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Abstract 
 
This work presents a brief review on the seismic behavior on non-loadbearing masonry walls used as masonry infills. O 

Some examples of inefficient performance are shown based on information available of recent earthquakes. 

Additionally, a literature overview on the techniques for retrofitting existing masonry infills is provided. Finally, 
alternative braided reinforced composite materials are briefly described and pointed out as an alternative solution 

for retrofitting masonry infill walls. 

 

1 Introduction 

The quality of the built heritage play a central role on the quality of daily human lives as they 

interact continuously with the built spaces, either in the work, social events and at home. In 

particular, the safety of the built spaces is indeed a demand of modern societies and remains 

a huge concern in prone seismic regions. It is known that seismic vulnerability is not exclusive 

of ancient masonry structures but affects also the built heritage from XX century, composed 

in a majority of reinforced concrete (RC) buildings, both in structural and non-structural 

elements. In this constructive typology, brick masonry walls represent the most traditional 

enclosure system and have demonstrated reasonable performance with respect to healthy 

indoor environment, temperature, noise, moisture, fire and durability, even if there has been 

some trend for improvement serviceability by purposing newly solutions [1-2]. According to 

[1] masonry infills represent approximately 15% of the total construction volume. 

Despite masonry infill walls have been considered for long time as non-structural elements, 

they can play a positive role in the seismic behavior of RC buildings, if their influence in the 
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building response is correctly taken into account [3-6]. Conversely, they need to be checked 

against in-plane severe damage and possible out-of-plane collapse. Indeed, as demonstrated 

by recent earthquakes, the inefficient behavior of masonry infills can result in extensive 

economic losses, resulting in low levels of reparability, and in the loss of human lives. This 

situation raises the need of improvement of the construction technology and design of non-

structural elements for new buildings and of retrofitting in case of existing buildings. The 

latter aspect is the focus of this paper. Indeed, it is of paramount importance to act promptly 

in the retrofitting of masonry infill walls, taken into account that great part of RC buildings 

was designed before the advent of seismic regulations. With this respect, some guidelines are 

provided in some international codes but in a majority of countries there are no standardized 

guidelines for the retrofitting of masonry infills. 

This paper intends to provide; (1) information on the seismic behavior of masonry infill walls 

under seismic action, by focusing on post mortem survey in recent earthquakes; (2) a brief 

overview of the retrofitting techniques of masonry infill walls; (3) information of alternative 

braided fibrous reinforcing materials regarding the traditional retrofitting carbon or glass 

reinforcing polymer solutions. 

2 Tipology of non loabearing walls 

The brick masonry walls as non-loadbearing elements have been used since the generalized 

adoption of the reinforced concrete as a main structural system in Portugal, which dates back 

to 1960. In Figure 1 one can see the evolution of masonry walls in Portugal during the xx 

centuy:  

a) decade of 40: single leaf walls in stone masonry;  

b) decade of 50: stone masonry walls with a internal leaf in brick masonry;  

c) decade of 60: Cavity Wall with brick masonry with thick external leaf;  

d) decade of 70: Cavity Wall with brick masonry with médium thickness;  

e) decade of 80: Cavity Wall with brick masonry with médium thickness with termal 

insolation in between the leaves;  

f) decade of 90: Single leaf walls with external termal insulation  

 

The single walls become to be used again with the solution of vertically perforated brick 

masonry units, being associated to innovative solution of external thermal insulations solution 

[8].  

 

 
(a)          (b)     (c)       (d)          (e)    (f) 
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Figure 1- Evolution of non-loadbearing brick masonry walls in Portugal [8] 

 

3 Behavior of nonloadbearing walls under seismic loading 

Masonry infills are not considered as structural elements, as they do not have to bear vertical 

loads, and, thus, no specific design guidelines are provided in design codes, including 

Eurocode 6 [9]. However, in case of occurrence of earthquakes they can have an active role 

on the global resisting mechanism of the RC masonry infilled frames. The problem of the 

interaction between infill and RC frames, on how the infills influence the structural response, 

has been object of many experimental and numerical research [10-12]. 

