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Theoretical models have been proposed in this article (Parts I and II) to predict the vertical wicking behaviour of
yarns and fabrics based on different fibre, yarn and fabric parameters. The first part of this article deals with the
modelling of flow through yarn during vertical wicking, whereas the second part deals with the modelling of vertical
wicking through the fabric. The yarn model has been developed based on the Laplace equation and the Hagen–
Poiseuille’s equation on fluid flow; pore geometry has been determined as per the yarn structure. Factors such as fibre
contact angle, number of filaments in a yarn, fibre denier, fibre cross-sectional shape, yarn denier and twist level in
the yarn have been taken into account for development of the model. Lambertw, a mathematical function, has been
incorporated, which helps to predict vertical wicking height at any given time, considering the gravitational effects.
Experimental verification of the model has been carried out using polyester yarns. The model was found to predict
the wicking height with time through the yarns with reasonable accuracy. Based on the proposed yarn model, a
mathematical model has been developed to predict the vertical wicking through plain woven fabric in the second part
of this article.
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Nomenclature

 

N

 

Total number of fibres in yarn

 

P

 

Total number of pores in yarn

 

i

 

Number of fibre layers in yarn

 

R

 

f

 

Fibre radius (cm)

 

µ

 

Yarn packing co-efficient

 

x

 

Distance between two fibres (cm)

 

a

 

Distance between nearest fibres’ axis (cm)

 

P

 

sp

 

Perimeter of single capillary (cm)

 

A

 

sp

 

Area of single capillary (cm

 

2

 

)

 

P

 

p

 

Total perimeter of capillary (cm)

 

A

 

p

 

Total area of capillary (cm

 

2

 

)

 

γ

 

SV

 

Surface tension between solid and vapour interface
(dyne/cm)

 

γ

 

SL

 

Surface tension between solid and liquid interface
(dyne/cm)

 

γ

 

LV

 

Surface tension between liquid and vapour interface
(dyne/cm)

 

θ

 

Contact angle (radian)

 

A

 

Adhesive force between solid and liquid molecule
(dyne)

 

τ

 

Tension acting on the liquid surface (dyne/cm)

 

P

 

c

 

Capillary pressure (dyne/cm

 

2

 

)

 

r

 

Radius of the capillary (cm)

 

R

 

Curvature of the capillary meniscus (cm

 

–1

 

)

 

R

 

y

 

Yarn radius (cm)

 

n

 

Number of fibres in the outer layer of yarn

 

T

 

Twist per unit length in the yarn (turns/cm)

 

H

 

Pitch length (cm)

 

r

 

y

 

Radius of fibre helical path (cm)

 

dr

 

y

 

Elemental yarn radius (cm)

 

dn

 

Number of fibres in the elemental sectional of the
yarn

 

α

 

Helix angle of fibre in the yarn (radian)

 

∆

 

P

 

Pressure difference

 

η

 

Viscosity of the liquid (centipoise)

 

Q

 

Flow rate (wicking height/time)

 

D

 

H

 

Hydraulic diameter of capillary (cm)

 

φ

 

Angle of occurrence of liquid meniscus with the
outer layer fibre wall (radian)

 

L

 

f

 

Fibre length (cm)

 

A

 

f

 

Fibre area (cm

 

2

 

)

 

P

 

f

 

Fibre perimeter (cm)

 

P

 

cir

 

Perimeter of circle having same area of the fibre
cross-section (cm)

 

ρ

 

f

 

Fibre density (g/c.c.)

 

d

 

Fibre denier

 

χ

 

Fibre shape factor

 

t

 

Time of wicking (s)

 

ρ

 

Density of liquid (g/c.c.)

 

g

 

Gravitational acceleration (dynes/cm

 

2

 

)

 

m

 

Mass of the liquid column (g)

 

h

 

max

 

Equilibrium capillary height (cm)

 

h

 

Yarn wicking height (cm)

 

*Corresponding author. Email: apurba@textile.iitd.ernet.in

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

M
in

ho
] 

at
 0

1:
26

 0
5 

D
ec

em
be

r 
20

11
 



 

958

 

 B. Das 

 

et al.

