

Table 1, showing a more predominant uncultured

population in this category. The information of the

uncultured bacteria population normally can not

be obtained by the traditional culture-dependent

method, i.e., the screening and isolation of the

strains with various media. The sequences mainly

correlated with uncultured Sphingobacterium sp.
(bands 7 and 9) in retting system 1. In retting sys-

tem 2, the sequences closely related to uncultured

Paludibacter sp. (band 1), Candidatus Sulcia muel-
leri (band 2), uncultured Pedobacter sp. (band 3),

Flavobacterium sp. (band 4), uncultured Porphy-
robacter sp. (bands 5 and 6) and uncultured Planc-
tomycete (band 8) showed dominant signals during

the whole incubation period (Fig. 3). Interestingly,

the intensity change of some specific bands dif-

fered with the samples from different regions. For

example, bands 7 and 9, with strong density in ret-

ting system 1, decreased or disappeared along with

the prolongation of the incubation time in retting

system 2. However, bands 1, 2 and 8, which com-

pletely disappeared during months 4 and 5 in ret-

ting system 1 remained strong in retting system 2.

In general, visual inspection of SCCP banding pat-

terns for universal bacteria communities (Fig. 3)

revealed a gradual decrease in intensity and sub-

sequent disappearance of some bands after 4 to

5 months of incubation in both retting systems

Figure 1. Morphological changes of

bamboo culms during the retting process.

(A) Initial stage where the bamboo is

intact. (B) Bamboo fiber loosening and

de-pilling. (C) Fibers separating from each

other and falling into the lumen of the

culm.

Figure 2. Morphology of a single bamboo fiber bundle (Nikon Eclipse

400, in transmission mode). (A) Vertical section (×40); (B) cross-section

of a single bundle (×100); (C) cross-section of bamboo bundle (×400).

Table 1. Partial sequence analyses and tentative close relations of SSCP bands for universal bacteria community

Band no. Microhabitat most closely related sequence(s) SIa) GenBank accession no.

1 Uncultured Paludibacter sp. 91 EU809705.1

2 Candidatus Sulcia muelleri 91 DQ066640.1

3 Uncultured Pedobacter sp. 90 GQ287498.1

4 Flavobacterium sp. SRS18 98 AY621158

5 Uncultured Porphyrobacter sp. 94 EF662624.1

6 Uncultured Porphyrobacter sp. 97 EF662624.1

7 Uncultured Sphingobacterium sp. 94 FJ756565.1

8 Uncultured planctomycete 85 DQ870157.1

9 Uncultured Sphingobacterium sp. 92 FJ756565.1

a) SI, similarity index: for isolates identified by 16S rDNA sequencing ranging from 0 to 100%.

B CA
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despite the fact that some bands showed a increase

in density with long-term incubation (Fig. 3, ar-

rows).

The highest diversity represented by the Shan-

non-Wiener index H’ was observed at the first

sampling time (H’ =3.17 ± 0.02 and 3.35 ± 0.00 for

retting system 1 and 2, respectively). In the follow-

ing 3–4-month period, the complexity of the SSCP

profiles decreased, revealing a reduction of diver-

sity (H’ =2.00 ± 0.01 and 2.78 ± 0.01 for retting sys-

tem 1 and 2 after 4 months, respectively, and 

H’ = 1.85 ± 0.00 and 2.56 ± 0.02 for retting system 1

and 2 after 5 months, respectively) and an enrich-

ment of specialized bacteria.The changes were also

reflected in the dendrograms (Fig. 4A), clearly

showing a higher similarity between the bacterial

communities after 4 and 5 months (about 87% for

both retting systems) than between the profiles af-

ter 1.5 months and the later sampling points (44%

for retting system 1 and 64% for retting system 2).

3.2.2 Alphaproteobacteria community analysis
Group-specific primer systems were used to selec-

tively amplify 16S rDNA fragments of Alphapro-

teobacteria. The dominant and individual bands

with strong intensity and clear shape were excised

from SSCP gels for DNA recovery. The partial se-

quence analyses and tentative close relations of the

bands are listed in Table 2. Bands closely related to

Alphaproteobacterium Ellin335 (band 3 in both ret-

ting systems and band 4 in retting system 2) and

Sphingomonas japonica (band 7 in retting system 2)

increased in intensity during months 4 and 5, while

bands corresponding to Phaeospirillum sp. (band 6

in both retting systems) and Azospirillum bra-
silense (band 1 in retting system 1) disappeared af-

ter 4 months. Interestingly, the sequence related to

Brevundimonas diminuta (band 2) remained domi-

nant and showed a remarkable intensity during the

whole incubation time in both retting systems.

