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Abstract
Purpose – The purpose of this paper is to propose a set of techniques, in the domain of texture analysis, dedicated to the classification of industrial
textures. One of the main purposes was to deal with a high diversity of textures, including structural and highly random patterns.
Design/methodology/approach – The global system includes a texture segmentation phase and a classification phase. The approach for image
texture segmentation is based on features extracted from wavelets transform, fuzzy spectrum and interaction maps. The classification architecture uses
a fuzzy grammar inference system.
Findings – The classifier uses the aggregation of features from the several segmentation techniques, resulting in high flexibility concerning the
diversity of industrial textures. The resulted system allows on-line learning of new textures. This approach avoids the need for a global re-learning of the
all textures each time a new texture is presented to the system.
Practical implications – These achievements demonstrate the practical value of the system, as it can be applied to different industrial sectors for
quality control operations.
Originality/value – The global approach was integrated in a cork vision system, leading to an industrial prototype that has already been tested.
Similarly, it was tested in a textile machine, for a specific fabric inspection, and gave results that corroborate the diversity of possible applications. The
segmentation procedure reveals good performance that is indicated by high classification rates, revealing good perspectives for full industrialization.
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1. Introduction

In several industrial sectors, like fabric, wood planks, and cork
parquet production, one of the most important visual
properties that must be subject to quality control is the
texture of raw materials and products. However, for industrial
inspection applications with highly texture environments or
objects, and where the light conditions are not stable or its
interaction with the objects produces shadows, texture
becomes somehow a difficult cue to analyze.
The most common texture segmentation techniques tend to

be computationally intensive. Additionally, they use
classification methods that require a time expensive off-line
learning phase and that demand a great amount of samples to
perform learning. For these reasons, such approaches are not
consistently used in industrial inspection applications.
There is only a few number of available commercial
solutions and all present several limitations concerning the

flexibility to learn new textures and the number of texture to

be learned.
The major motivation for this work was the development of

a generic laboratory prototype with the ability to:
. Integrate information of several texture techniques.
. To be flexible concerning the type and the number of

textures.

This paper describes the approach developed for texture

segmentation based on gray level images. This approach reflect

on two major constraints: the processing time and the concern

about the multiplicity of texture patterns. Figure 1 presents

examples of the diversity of textures that must be analyzed.
The major problem in texture segmentation is the extraction

of texture features for the classificationprocedure.The classifier

must deal with the following constraints:
. High diversity of texture objects.
. The learning phase must run with a unique sample of each

type of texture.

There is no formal or complete definition of texture, as it still

depends on the technological and scientific area. Even in the

same area, depending on the application and on the researcher, it
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may has different meanings (Haralick and Shapiro, 1992; Russ,
1995; Williams, 1999; Pratt, 2001; Bharati et al., 2004). In the
context of image analysis, for instance accordingly with

(Gonzalez and Woods, 1992; Haralick and Shapiro, 1992),
texture is a descriptor fromwhich it is possible to infer properties,
like smoothness, coarseness, depth and regularity. (Ballard and
Brown, 1982) presents texture as a structure composed of a large
number of similar elements – texel – disposed with a specific
arrangement. Nevertheless, texture is a concept that depends on

the observation scale (Haralick and Shapiro, 1992; Heeger and
Bergen, 1995; Russ, 1995; Randen, 1997; Livens, 1998;
Wouwer, 1998; Pratt, 2001). Considering only monochromatic
images, texture can be viewed as an image attribute representing
the spatial distribution of the gray levels of the pixels.
The classical techniques for analyzing texture can be classified

as statistical, structural, and spectral (Ballard and Brown, 1982;
Haralick and Shapiro, 1992; Pratt, 2001). New ones have been
more recently under research, such as features extracted from the
wavelets transform (Laine and Fan, 1993; Unser, 1995; Livens,
1998; Wouwer, 1998; Wouwer et al., 1998; Latif-Amet et al.,
2000; Tay and DeBrunner, 2002; Liapis et al., 2004; Jafari-
Khouzani andSoltanian-Zadeh,2005),Gaborfilters (Bovik etal.,
1990; Teuner et al., 1995; Williams, 1999; Pratt, 2001; Paragios
and Deriche, 2002; Ma et al., 2003), fractals (Chaudhuri and
Sarkar, 1995; Russ, 1995; Zhang et al., 1995; Neary, 2000;
Ducher et al., 2004; Huang et al., 2006), mathematical
morphology (Gonzalez and Woods, 1992; Haralick and