 

Ap

 

warp

 

Cross-sectional area of pore in warp way (cm

 

2

 

)

 

Ap

 

weft

 

Cross-sectional area of pore in weft way (cm

 

2

 

)

 

h

 

fab

 

Fabric wicking height (cm)

 

l

 

Total wicking length along the fabric (cm)

 

p

 

1

 

,

 

p

 

2

 

Warp and weft spacing (cm)

 

n

 

2

 

Number of weft threads at 

 

h

 

fab

 

 distance (cm)

 

c

 

1

 

, 

 

c

 

2

 

Warp and weft crimp

 

α

 

1

 

, 

 

α

 

2

 

Warp and weft crimp angle (radian)

 

l

 

1

 

, 

 

l

 

2

 

Lengths of the thread axis between planes containing
the axes of consecutive cross-threads (cm)

 

Introduction

 

Influence of various factors and prediction of moisture
transmission behaviour of the clothing has been recog-
nised as a favourite research arena among the research
fraternity in recent years. Theoretical prediction of
moisture transmission properties of textile materials is
useful to characterise the clothing comfort, and also it
helps to design the fabric as per specifications. Liquid
moisture wicking behaviour of fabric plays an impor-
tant role in maintaining thermophysiological clothing
comfort, especially in sweating conditions. The proce-
dures adopted to characterise the liquid moisture
transmission behaviour of fabrics are transverse wick-
ing, in-plane wicking and vertical wicking methods.
The reported theoretical works on liquid moisture
transfer through fabrics are found to be concentrated on
in-plane wicking and transverse wicking studies. No
theoretical work has been reported to predict the verti-
cal wicking through fabric, though it is a most
commonly used method to determine the wickability.
Yarn is the key factor in determining wicking behav-
iour of fabric. Hence, the necessity of a theoretical
model to predict the vertical wicking behaviour of yarn
and fabric with known material parameters has been
recognised and attempted in this study. The theoretical
background of the capillary action through textile struc-
ture has been given below.

 

Capillarity and textile structure

 

Capillary action, or capillarity, can be defined as the
macroscopic motion or flow of a liquid under the influ-
ence of its own surface and interfacial forces. It is based
on the intermolecular forces of cohesion and adhesion.
During wetting, the forces at equilibrium between
solid–liquid boundaries are commonly described by the
Young–Dupre equation (1), as given below (Kissa,
1996): 

When liquid wets the fibres, it reaches the spaces
between the fibres, and capillary pressure develops. The

liquid is forced by this pressure and dragged along the
capillary due to the curvature of meniscus in the narrow
confines of the pores. The spontaneous flow of liquid or
wicking occurs due to a pressure differential or capil-
lary action. The magnitude of the capillary pressure is
given by Laplace equation (2) (Chatterjee, 1985): 

With an idealised tube structure, the Hagen–Poiseuille
law (Hagen, 1839) for laminar flow through a circular
tube is employed, as per the following equation: 

This equation is also used for the steady state flow
through a porous media. In such cases, to define the
pore diameter, hydraulic diameter of pore is considered
and calculated on account of non-circularity and irregu-
larity in the pore structure and spacing (Lekner, 2007;
Millionshchikov, 1970). The capillary rise between the
time of initial contact and the final equilibrium was
obtained by integrating Equation (3) as derived by
Lukas–Washburn (Lukas, 1918; Washburn, 1921). 

 

C

 

 is constant. At low values of 

 

t

 

, where 

 

h

 

 is very small
comparative to the 

 

h

 

max

 

, the above equation has been
approximated as follows to establish the direct relation
between wicking height (

 

h

 

) and the wicking time (

 

t

 

),
commonly known as Washburn equation (Washburn,
1921). 

Washburn equation is the only available equation till the
date which directly provides the wicking height through
a capillary channel for specified time 

 

t

 

. The main limi-
tation in case of vertical wicking of this equation is that
it is only valid for very low values of 

 

t

 

 and not for the
complete wicking profile.

In case of textile yarns, the pores are open channel
capillaries formed by the fibre walls unlike the regular
capillary channel (Mao & Russell, 2000; Minor &
Schwartz, 1960). The capillaries are neither cylindrical
nor all of them are arranged in parallel. The size and the