Band 5 (in retting system 1) and band 8 (in retting

system 2) corresponding to Kaistia sp. and uncul-
tured Sphingomonas sp., respectively, were rela-

tively weak in density throughout the whole incu-

bation time.

Figure 3. SCCP profiles showing the universal bacteria communities dur-

ing bamboo retting in the retting system 1 and 2 at different sampling

times [1.5 months (1.5M), 4 months (4M) and 5 months (5M)]. The re-

solved bands in retting system 1 and 2 were very similar during the incu-

bation period. Bands indicated by numbers (1–8) were purified and se-

quenced (for results, see Table 1); Gene Ruler 1-kb DNA ladder (Fermen-

tas) was used as standard.

Table 2. Partial sequence analyses and tentative close relations of SSCP bands for the alphaproteobacteria community

Band no. Microhabitat most closely related sequence(s) SIa) GenBank accession no.

1 Azospirillum brasilense 96 AB480703.1

2 Brevundimonas diminuta 95 FJ843099.1

3 Alphaproteobacterium Ellin335 97 AF498717.1

4 Alphaproteobacterium Ellin335 91 AF498717.1

5 Kaistia sp. 93 FJ719344.1

6 Phaeospirillum sp. 94 FJ529718.1

7 Sphingomonas japonica 91 AB428568.1

8 Uncultured Sphingomonas sp. 98 AM936457.1

a) SI, similarity index: for isolates identified by 16S rDNA sequencing ranging from 0 to 100%.
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The diversity of alphaproteobacteria communi-

ty in both retting systems decreased with increas-

ing incubation time. The highest diversity repre-

sented by the Shannon-Wiener index H’ was ob-

served at the first sampling time (H’ =1.74 ± 0.02

and 2.00 ± 0.06 for retting system 1 and 2, respec-

tively). In the following 3–4 months there was a re-

duction in diversity (H’ =1.70 ± 0.01and 1.81 ± 0.04

for retting system 1 and 2, respectively, after

4 months and H’ =1.06 ± 0.04 and 1.56 ± 0.06 for ret-

ting system 1 and 2, respectively, after 5 months).

The dendrogram in Fig. 4A clearly reveals that

in comparison with the universal bacteria commu-

nity analysis, the similarity of alphaproteobacteria

community was higher in both retting systems

(above 80%) before 4 months. The similarity re-

mained high at around 70% in retting system 1 and

78% in retting system 2 after 5 months of retting.

3.2.3 Actinomycete community analysis
Generally, SSCP patterns of actinomycete popula-

tions revealed only minor changes up to month 4 of

the retting process. Thus, the Shannon-Wiener’s

diversity index remained stable at 1.75 ± 0.17 and

1.91 ± 0.14 for retting system 1 and 2, respectively.

The dominant and representative bands were ex-

cised from SSCP gel. The recovered DNA was se-

quenced and results are presented in Table 3.

Bands with the same partial 16S rRNA gene as

Pseudoclavibacter sp. (band 3) and Agrococcus je-
nensis (band 5) were amazingly dominant during

the whole incubation period in both retting sys-

tems. Bands closely related to Rhodococcus erythro-
polis (band 1) and Demequina aestuarii (band 4) de-

creased in density when assayed after 4 months of

incubation, while bands mainly concerned with Mi-
crobacterium sp. (band 2) increased intensity after

4 months of incubation in both retting systems.

Further, in comparison with the universal bacteria

and alphaproteobacteria community analysis,

BLAST sequence analysis of the actinomycete

community showed a higher maximum identity in-

dex >98% and identified sequences of predominant

bands were related to cultivable microbes.

Figure 4. Constructed dendrogram based

on amplified fragments using different

community analysis primers. (A) Universal

bacteria community; (B) alphaproteobacte-

ria community; (C) actinomycete commu-

nity; (D) bacillus community.

Table 3. Partial sequence analyses and tentative close relations of SSCP bands for the actinomycete community

Band no. Microhabitat most closely related sequence(s) SIa) GenBank accession no.