According to past research [10, 13-14] it is known that masonry infills can have a beneficial 

effect under controlled damage, when it develops before the maximum shear forces occur, 

being able to dissipate energy and control inter-storey lateral drifts of RC frames. However, it 

very often happens that damage and collapse of RC buildings is due to improper consideration 

of, or neglecting, the infill walls influence on the surrounding RC elements. Indeed, the 

negative effect of the masonry infills is related to the soft storey and torsional effects, due to 

irregular distribution of masonry walls in height and in plan respectively. Masonry infills can 

be unfavourable when leave a short portion of the column clear, leading to the shear collapse 

of the columns [5]. It should stressed that the unfavourable effect of infills can also result 

from its own inefficiency in developing in-plane resisting mechanisms under large 

deformations imposed by enclosing frames leading to its severe damage or even partial 

collapse [15].  

The inadequate in-plane behavior of infills can also prevent the developing of out-of-plane 

resisting mechanism by arching effect [16]. In addition, the detachment from the surrounding 

frame elements at early stages of the seismic event and the absence of efficient connections 

to RC frames results in their out-of-plane collapse. This type of deficiency has been shown to 

be worrying from the last recent earthquakes. 

3.1 The example of recent earthquakes 

According to [17], after the Lefkada earthquake in Greece in 2003, it was seen that the major 

damage was concentrated at the non-structural elements, particularly in clay masonry infills, 

including out-of-plane collapses, shear cracking and detachment of the walls from enclosing 

frames. From the recent earthquake of L´Áquila in 2009, in Italy, and apart from the collapse 

of rural masonry residential buildings, it was observed that widespread extensive damage in 

masonry infill walls and internal partition walls developed, being responsible for the highest 

losses in RC buildings [18]. This type of non-structural damage requires in general high 

investment as it requires extensive repair, or in case of low reparability, results in the 

demolition and reconstruction, resulting in a major waste of time and money. The major 

concern about the out-of-plane vulnerability of masonry infills is the lack of detailing at the 

level of materials, connections to the surrounding RC frames and absence of fastener 



 

 

INTERNATIONAL CONFERENCE ON ENGINEERING UBI2011 - 28-30 Nov 2011 – University of Beira Interior – Covilhã, Portugal 

 

elements in case of cavity walls, resulting often in the complete and independent collapse of 

the leaves, see Figure 2. 

    

Figure 2 – Failure patterns of masonry infill walls found in the recent earthquake of LÁquila 

4 The use of alternative reinforcing materials in civil engineering construction 

In order to solve deterioration of steel as a reinforcing material in concrete structures, there 

was a need to introduce newly material able to resist to the corrosion. In this scope, the fiber 

composite materials have been assuming an important role in new construction and also for 

retrofitting of existing structures. The composite materials used are commonly reinforced by 

fibrous braided and axially reinforced impregnated by epoxy resin or of polyester [19]. This 

combination provides materials with interesting mechanical properties and low volume mass. 

Figure 3 shows the typical stress-strain diagrams under tensile loading for distinct reinforcing 

materials. The properties of the fibrous materials can be designed according to the structure 

or selected fibers.  

 

 
Figure 3 – Typical tensile stress (%)-strain (Mpa) diagrams of alternative reinforcing materials 

[19] 
 
The composite materials recently produced allow additional features like the monitoring of 

construction structures, enabling the continuous assessment of stress state of the structures 

and promoting a premature, fast and adequate intervention in case of need. This composite 

materials present also a more extended durability [19]. 
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4.1 Types of fibers 

The fibers used in civil construction can be of natural and natural sources, depending on the 

specific use.  

The natural fibers present higher variability and lower performance in terms of mechanical 

properties regarding non-natural fibers but can be used with advantages in the reinforced 

composite materials. Natural fibers are biodegradable, have interesting mechanical 

properties and low volume mass. Among the natural fibers, the most used are the flax fibers, 

sisal and jute fibers, see Table 1. 

 

Table 1 – Properties of natural fibers [20] 

Fiber 
Tenacity 
(N/Tex) 

Volume mass 
(g/cm3) 

Ultimate strain 
 (%) 

Flax 0,54 1,54 3 

Jute 0,31 1,50 1,8 

Sisal 0,42 1,5 2-2,5 

 

However, the most used fibers in civil construction of non-natural nature with focus on glass 

and carbon fibers. This type of inorganic fibers presents the advantages of geometries and 

dimensions according the required properties. These fibers are usually used as reinforcement 

in composite materials due to the high mechanical resistance and low volume mass. 