γ γ γ θSV SL LV− = ⋅cos ( )1
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shape of the capillaries are dependent on the size and
the shape of the fibres as well their packing in yarn. So
the different fibre and yarn parameters which affect the
shape, size and distribution of the capillaries are likely
to affect the capillary drag through the yarn structure.
Involvement of so many variables and the irregular
capillary structure complicates the model of flow
through the textile structure. The theoretical studies,
conducted by different researchers to study the wicking
behaviour through textile yarns, either treat the yarn
as porous media, where the liquid transport process
can be described by Darcy’s law (Chatterjee, 1985), or
as capillary tubes (Kamath, Hornby, Weigman, &
Wilde, 1994; Liu, Choi, & Li, 2008; Nyoni & Brook,
2006; Palmer, 1953; Perwuelz, Casetta, Caze, 2000;
Perwuelz, Mondon, & Caze, 2001; Wiener & Dejlová,
2003), where the liquid flow through can be modelled
by Lucas–Washburn kinetics. But as discussed by
Wiener and Dejlová (2003) in most of the theoretical
works, to simplify the case many important parameters
and phenomenon have been overlooked, which leads to
output with higher error percentage. Wiener and
Dejlová (2003) have developed a model which can
predict the equilibrium wicking height considering the
following textile parameters: fineness of fibres and
number of fibres at the cross-section in the bundle and
the filling. Liu et al. (2008) proposed a mathematical
model on wicking through twisted yarn based on idea-
lised yarn structure model (Hearle, Grosberg, & Baker,
1969). The equilibrium height of wicking as proposed
by the model was observed to diverge with the experi-
mental results of the article. In most of the works only
the equilibrium wicking height through the yarn has
been calculated rather than the complete wicking
profile, where the gravitation force has to be taken into
account at every point. Neither correlation with yarn
and fabric wicking has been quantifiable in the substan-
tial published research works.

In the present part of this article, a mathematical
model has been developed to predict the complete profile
of vertical wicking through yarn considering different
influencing parameters, i.e. fibre contact angle, number
of filaments in a yarn, fibre denier, fibre cross-sectional
shape, yarn denier and twist level in the yarn.

 

Model development

 

The proposed model is based on Laplace and Hagen–
Poiseuille equation. The salient features of this model
are: 

 

●

 

Yarns are considered as porous materials
comprising irregular cylindrical fibres and air;

 

●

 

The capillaries in yarn are open channel capillar-
ies, comprised of fibre wall;

 

●

 

The available fibre wall to a capillary channel
drags water along it, and the proportion of the
wall to a capillary channel depends on yarn pack-
ing co-efficient; and

 

●

 

The gravitational force acts downward to resist
the flow through the channel.

Development of a mathematical model to predict the
vertical wicking through yarn has been achieved in
different stages. The first stage comprises of defining
the pore geometry, the number of pores in the yarn and
the number of fibres at the outer layer of yarn. The
second stage deals with capillary flow calculation. In
the third and the fourth stages, yarn twist parameter and
fibre shape factors successively have been incorporated
in the yarn model. The developed yarn model has been
verified with the experimental results.

 

Stage 1: defining pore geometry

 

To define pore geometry, at the initial stage, the follow-
ing assumptions have been considered: 

 

●

 

The fibres in the yarn are hexagonally packed;

 

●

 

All fibres are of same dimension;

 

●

 

All the fibres are equally spaced; and

 

●

 

The cross-section of the fibres is circular.

 

Determination of the number of pores in the yarn 
structure

 

To determine the number of pores in the yarn structure,
a hexagonal close packing has been assumed. With the
change in packing, the co-efficient number of pores will
not change, only the area and perimeter of the pores will
change. In case of hexagonal close packing, the number
of fibres in the core = 1. Here in the article, 

 

i

 

 is the
number of fibre layers in the yarn. The number of fibres
in different fibre layers in the yarn in case of hexagonal
close packing according to Hearle et al. (1969) has been
given in Table 1.

The total number of fibres in a yarn with 

 

i

 

 number
of fibre layers is as follows: 

 

where 

 

N

 

i

 

th

 

 is the number of fibres in the ith layer.

N Ni= + + + + + + +1 6 12 18 24 30 K th

N i i= + +1 3 3 62 ( )

i
N

=
− + −3 12 3

6
7( )
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The number of pores form in the yarn structure due
to different fibre layers has been given in Table 2.

The total number of pores, P, in the yarn with i
number of layers: 

Determination of pore dimension

The geometrical dimension of pore has been defined
in two different ways. In the first approach, an indi-
vidual pore, as shown in Figure 1(a) and (b), has been
considered. In second approach, the total number of
pores has been considered as a unit porous system
(Figure 3).
Figure 1. Pore structure in hexagonally packed yarn.In case of textile material, the pores formed
between fibres are open channel capillary, constructed
by the fibre walls. In an open-packed yarn, the pores
can be geometrically presented by the combination of
real fibre border (line in black) and by the fictive
border (line in grey) (Neckar & Ibrahim, 2003). In case
of an open-packed yarn, the number of pores is going to
be same as that in close packed. The perimeter offered
by the solid surface to wetting is also going to be the
same. Only the pore area and the perimeter (imaginary
perimeter of a single pore) will be different. The
geometrical pore dimensions have been marked in
Figure 2.