Shapiro, 1992; Mirmehdi et al., 1996; Moraes, 1996), Markov
random fields (Cross and Jain, 1983;Williams, 1999; Tseng and
Lai, 1999; Fan and Xia, 2003; Clausi and Yue, 2004), feature
based interaction maps (FBIM) of pixels (Chetverikov, 1995,
1999) and fuzzy logic techniques (Lee et al., 1998).
The segmentation techniques based on the wavelet

transform, Gabor filters, fractals, and FBIM, deserve special
attention, specifically because of their similarity with the
human vision system, which processes visual information in a
multiscale manner. In this way, they incorporate the notion of

scale, allowing the identification of micro and macro textures.
Regarding the classifiers and recognizers, there are also

different types of approach. The most common solutions use
recognizers based on the calculus of metrics like Euclidean,

Minkowsky and Mahalanobis distance measures. Others use
multivariate statistical approaches (based on PCA and PLS),
Hidden Markov Models, and soft-computing techniques

(neural, fuzzy logic, and neurofuzzy networks) (Duda and

Hart, 1973; Carpenter and Grossberg, 1992; Tzanakou,
2000; Costa and Cesar, 2001; Bennamoun and Mamic, 2002;

Looney, 2002; Perry et al., 2002; Bharati et al., 2004; Chen
and Chu, 2005). However, these recognizers, even the

unsupervised, demand a great amount of samples from the
population to perform the learning procedure.
The validation of the results of texture segmentation is

normally accomplished using the Brodatz (1966) and VisTEX

(1997) databases. An important observation regarding the
works mentioned above is the fact that the validation is made

using a restrict number of textures (typically 5-40 images).
Other conclusion is that different authors use different texture

images, which increase the difficulty to compare the
performance of the segmentation techniques.
Texture analysis continues to play an important role in

many application areas, with its use increasing with the

availability of faster processors, such as medical imaging,
biometrics, remote sensing, tracking objects in robotics,

image retrieval, and industrial inspection; its tasks are mainly
classification and segmentation (Zhang and Tan, 2002;

Karkanis et al., 2003; Tsai and Huang, 2003; Clausi and
Yue, 2004; Cui et al., 2004; Ducher et al., 2004; Liu et al.,
2004; Munzenmayer et al., 2005; Huang et al., 2006; Prats-
Montalban and Ferrer, 2007). The majority of the authors

use only one technique to describe the texture. However, due
to the diversity of textures present in industrial sectors, this

seems to be inadequate for applications that must have high
level of flexibility in order to be generically applied.
The present work combine techniques in such a way that

texture segmentation is based on features extracted from the

wavelet transform, fuzzy spectrum and FBIM, using a fuzzy
grammar as classifier.

2. System architecture

The texture segmentation procedure is divided in two phases

(Figure 2): the learning and the execution phases. In the
learning phase, a texture is manually selected and a fuzzy rule is

generated and stored in the database. In the execution phase,
the texture under analysis is submitted to each fuzzy rule stored

in the database and a texture identification is performed. The
system is capable of automatically starting a learning phase in

case an unknown texture is shown to the system.

Figure 1 Illustration of the diversity of texture to be analyzed
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The feature extraction module (Figure 2) extracts the feature

vector that best describes each texture – features from the

wavelet transform, fuzzy spectrum and from FBIM.
The fuzzy grammar module uses the extracted feature

vector to generate the fuzzy rule that describes the texture.
In the execution phase, the extracted feature vector is

submitted to a parsing procedure module. The vector is

submitted to each fuzzy rule stored on the database, and a

response value in the interval [0, 1], reflecting the grade of

membership of the texture, is obtained. A DLL was created to

encapsulate the parsing procedure, which was developed with

the compilers yacc and lex (Bumble-Bee, 2008).
Finally, the Classification module uses the output of the

parsing and verifies which rule produces a value higher than a

pre-defined threshold. If a new texture is presented to the

system during the execution phase, the response value is low,

and, consequently, a learning phase is automatically initiated

to generate an appropriate fuzzy rule for that texture.

3. Feature extraction module

Tests performed with different types of materials had

indicated that the best compromise between high texture

diversity and classification rate is achieved with the wavelet

transform, fuzzy spectrum and FBIM techniques. Thus, these

techniques were chosen to integrate the generic prototype.

The fuzzy spectrum is used by its capability to describe the

uniformity of the surfaces. FBIM is a multiscale approach and

is used due to its ability to infer the orientation and symmetry

of the patterns. The wavelets transform is a multiscale analysis

and it allows obtaining directional properties of the texture.

3.1 Wavelets transform

Theoretical fundamentals of the wavelet transform applied to

signal analysis are discussed in (Benedetto and Frazier, 1994).