1 Rhodococcus erythropolis 99 AP008957.1

2 Microbacterium sp. 99 FJ654436.1

3 Pseudoclavibacter sp. 98 EU086820.1

4 Demequina aestuarii 99 DQ010160.1

5 Agrococcus jenensis 99 FJ482044.1

a) SI, similarity index: for isolates identified by 16S rDNA sequencing ranging from 0 to 100%.
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The dendrogram in Fig. 4C show that communi-

ty similarity was higher between 4 and 5 month

(above 85% in both retting systems), indicating a

great change occurring between 1.5 and 4 months,

and then became tempered in the following month.

This change trend was in accordance with univer-

sal bacteria community.

3.2.4 Bacillus community analysis
SCCP gel profiles of bacillus community for both

retting systems were identical and showed a simi-

lar pattern and band intensity.The visible and dom-

inant bands were excised and DNA was recovered.

The sequence results are listed in Table 4. Bands

with the same partial 16S rRNA gene as Oxalopha-
gus oxalicus (bands 1, 2 and 6) were dominant dur-

ing the whole incubation period in both retting sys-

tems. Bands related to Bacillus sp. NSJ-14 (band 3)

and Bacillus sp. th9 (band 4) showed slightly de-

creased intensity after 1.5 months of incubation in

both retting systems, while the band related to

Bacillus sp. BD-94 (band 5) dramatically decreased

in intensity and finally disappeared after 4 months

of incubation.

The Shannon-Wiener index H’ of both retting

systems decreased with increasing incubation

time. For retting system 1, H’ declined from

2.7 ± 0.04 at 1.5 months to 1.70 ± 0.02 at 4 and

5 months, while in retting system 2, H’ reduced

from 2.37 ± 0.01 at 1.5 months to 1.85 ± 0.02 at 4 and

5 months.Therefore, the huge diversity change also

occurred between 1.5 and 4 months and then main-

tained relatively constant from 4 to 5 months. The

dendrogram (Fig. 4D) reveals that the community

at 4 and 5 months gained a higher similarity (above

92%) for two retting systems, in line with the diver-

sity analysis.

4 Discussion

Culture-independent molecular biology based

techniques were used to investigate changes of the

microbial community during bio-retting of bam-

boo. Due to the fact that cultivatable microbes com-

prise a minority (approximately 1%) of total com-

munity diversity [33, 48] previous studies on mi-

crobial retting based on cultivation may have over-

looked a major part of the microbial community.As

evidenced by the Shannon-Wiener H’ index, the

diversity of the total bacteria in the microbial ret-

ting environment investigated in this study tended

to decrease with increasing incubation time. This

was also confirmed by the analysis of SSCP profiles

obtained with universal bacteria, alphaproteobac-

teria and bacillus community primers showing a

general decrease in number of bands and/or de-

crease in intensity when compared to the bands

profiles obtained at 1.5 months, although fluctuat-

ing changes were observed for the actinomecyte

community. Strong correlations between changes

in microbial succession patterns (taxonomic and

functional diversity) during plant cell wall degra-

dation and the sequential utilization of nutrients

have been reported [49]. Similarly, in this study, the

bands intensity, for example, closely related to

Bacillus sp., Rhodococcus erythropolis, Sphingobac-
terium sp. and Demequina aestuarii decreased,

while, in particular, Phaeospirillum sp. and Azospir-
illum brasilense disappeared completely between 

4 and 5 months of incubation. A few bands related

to Alphaproteobacterium Ellin335, Sphingomonas
japonica and Microbacterium sp. increased intensi-

ty from 1.5 to 4 months. For other lignocellulosic

materials, the early phases of retting are known to

be dominated by organisms that can attack the eas-

ily accessible polysaccharides, like pectins, mono-

saccharides and gums [49]. Similarly, in this study,

the initial phase of bamboo retting proved to be the

most dynamic part of the process, and it is assumed

that each bacterial population at this stage plays a

special role in trying to change the chemical envi-

ronment to favor for its own survival [50]. Howev-

er, as more complex substrates (hemicellulose in-

terlinked with lignin) remained, only those mi-

croorganisms with a complex enzymatic system

were able to survive. The disappearance of certain

microorganisms during the retting process at 4 and

Table 4. Partial sequence analyses and tentative close relations of SSCP bands for the bacillus community

Band no. Microhabitat most closely related sequence(s) SIa) GenBank accession no.