Packing co-efficient of yarn, 

Figure 2. Geometrical dimension of pore.Considering the portion of ∆ABC in Figure 2: 

6 18 30 42 54 66

6

3 12 3

6
8

2

2

+ + + + + + +
=

⇒ =
− + −( )

⋅

K number of pores

for th layer i P i

P
N

( )

µ =
Area accupied by fibre

Yarn area

=
Fibre area

Total area

µ
π

=
×

×

3

6
2

2

R

a

f

3

4

Table 1. Hexagonal close packing of fibres in yarn.

No. of 
layer (i)

No. of fibres in 
the layer (Ni)

Total number 
of fibres (N)

0 1 1
1 6 7
2 12 19
3 18 37
4 24 61
5 30 91

Table 2. Number of pores formed by different fibre layers.

No. of 
layer (i)

No. of pores 
for the layer

Total number 
of pores (P)

0 0 0
1 6 6
2 6 + 12 = 18 24
3 12 + 18 = 30 54
4 18 + 24 = 42 96
5 24 + 30 = 54 150
6 30 + 36 = 66 216

Figure 1. Pore structure in hexagonally packed yarn.
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So, the area of the single capillary 

The solid fibre surface available to the capillary to raise
the liquid, the wetted perimeter of the channel is as
follows: 

where Asp, Psp and DH are the area, the wetted perimeter
and the hydraulic diameter of the pore.

Determination of the number of fibres in outer layer 
of yarn

From Equation (7), when i comes as a whole number,
then the yarn has i number of complete fibre layers. If i
comes with a fraction, then total number of complete
fibre layer will be the nearest lower whole number
(suppose K) and the next fibre layer will be incomplete.

In that case K is the number of complete layer and
(K + 1)th is the last and incomplete fibre layer.

In this packing system, the number of fibres in Kth
layer is 6K.

The number of fibres in the last layer (K + 1): 

The number of fibres in (K + 1) layer will cover

 number of fibres of Kth layer.

Therefore, the total number of fibres in the outside
surface of the yarn (n) will be: 

Stage 2: capillary flow calculation

Capillary pressure can be determined by two ways.
Approach 1: in this approach single pore (dimension-
ally) has been used. In this approach the fictive borders
between the pores has been considered to separate one
pore from the adjacent, and the number of pores and
pore dimension have been determined from the previ-
ous calculations. Approach 2: in this approach the total
number of pores has been considered as a unit porous
system. The imaginary borders between the pores have
not been considered, and the capillary pressure can be
calculated using total capillary force and total capillary
area present in the yarn, rather than considering the
individual capillaries.

Calculation considering individual pore

Forces acting during the vertical capillary flow through
a capillary channel are the upward acting capillary force
and the downward acting gravimetric force.

So the pressure difference is: 

where ∆P is the pressure difference, ρ is the density of
the liquid, m is the mass of the liquid, wicked along the
channel and g is the gravitational acceleration.

At the equilibrium height (hmax), ∆P will be zero in the
condition: 

In case of non-circular capillary, r is replaced by DH/2
(Lekner, 2007; Millionshchikov, 1970). Now placing
the value of ∆P (Equation (12)) in Hagen–Poiseuille
equation (Equation (3)) 

π
µ

µ µ

=

= − × = − = −










1 075

2
1 903

2
1 903

2

2

a
R

x a R R R R

f

ff f f

.

. .

( ) .A
Rf

sp = ×
−π µ
µ

2

2

1

P Rsp = π f ( )9

D
A

PH =
4

10
sp

sp

( )

J N K K= − + + ⋅( )1 3 3 2

J
K

K
×

+1

n K
J

K
= +

+
6

1
11. ( )

∆P
r mg

r
P h gc

=
−

= −

2

12

2

π γ θ

π
ρ

LV cos

( ) ( )

h
P

g
c

max . ( )=
ρ

13

Figure 2. Geometrical dimension of pore.
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962  B. Das et al.

(using the values of Asp and Psp from the previous
calculations).

Equation (14) has been integrated for time t as follows: 

The integration gives a non-linear equation relating
wicking height h and time t as follows: 

The non-linear equation has been solved using
MATLAB, which has given following solution. From

this equation, the value of the wicking height h can be
determined for any time t: 

Lambertw is a mathematical function defined as follows: 

The limitations in determining the capillary force by 
Approach 1

● This approach cannot take care of irregular
spacing between the fibres, as well as the way in
which the pore’s dimension has been measured, is
only valid for regular shaped fibre – such as circu-
lar, square-shaped, rectangular, triangular, etc.