The wavelet transform in this domain introduces the concept

of a time window variable with frequency. Signal events with

high frequency are analyzed with a timing resolution higher

than the ones with lower frequency. Figure 3 summarizes the

decomposition of a generic signal using the discrete wavelet

transform (DWT). It can be viewed as the application of low-

pass filters (h0[n ]) and high-pass filters (h1[n ]), followed by a

sub-sampling.
To perform the wavelet transform, in the context of image

processing, it is necessary to employ a two-dimensional DWT.

As illustrated in Figure 4(a), an approximation coefficient, at

level m þ 1 (Vmþ 1 £ Vmþ 1), is decomposed in four

components: the approximation coefficient at level m

(Vm £ Vm) and the details at level m in three orientation

coefficients: horizontal (Vm £ Wm), vertical (Wm £ Vm) and

diagonal (Wm £ Wm). These last three components are the

detail images used to construct the feature vectors. Figure 4(b)

shows a cork textured image and the correspondent wavelet

transforms. There are several types of wavelets functions that

can be used in texture analysis. However, the type of wavelet

function does not produce relevant changes in the analysis.
This application uses three levels for the wavelet transform,

which results in a total of nine detail images. The feature

vector consists of features extracted from the detail images at

each decomposition level. The extracted features are the

following parameters: mean (M), standard deviation (SD),

contrast between adjacent – next neighbour – pixels in vertical

Figure 2 Architecture of the processing system

Learning Phase

Input Data Input Data

Feature
Extraction

Feature
Extraction

Parsing
Procedure

Classification
(>Tr)

Identified
Object

Fuzzy
Grammar Database

Execution Phase
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(CBNNV) and horizontal (CBNNH) directions and contrast

between alternated – alternated neighbour – pixels in vertical

(CBANV) and horizontal (CBANH) directions ((1)-(6)).
Since the classifier is based on a fuzzy inference system, it

implies that the magnitude of each element of the feature

vector must be in the interval [0, 1] and, thus, a normalization

of each feature element is required (7). The feature vector,

FVW, consists of six features for each detail image

(6 £ 9 ¼ 54 features): FV ¼ [mMij, mSDij, mCBNNVij,

mCBNNHij, mCBANVij, mCBANHij], with i ¼ 0, 1, 2; j ¼ 0, 1, 2.

M ¼ 1

N

XN21

i¼0

IðiÞ ð1Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN21

i¼0

ðIðiÞ2 MÞ2
vuut ð2Þ

CBNNH¼ 1

N21

XNl21

l¼0

XNc21

c¼0

Iðl£Ncþcþ1Þ2Iðl£NcþcÞj j ð3Þ

CBNNV¼ 1

N21

XNl21

l¼0

XNc21

c¼0

Iððlþ1Þ£NcþcÞ2Iðl£NcþcÞj j ð4Þ

CBANH¼ 1

N21

XNl21

l¼0

XNc21

c¼0

Iðl£Ncþcþ2Þ2Iðl£NcþcÞj j ð5Þ

CBANV¼ 1

N21

XNl21

l¼0

XNc21

c¼0

Iððlþ2Þ£NcþcÞ2Iðl£NcþcÞj j ð6Þ

mF ¼ F=255

F [ {M;SD;CBNNV;CBNNH;CBANV;CBANH};
ð7Þ

where I is the image, N is the number of pixels in the image

and Nc and Nl are the number of columns and lines in the

image, respectively.

3.2 FBIM – feature base interaction maps

This technique, proposed by Chetverikov (1995), has higher

efficiency for anisotropic textures and is based on the

extraction of the texture primitive dimension: orientation

and symmetry. The interaction between pairs of pixels leads

to the definition of two interaction maps:
1 MPL (polar interaction map).
2 SPL (symmetry interaction map).

In Chetverikov (1995), the author considers the following:
. The interaction between pairs of pixels gives important

structural information.
. The interaction between pairs of pixels at short range and

long range is relevant.
. Higher angular resolution is possible and relevant.
. Structural information can be obtained by the MPL map.
. Texture orientation can be obtained by the SPL map.

The MPL consists on a polar representation of the feature

extracted from extended gray-level difference histogram

(EGLDH), which is obtained by the difference of the gray

levels of a pair of pixels (Figure 5). The procedure to obtain

the structural information and the texture orientation includes

the following:
. For a set of angles (Na) and a set of distances between

pixels (Nd) the value of M(ai,dj) (Figure 5) is obtained,

considering ai [ [0,2p ]; i ¼ 0,1,. . .Na21; dj [ [1,dmax]
where dmax is the maximum interaction distance and
j ¼ 0,1, . . .Nd21.