The carbon fibers are composed of carbon atoms which are linked to form microscopic crystal 

along the molecular chain. The fibers are extremely thin with a diameter ranging from 0.005-

0.010 mm. These fibers present an excellent ultimate tensile strength, being variable 

according to the manufacture conditions. 

The glass fibers are produced from silica. They have a high fusion temperature of about 

2000ºC.  These fibers are used in reinforcement but also as insulation and filtration. 

The basalt fibers come from volcanic minerals. This fiber can be used as reinforcement in 

civil construction [20]. Table 2 shows some properties on synthetic fibers. 

 

Table 2 – Properties of high performace fibers [20] 

Fiber 
Tenacity 
(N/Tex) 

Volume mass 
(g/cm3) 

Ultimate strain 
(%) 

Carbon 1,2 1,83 0,7-1,7 

Glass 0,78 2,58 4 

Basalt 0,67-0,93 2,65 3,1 

4.2 Architecture of reinforcements based on fibrous materials  

The fibrous architectures most used in civil construction derive from four basic structures, 

namely (1) nonwoven, (2) weave; (3) knit; (4) braided. The architectures are usually selected 

based on requirements for the specific application, namely in terms of orientation of the 

fibrous materials [8]. 
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The fibrous architectures are classified in: (1) Conventional planar structure (2D); (2) three-

dimensional structure (3D); (3) directional oriented structures (DOS); (4) hybrid structures. 

Some planar structures are shown in Figure 5, where the orientation of the fibers in the plane 

is visible.  

The weave present fibers oriented continuously at 0º e 90º. The knitted fabrics are formad by 

loops, exhibiting high elasticity. The structures nonwoven are distributed in scatter manner 

the plane without continuity [21]. 

 

 

   

 
Figure 5 – Examples of planar structures [22] 

 
The technique for the production of braided fabrics is usually used for the manufacture of 

fibrous reinforcements for application in construction [22]. This technique has been used for 

two centuries and is being increasingly used in technical applications. The technique consists 

in the braiding in the transversal and longitudinal direction forming a tubular structure. The 

wires are in two groups of spindles and rotate in opposite orientations, in the clock and 

counter clock [10]. With the aim of improving the physical and for adding new functionalities 

axial fibers can be added. This structure can be composed of different materials for achieving 

the reinforcing aim. The braiding angle is the most relevant parameter in the characterization 

of a textile braiding, influencing directly its behavior. The braiding angle is the angle 

between the longitudinal axis and the direction of insertion of the braiding wires, see Figure 

5. The diameter of the braiding is the straight line connecting the two extremities passing 

through the braiding center, see Figure 6. This measure can vary according to the wire 

diameter of the braiding, of the diameter of the axial structures and of circulation velocity 

[10]. 

 

 

     Weft-Knit           Warp-Knit 
 

           Nonwoven                               Weave                                    Braided 

Angle of braided 

Diameter 
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Figure 6 – Schematic representation of the diameter and angle of the braiding 

 
 

A three dimensional structure include multiaxial oriented fibers. Usually, these structures are 

manufactures with wire insertion in the third direction based on the conventional structures 

[22].  

The fibrous architectures oriented directionally (DOS) allows the achievement of improved 

mechanical properties in certain direction. In this case, the fibers can be inserted in 

preferential directions resulting in mono-, bi-, three-, and multiaxial structures, according to 

the number of directions in which the fibers are inserted, see Table 3 [22].  

 
Table 3 - Fibrous architectures oriented directionally [22] 

Monoaxial structure Biaxial structure Triaxial structure Multiaxial structure 

   

 

Warp reinforced 
Warp and Weft 

reinforced 
Warp and diagonal 

directions reinforced  

Warp, weft and 
diagonal directions 

reinforced 

   

 

Weft reinforced 
Diagonal directions 

reinforced 
Weft and diagonal 

directions reinforced 

Warp, weft and 
diagonal directions 

reinforced 

 
The hybrid structures are formed by the combination of two or more structures aiming at 

achieving the synergetic effect of ensured properties from the orientation of fibers in the 

structure. The hybrid structures can also be developed aiming at combining several types of 

fibers in the same fibrous architecture [22]. 