● This approach cannot take care of the cohesive
force, acting downward, due to the concave
liquid–gas interface which leads to higher error
percentage.

So the second approach has been used for the final
model.

Calculation considering total number of pores as unit 
porous system

In this approach the imaginary borders between the
capillaries have not been considered (Figure 3), and the
capillary pressure has been calculated using total capil-
lary force and total capillary area present in the yarn,
rather than considering the individual capillaries.
Figure 3. Removal of fictive borders.

In this case the total area of capillary is: 

where Ry is the yarn radius. 

d

d
(Capillary force – Gravitational force)

d

d

where 
Capillary pressure

Capillary pressure:

Hydraulic diameter:
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LV

h
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Figure 3. Removal of fictive borders.
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Effective capillary force acting upward = 

Clark and Millar (1978) have worked to determine the
liquid meniscus in a cross-sectional plane. They have
calculated the point of occurrence of the liquid curva-
ture and its shape between two fibres which are at the
outer plane of the yarn.

The radius of curvature of the liquid meniscus (R)
(Figure 4): 

Figure 4. Formation of non-wetting water surface at the outer layer of yarn.

where 

(The details of calculation have been given by Clark
and Miller, 1978.)

The length of the arc (S) 

The perimeter of the non-wetted fibre portion is: 

Hence, the deduction of capillary force due the non-
wetted fibre portion (Fdu1) is: 

and the downward force by non-wetting water perime-
ter (Fdu2) is: 

Therefore, the total capillary force (Fc) obtained is as
follows: 

Stage 3: incorporation of twist parameter in yarn 
modelling

Liu et al. (2008) have used the idealised yarn structure
model developed by Hearle et al. (1969) to determine

Wetted perimeter of the capillary = total number
of fibres perimeter of a fibre – number of fibres
at the outer layer of yarn perimeter of non – wetted
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Figure 4. Formation of non-wetting water surface at the outer layer of yarn.
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the fibre inclination in the elemental area and their
contribution to the capillary dragging in case of twisted.
The same concept has been used in our model as well.

The yarn is assumed to be circular in cross-section,
and composed of a series of concentric cylinders of
differing radius. Each fibre follows a uniform helical
path around one of the concentric cylinders, so that its
distance from the yarn axis remains constant. All such
helices have the same pitch. A typical constitute fibre is
shown in Figure 5. Since fibres within the yarn are not
parallel to each other any more, inclinations of fibres to
the vertical line (α) should be taken into account. With-
out losing generality, only one pitch of the yarn is
considered in the analysis. Considering an element of
area of cross-section of the yarn between radii ry and ry

+ dry and supposing packing of fibres in the yarn is
uniform, the number of composed fibres inside this area
can dn be obtained by: 

Figure 5. Idealized structure of twisted yarn.(The calculation which has been given by Liu et al.
(2008) has been corrected here.)

where µ is the packing fraction of fibres in the yarn, ry

is the radius of the fibre helical path, H is the pitch
length of the helix of the fibre path, T is the twist in the
yarn per unit length, Rf is the average radius of fibre and
Lf is the fibre length. 

The upward capillary force contributed by this element
area is therefore given by: 

where α is the twist angle. 

By integrating the Equation (28) over the yarn radius,
we will get the total upward force in the yarn wicking
as such: 

In the twisted condition, the deduction of capillary force
due to the non-wetted fibre portion is: 

Downward force by non-wetting water perimeter (Fdu2)
is: 
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Figure 5. Idealised structure of twisted yarn.
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Therefore, the equivalent upward force for the wicking
action is: 

Also, to calculate the hydraulic diameter (DH) of the
pore, the overall pore area and wetted perimeter has
been considered.

Stage 4: incorporation of fibre shape factor in yarn 
modelling

Normally, the difference in the cross-sectional shape of
the fibres is quantified by the factor known as a shape
factor. Shape factor of any cross-sectional shape is
determined as follows: 

where Pf is the perimeter of that particular cross-
sectional shape and Pcir is the perimeter of the circle
having the same cross-sectional area of that particular
shape.

With the same denier of the fibres having different
cross-sectional shape, we will have same cross-
sectional areas but different perimeters.

Therefore, if the denier of a fibre is d, the cross-
sectional area of the fibre will be: 

In case of circular cross-sectional fibre, it will be: 

Therefore, in case of fibre with non-circular cross-
section in all the above equations of previous part, Rf

will be replaced by Af and Pf (Equation (34)) of that
particular cross-sectional fibre.