. The polar interaction map is defined has:
Mpl(i,j) ¼ M(ai, dj).

. The symmetry indicatives, Sj(i), are defined accordingly
with (8). Where A j(i ) is the circular vector given by
A j(i) ¼ Mpl(i, j ), for j ¼ 0,1, . . . , Nd2 1 and
i ¼ 0,1, . . . ,imax, with imax ¼ Na21. The g factor controls
the sensibility of the symmetry and (Chetverikov, 1995)
defines the typical value as g ¼ 5.

. The symmetry map is defined has: Spl(i, j) ¼ Sj(i).

. TheSPLmap isdivided in twodistinct zones: short range and
long range; for each zone a symmetry vector is defined
accordingly (9) and (10); and jtr is specified by (11) and (12).

SjðiÞ ¼ 2

imax

Ximax =2

k¼0

12
A jði þ kÞ2A jði 2 kÞ
A jði þ kÞ þA jði 2 kÞ

����
����

� � !g

ð8Þ

ZsrðiÞ ¼ S0; jtrðiÞ ð9Þ

ZlrðiÞ ¼ Sjtr þ 1;Nd21 ð10Þ

Dð jtrÞ ¼
j

max {Dð jÞ} ð11Þ

Dð jÞ ¼
XNa21

i¼0

Splði; j 2 dÞ2 Splði; j þ dÞ
�� �� ð12Þ

3.3 Fuzzy spectrum

This technique, presented by Lee et al. (1998), consists on the
application of a fuzzification function to the image pixels,
creating a fuzzy image. This function (13) measures the
uncertainty of a pixel p, with coordinates (i, j) and gray level
I(i, j), belonging to a uniform surface R of dimensions W £ W.

mij ¼ 12
Iði; jÞ2 �Iði; jÞj j
maxRIði; jÞ

� �
; ð13Þ

�Iði; j Þ is the defined by (14), maxRI(i, j ) is the maximum
intensity in R.

Figure 5 Extended gray-level difference histogram

(m,n) - pixel under analisys;
I(m,n) – pixel gray level
(x,y) – image point specified by vector v = (α,d);
I(x,y) –pixel gray level obtained by neighbourhood interpolation

(x,y)

{(m,n),(x,y) : m∈I1,n∈I2}

{(m,n), (x,y) :m ∈I1, n ∈I2,

(m,n)

= k}I (m,n) –I (x,y)
H (k;αi,dj)=

k∈ [0,kmax],
kmax = Ng-1,
Ng number of gray levels,
x = d cos α  and  x = d sin α
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�Iði; jÞ ¼ 1

W £ W 2 1

XR

m;n–i; j

Iðm; nÞ ð14Þ

If a pixel p belongs to a uniform surface, the fuzzification

function gives values near 1, and, on the opposite situation the

function gives values extended through the interval between 0

and 1. Figure 6 shows feature vectors Zlr and Zsr.
The fuzzy spectrum can be seeing as the occurrence values

of the fuzzy image. Figure 7 shows the fuzzy spectrum for two

cork images. The feature vector, FVFS, consists on a

cumulative version of the fuzzy spectrum with 16 values,

mFS(n), with n ¼ 16.

3.4 Feature selection

During the learning phase it is necessary to consider the type

of texture, specifically their periodical or random aspects.

Therefore, the following was settled for the learning phase:
. Initially the user chooses a window that possesses the

texture to be analyzed, specifying a region of interest

(ROI).

. This ROI is divided in non-overlapping windows (NOW),

whose size is set by the operator (Figure 8(a)).
. For each NOW, the features FVW, FVFS, and FVFBIM

are extracted. Each element of the final feature vector is

the result of a feature selection procedure for each NOW.
. A fuzzy rule is created with this feature vector.

In the execution phase, the image is also divided in windows

with the same size as the ones of the learning phase (NOW),

but now the windows position is overlapped (Figure 8(b)) by

(dx, dy), where dx, dy are the displacements relatively to the

previous one. Such procedure ensures different grades of

performance.
For all the extracted features, it is fundamental to select n

representative features from N initials, where n is much

smaller than N. This procedure, depicted in Figure 9, enables

to eliminate both the non-representative features of a

particular texture and the redundant ones. Zero value and

high correlation were the criteria used to eliminate features.