1 Oxalophagus oxalicus 99 Y14581.1

2 Oxalophagus oxalicus 94 Y14581.1

3 Bacillus sp. NSJ-14 98 FJ941090.1

4 Bacillus sp. th9 87 EU814517.1

5 Bacillus sp. BD-94 88 AF169523.1

6 Oxalophagus oxalicus 99 Y14581.1

a) SI, similarity index: for isolates identified by 16S rDNA sequencing ranging from 0 to100 %.
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5 months, confirmed by SCCP profiles, indicates se-

quential metabolism of simple substrates followed

by degradation of complex materials. Indeed, or-

ganisms identified during the latter phase are well

known for the production of extracellular enzymes

(including oxidases) that degrade complex materi-

als. For example, Sphingomonas sp. are able de-

grade complex substrates like lignin, and Sphin-
gomonas paucimobilis SYK-6 has been shown to be

able to degrade a wide variety of dimeric lignin

compounds, including β-aryl ether, biphenyl, and

diarylpropane [51, 52]. Many Bacillus sp. are also

widely reported to produce enzymes of industrial

application in paper industry [53–60] and bast fiber

degumming [61, 62]. Consequently, pretreatment

with the combined Sphingomonas paucimobilis and

Bacillus strains improved the hydrolysis of office

paper from municipal wastes [63], justifying the

observed presence of both organisms during the

incubation period. Interestingly, although members

of the Actinomycetes genus have been reported to

develop more slowly than most other microorgan-

isms, and are comparatively ineffective competi-

tors under high-nutrient conditions [64], in this

study bacteria with the same partial 16S rRNA gene

as Pseudoclavibacter were quite dominant during

the whole incubation period and bacteria related to

Microbacterium greatly increased in band density

at 4 months. This is not surprising since a Mi-
crobacterium sp. was recently isolated for its ability

to degrade xylan [65]. We also tried to analyze the

pseudomonas community (data not shown), and

two bands closely related to Pseudomonas sp. T8
and Pseudomonas sp. T7 (100% by max ident) were

dominant during the whole incubation period. Sim-

ilarly, in previous jute-retting studies, Pseudomonas
sp. was also shown to be dominant and was attrib-

uted to their ability to secrete a set of enzymes that

enable the degradation of plant cell wall compo-

nents [20]. Pseudomonas sp. are widely distributed

in the environment and are known to participate in

N2 fixation, denitrification and degradation of pol-

lutants [66–68]. Although little is known about Ox-
alophagus oxalicus, the survival and dominance of

bands closely related to it during the whole incu-

bation period requires special attention since its

high frequency may suggest a significant role dur-

ing the retting process. As clearly indicated by the

SSCP profile of universal bacteria community, the

band patterns differed between the two retting sys-

tems.This was mainly attributed to the fact that the

samples originated from two different gardens,

which may have had different environmental con-

ditions (e.g., temperature, humidity, air, or soil qual-

ity) for microorganisms, and finally led to the dif-

ference in bacterial community. The fungal com-

munity studies in the retting systems based on 

18S rRNA fungus-specific primers were not suc-

cessful. This may be due to the culture conditions

(liquid system), since fungi prefer moisture and the

observation are in line with previous studies with

flax- [21, 24] and jute- [20] retting systems.

This study showed that the cultivation-inde-

pendent technique for genetic profiling of PCR-

amplified small-subunit rRNA and the SSCP gel

analysis of the PCR-amplified 16S rDNA fragments

can be used for monitoring the changes in bacteri-

al communities occurring during the retting of

bamboo. The SCCP profile analysis revealed that

the bacterial community changed during the ret-

ting of bamboo, leading to a general decrease in di-

versity. Most of the DNA recovered from the domi-

nant bands were sequenced and classified as un-

cultivable microorganisms confirmed by previous

reports.The obtained information can be exploited

in various ways, including identifying the microor-

ganisms and isolating key microorganisms in-

volved in during the retting process. Such pure cul-

tures could then be bioagumented to enhance the

retting process. On-going studies are aimed at in-

vestigating the natural retting system of bamboo

obtained from different geographical regions. This

study forms a novel basis on which such future

studies can be built.
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