Experimental validation

Materials

In order to experimentally verify the yarn wicking
model, polyester and polypropylene multifilament
yarns have been used. Polyester filaments with three
different cross-sectional shapes, i.e. circular, triangular
and trilobal have been used to see the effect of shape
factor on yarn wicking. Contact angle of the filament
yarns has been measured using tensiometry method.
Polyester multifilament yarns having similar denier but
made of different denier per filaments have been used to
study the effect of fibre diameter on yarn wicking.
Different twist level has been incorporated on the
multifilament polyester yarns to observe the effect of
twist on yarn wicking. The diameter of the filament
yarns and zero twist and twisted condition have been
measured using Leica microscope. The details of yarn
parameters have been given in Table 3.

Method

Measurement of vertical wicking vs. time

Vertical wicking height has been measured with respect
to time using vertical wicking tester. The measurement
has been done using video-metric method. The experi-
mental set up has been given in Figure 6. The whole
process from the starting of the wicking process till water
reaches to the equilibrium in the yarn has been captured
in video camera. 3 g/l Procion red reactive dye has been

F F F Fc = − +cu du du( ). ( )1 2 32
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cir

χ
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P
f

( )33
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P A
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f
f

f

f f
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=

=
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π
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9 10
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4
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cir

R
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Pf
f

f

=
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34. ( )

Table 3. Parameters of polyester yarns with microdenier filaments and different cross-sectional filaments.

Sample code Fibre type
Cross-sectional 
shape

Fibre shape 
factor

Contact 
angle

Fibre 
denier

No. of 
filaments/yarn

Yarn 
denier

Yarn 
radius (cm)

Trilobal Polyester Trilobal 1.27 75.75 4.72 32 151 0.0073
Triangular Polyester Triangular 1.16 75.75 4.72 32 151 0.0073
Circular-normal denier Polyester Circular 1 75.75 4.72 32 151 0.0072
Microdenier Polyester Circular 1 70 0.84 200 167 0.0085
PET1 Polyester Circular 1 70.96 5.26 220 1158 0.019
PET2 Polyester Circular 1 63.28 5.26 190 1000 0.018
PP1 Polypropelene Circular 1 60.45 9.5 115 1100 0.022
PP2 Polypropelene Circular 1 45.20 10 86 862 0.020
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966  B. Das et al.

added in water, which has been used for the experiment,
to improve the visual clarity of the flow. In order to verify
the twist effect on yarn wicking, different ranges of twist
were imparted on the multifilament yarns.
Figure 6. Experimental set up for measuring vertical wicking of yarn and fabric.

Comparison of theoretical and experimental values

Based on the mathematical model, a programme has
been made using MATLAB software to obtain the
complete vertical wicking profile (height from the
initial to wicking equilibrium) of yarn just by entering
the fibre and yarn parameters as input variables. The
values obtained from the yarn model have been
compared with the wicking height values obtained
from vertical wicking test. It can be observed from
Figure 7 that the R2 value between the experimental
and theoretical wicking height is high, which indicates
that both the theoretical and the experimental results
follow the same trend. Table 4 gives a comparison of
the values of maximum wicking height values of the
different yarns obtained from the experiment and the
model. The error percentage between the theoretical

Figure 6. Experimental set-up for measuring vertical wick-
ing of yarn and fabric.

Figure 7. Correlation between the values obtained from
vertical wicking test and the theoretical model.

Figure 8. Comparison of wicking height obtained from the
vertical wicking test and the theoretical model.

Figure 9. Comparison of theoretical and experimental
wicking height through circular microdenier multifilament
polyester yarn. e, experimental; t, theoretical.

Figure 10. Comparison of theoretical and experimental
wicking height through circular normal denier multifilament
polyester yarn. e, experimental; t, theoretical.
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and the experimental values has been calculated. From
the results it has been seen that the model can predict
the wicking values with reasonable accuracy. Figure 8
gives a comparative display of the values obtained
from the experiment and the proposed model. The
theoretical and the experimental wicking height
through different denier and different cross-sectional
multifilament polyester yarns have been compared in
Figures 9–12. The error bars given in the graphs

represent the standard deviation between the measured
values of a sample.
Figure 7. Correlation between the values obtained from vertical wicking test and the theoretical model.Figure 8. Comparison of wicking height obtained from the vertical wicking test and the theoretical model.Figure 9. Comparison of theoretical and experimental wicking height through circular microdenier multifilament polyester yarn.Note: (e – experimental and t – theoretical).Figure 10. Comparison of theoretical and experimental wicking height through circular normal denier multifilament polyester yarn.Note: (e – experimental and t – theoretical).Figure 11. Comparison of theoretical and experimental wicking height through triangular multifilament polyester yarn.Note: (e – experimental and t – theoretical).Figure 12. Comparison of theoretical and experimental wicking height through trilobal multifilament polyester yarn.Note: (e – experimental and t – theoretical).