5 Retrofitting non-loabearing walls: a brief overview 

In spite of EC8 [7] implicitly mention the need of preventing premature failure and 

disintegration of masonry infills and out-of-plane collapse, by considering light wire meshes 

adequately anchored on the walls and concrete frames or ties across the walls, in case of new 

construction [2], no explicit guidelines are provided as concern the design and particularly in 

relation to strengthening of existing masonry infills.  

However, the high seismic vulnerability of infill walls led to recent investigation on 

development of strengthening techniques for the masonry infills aiming at improving both the 

in-plane and out-of-plane performance, namely prestressing and jacketing or more innovative 

materials, such as fiber reinforced polymers (sheets and bars). 
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The carbon fiber reinforced polymer retrofitting systems are usually composed of surface 

bonded CFRP sheets applied directly on the masonry walls through the application on an 

epoxy resin. Besides, the CFRP sheets are usually adequately anchored to the surrounding 

reinforced concrete frames. These anchors secure the sheets to the frames preventing the 

delamination and promotes frame-infill interaction during seismic response. The orientation 

of the CFRP schemes influences the performance of the retrofitted structures under lateral 

loading. Distinct configurations of CFRP systems on infill walls were applied on non-

loadbearing walls by Yuksel et al. 2010 [23], see Figure 7, resulting in an important increase 

on the lateral strength of the reinforced concrete masonry infill frames and delay of diagonal 

cracking leading to the improving of the overall behaviour of the structures under lateral 

cyclic loading. With this respect, some authors [24-26], pointed out that the use of retrofitted 

reinforced concrete masonry infill was by cross braced CFRP sheets results on the drift control 

and deformation demands under cyclic loading, improving thus the behavior under seismic 

actions. Other authors have demonstrated that the use of glass fiber reinforced polymer 

laminates along the bed joints of infill masonry walls can also improve the shear strength of 

masonry, leading to the control of damage [15].  

 

Figure 7 – Distinct retrofitting schemes on masonry infills by using carbon fibers reinforced 

materials [23] 

 

Several other studies have carried out to evaluate the improvement on the in-plane and out-

of-plane behavior of existing structural unreinforced masonry walls retrofitted with composite 

materials [27-28], showing that the FRP retrofitting technique is effective in significantly 

increasing the in-plane strength, stiffness, and deformability of URM walls, contributing also 

for the increase of the out-of-plane flexure resistance. 

As mentioned above, the retrofitting systems of infill masonry walls focus mainly on the use 

of composite material based on CFRP laminates or bonded sheets directly to the masonry 

walls, which perform reasonably well as concern the overall improvement of the seismic 

behavior of reinforced concrete masonry infill frames. However, one of the main problems 

related to the performance of these retrofitting materials is the delamination between the 

composite materials and the masonry as pointed out by Valluzzi et al. (2002) [29]. Thus, an 

alternative solution for the seismic retrofitting infill masonry walls consists of using braided 

reinforced composite materials according to what has been already applied in concrete 

structures [30]. The idea is to manufacture braided textile meshes with a core composed of 

fibrous materials which can be synthetic fibers such as carbon, glass or basalt or even natural 

fibers such us sisal, which are embedded in the walls plaster. It is foreseen that the technic 

of production of braided textile materials can be used as an advantage in the production of 
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fibrous structures due to its simplicity and ability of orientation of fibers. Besides, these 

fibrous materials have the advantage of protection of the axial reinforcement material 

assuring an improvement in the durability and improvement of adhesion to the masonry. 

6 Concluding remarks 

This paper intended to provide a brief overview on the seismic behavior of non-loadbearing 

masonry walls, which is viewed as a non-structural material but under seismic actions, should 

perform in adequate manner to avoid brittle failures resulting in huge economic losses and 

losses of human lives. Indeed, considerable damage has concentrated in their non-structural 

elements as demonstrated by recent earthquakes. 

The inefficient performance of in masonry infilled reinforced concrete frames under seismic 

events has promoted research on the retrofitting of these composite structures. In this paper, 

a brief overview is also given on the most used studied retrofitting schemes, which has 

focused on the application of carbon or glass fiber reinforced polymer composite materials in 

the masonry walls adequately anchored to the reinforced concrete enclosure elements. 

Additionally a brief review on alternative braided reinforced composite materials is given and 

pointed out as an alternative for retrofitting masonry infill walls. 
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