Effect of fibre diameter

The effect of fibre diameter on vertical wicking behav-
iour of yarn has been plotted in Figure 13(a) and (b).
From the plots it is observed that the result obtained
from the model as well as the experiment follow the
same trend; in case of microdenier filament yarn, the

Figure 11. Comparison of theoretical and experimental
wicking height through triangular multifilament polyester
yarn. e, experimental; t, theoretical.

Table 4. Comparison of theoretical and experimental values.

Sr. No. Yarn type
Experimental max. 

wicking height, cm (hE)
Predicted max. wicking 

height, cm (hT)
Error 

1 PET1 13.93 17.17 0.23
2 PET2 15.52 19.10 0.23
3 PP1 17.10 21.50 0.26
4 PP2 15.90 19.43 0.22
5 Microdenier-twist-0 12.80 13.71 0.07
6 Microdenier-1 TPCM 9.90 12.68 0.28
7 Microdenier-2 TPCM 8.60 11.68 0.36
8 Microdenier-5 TPCM 6.19 8.54 0.38
9 Microdenier-10 TPCM 4.37 4.84 0.11
10 Trilobal 7.68 9.09 0.18
11 Triangular 7.06 7.19 0.02
12 Circular-normal denier-0 TPCM 5.85 6.26 0.07
13 Circular-normal denier-1 TPCM 5.58 6.17 0.11
14 Circular-normal denier-2 TPCM 5.15 5.78 0.12
15 Circular-normal denier-3 TPCM 3.98 5.40 0.36
16 Circular-normal denier-4 TPCM 3.57 4.99 0.40
17 Circular-normal denier-5 TPCM 2.92 4.54 0.56
18 Circular-normal denier-10 TPCM 2.31 2.74 0.19

Average 0.23
Max 0.56
Min 0.02

Note: TPCM – Turns/cm.

| h h

h

E T

E

−

Figure 12. Comparison of theoretical and experimental
wicking height through trilobal multifilament polyester yarn.
e, experimental; t, theoretical.
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968  B. Das et al.

change in wicking height with time was much higher
than in case of yarn with coarse denier fibre.
Figure 13a. Effect of fibre diameter on vertical wicking behaviour of yarn (theoretical).Figure 13b. Effect of fibre diameter on vertical wicking behaviour of yarn.Note: (experimental).

Effect of yarn twist

The wicking behaviour of circular normal denier and
microdenier filament yarn with increase in twist has
been plotted in Figures 14 and 15(b). From the theo-
retical model it has been observed that with the
increase in yarn twist (Figures 14(a) and 15(a)) both
in case of normal denier and microdenier multifila-
ment yarn, the equilibrium wicking height and the
rate of wicking reduce. Same trend has been observed
from the experimental results as well (Figures 14(b)
and 15(b)). Symbol Tt0, Tt1, Tt2, Tt3, Tt4, Tt5 and Tt10

represent for theoretical wicking value for yarn with
twist/cm 0, 1, 2, 3, 4, 5 and 10, respectively; simi-
larly Te0, Te1, Te2, Te3, Te4, Te5 and Te10 represent
for experimental wicking value for yarn with twist/cm
0, 1, 2, 3, 4, 5 and 10, respectively. In Figure 14(b)
for circular normal denier multifilament yarn, the
wicking curves have been given for twist 0, 2, 4, 5,
10 turns/cm. In Figure 15(b) wicking curves for

microdenier multifilament yarn for twist 0, 1, 2, 5 and
10 turns/cm have been plotted.
Figure 14a. Effect of yarn twist on vertical wicking behaviour of coarse denier circular multi-filament polyester yarn – theoretical.Note: Tt1 – theoretical (with twist 1 turns/cm) and Tt10 – theoretical (with twist 10 turns/cm).Figure 14b. Effect of yarn twist on vertical wicking behaviour of coarse denier circular multifilament polyester yarn – experimental.Note: Te1 – experimental (with twist 1 turns/cm) and Te10 – experimental (with twist 10 turns/cm).Figure 15a. Effect of yarn twist on vertical wicking behaviour of microdenier denier multifilament polyester yarn – theoretical.Note: Tt1 – theoretical (with twist 1 turns/cm) and Tt10 – theoretical (with twist 10 turns/cm).Figure 15b. Effect of yarn twist on vertical wicking behaviour of microdenier denier multifilament polyester yarn – experimental.Note: Te1 – experimental (with twist 1 turns/cm) and Te10 – experimental (with twist 10 turns/cm).In the same way Te0, Te1, Te2, Te3, Te4, Te5 and Te10

represent for experimental wicking value for yarn with
twist/cm 0, 1, 2, 3, 4, 5 and 10, respectively. Figure
16(a) and (b) presents a comparison of maximum wick-
ing height calculated from the theoretical model and
obtained from the experimental results with the increase
in twist/cm (TPCM) of the yarn for circular normal
denier (1) and microdenier (2) multifilament polyester
yarn.
Figure 16a. Turns/cm vs. maximum wicking height – circular normal denier multifilament yarn.Figure 16b. Turns/cm vs. maximum wicking height – microdenier multifilament yarn.

Effect of fibre profile

Figure 17(a) and (b) presents the effect of fibre shape
factor on vertical wicking behaviour of yarn. The
values obtained from the theoretical model (Figure
17(a)) as well as from the experimental data (Figure
17(b)) show that yarn with trilobal cross-sectional

Figure 13. (a) Effect of fibre diameter on vertical wicking
behaviour of yarn (theoretical). (b) Effect of fibre diameter
on vertical wicking behaviour of yarn.

Figure 14. (a) Effect of yarn twist on vertical wicking be-
haviour of coarse denier circular multi-filament polyester
yarn – theoretical. (b) Effect of yarn twist on vertical wicking
behaviour of coarse denier circular multifilament polyester
yarn – experimental. Tt1 – theoretical (with twist 1 turns/cm)
and Tt10 – theoretical (with twist 10 turns/cm). Te1 –
experimental (with twist 1 turns/cm) and Te10 – experimental
(with twist 10 turns/cm).
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filament offers highest wicking, followed by triangular
and circular cross-sectional filaments. Figure 18
presents a comparison of maximum wicking height
calculated from the theoretical model and obtained
from the experimental results for different shape
factor. In both the cases, theoretical and experimental,
the equilibrium height follows a linear relation with
fibre shape factor.
Figure 17a. Effect of fibre shape factor on vertical wicking behaviour of yarn – theoretical.Note: (t – theoretical).Figure 17b. Effect of fibre shape factor on vertical wicking behaviour of yarn – experimental.Note: (e – experimental).Figure 18. Fibre shape factor vs. maximum wicking height.The results show that the value of wicking height has
come always higher from the theoretical results than
that have obtained from the experimental data. This may
be attributed to the deviation of packing of the fibres
from the idealised packing considered in the model.
Also, during the experimental study no preventive
method has been adopted to avoid the liquid evaporation
during wicking, which may have resulted lower equilib-
rium wicking height than the actual.

Conclusions

● Vertical wicking through yarn structure has been
investigated using a model based on macroscopic
force balance method. The model can predict
the vertical wicking behaviour with reasonable
accuracy.

● The model takes care of several parameters like
fibre denier, yarn denier, fibre cross-sectional
shape and number of fibres in the yarn and yarn
twist.

● From the theoretical model, it is predicted that
yarn having same linear density but made of more
number of fibres (i.e. with smaller denier fibres)
will provide higher wicking. The same trend has
been observed from the experimental results.

● The model also predicts that with the increase in
twist in yarn, its wickability reduces and with the
increase in fibre shape factor, the wickability of
yarn increases. The experimental verification of
the model shows similar trend.

Figure 15. (a) Effect of yarn twist on vertical wicking be-
haviour of microdenier denier multifilament polyester yarn
– theoretical. (b) Effect of yarn twist on vertical wicking
behaviour of microdenier denier multifilament polyester
yarn – experimental. Tt1 – theoretical (with twist 1 turns/
cm) and Tt10 – theoretical (with twist 10 turns/cm). Te1 –
experimental (with twist 1 turns/cm) and Te10 –
experimental (with twist 10 turns/cm).

Figure 16. (a) Turns/cm vs. maximum wicking height –
circular normal denier multifilament yarn. (b) Turns/cm vs.
maximum wicking height – microdenier multifilament
yarn.
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● The model does not take care of yarn hairiness,
capillary channel discontinuity and liquid absorp-
tion phenomenon.
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Figure 18. Fibre shape factor vs. maximum wicking height.
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