Figure 6 Feature vectors Zlr and Zsr
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The correlation of the feature set is evaluated through fuzzy
correlation (Malaviya, 1996) (15):

cjk ¼ 12
4 £

PN21
i¼0 ðmij 2 mikÞ2PN21

i¼0 ðð2 £ mij 2 1Þ2 þ ð2 £ mik 2 1Þ2Þ
ð15Þ

where N is the universe dimension, mj is the set of values of
feature j and mk is the set of values of feature k.
Equation (15) estimates the correlation coefficient between

the values of a feature j(mj) and the set of values of the feature
k(mk). If they are strongly correlated, only one is selected to be
part of the final feature vector. In this work, the threshold
used for the correlation coefficient was 0.9, value that was
obtained by testing the feature vectors for several textures.
A lower value will increase the number of redundant features
that are present on the final feature vector.
For a particular texture, in the cases where more than one

value for each feature occur (most of the cases), it is necessary
to select the value or the values that best describe it. This was
done applying a fuzzy c-means algorithm (Bezdek and Pal,
1992; Jang et al., 1997). Several attempts, concerning the
number of centres, were evaluated, resulting a good
description with five centres.
Figure 10 illustrates the application of the fuzzy-c-means

algorithm to the features mean and SD of the detail image
D22, for the three layers of cork parquet.

4. Fuzzy grammar module

After the extraction of the feature vector that characterizes a
texture, it is necessary to classify it according to its attributes.
Specifically, the application has to deal with a high diversity of
texture objects. To fulfil this constraint, the learning phase
must be done with a unique sample of each type of texture.
In this work, a fuzzy system modelling approach was

developed, in which a fuzzy inference system identifies the
fuzzy rules representing relationships among the features
extracted from the wavelet detail images. There are several
approaches that generate these fuzzy rules. The most
often applied are based on statistics, neural networks and
genetic algorithms (Bezdek and Pal, 1992; Ivancic and
Malaviya, 1998; Tzanakou, 2000). However, these methods
poorly satisfy the needs of this application, specifically the
possibility to learn using only a characteristic vector.
Therefore, a fuzzy grammar approach was applied.

Fuzzy grammar is a pattern classification syntactic model

used to represent the structural relations of patterns and that

describes the syntax of the fuzzy languages, which generate

the fuzzy rules. This inference system is capable of generating

a fuzzy rule using only one sample of a pattern.
Herein, a brief review of some basic concepts of fuzzy

grammar is presented (Bezdek and Pal, 1992; Yager and

Zadeh, 1992; Malaviya, 1996). Fuzzy grammar GF is a

quintuple GF ¼ (VN,VT,P,S0,m), in which VN and VT are

finite disjoint sets of non-terminal and terminal vocabulary,

respectively, such that V ¼ VN < VT is the total vocabulary

of the grammar. P is a finite set of production rules of the type

a ! b, with a [ VN and b is a member of the set V * of

all strings (including the null string 1). S0 [ VN is the

starting symbol. m is the mapping of P ! [0, 1], such that

m( p) denotes the possibility of the current language sentence

p [ P.
The syntax of the developed language L(GF) includes four

different steps (Malaviya, 1996):
1 The codification of the features to primitives (Table I).
2 The definition of linguistic terms – HistVar:c.

HistVar : c ¼
Y

ðx; 0:2; c £ 0:1Þ c ¼ 0. . .10: ð16Þ

Figure 10 Fuzzy-c-means application to the features Ī and DP for detail
image D22, for three types of cork texture
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In the membership function
Q

the parameter c is chosen

such that the eleven membership functions cover the all

universe of discourse, X, and have disjointed maximums

(Bezdek and Pal, 1992; Malaviya, 1996).
3 The definition of fuzzy modifiers (FM): “More than”,

“Less than” and “Between”. The FM “More than” LT is

defined by:

mMTkLTl ¼
1 x $ L

Sðx;L 2 lb;L 2 lb=2;L x , L

(
ð17Þ

where L is a threshold value and lb is the bandwidth value

of the S membership function (Bezdek and Pal, 1992;

Malaviya, 1996). The FM “Less than” LT is given by:

mLTkLTl ¼
1 x # L

12 Sðx;L;L þ lb=2;L þ lb x . L

(
ð18Þ

The FM “Between” LT1 e LT2, is given by:

mBkTL1lkTL2l¼

12Sðx;w1;w1þ lb=2;w1þ lbÞ x.w1

1 w2#x#w1

Sðx;w22 lb;w22 lb=2;w2Þ x,w2

8>><
>>: ;

ð19Þ

where w1 and w2 are threshold values (Bezdek and Pal,

1992; Malaviya, 1996).
4 The definition of fuzzy operators (FO) which establish the

relations between the linguistic terms and primitives. The

following FO were defined:
. &, representing the AND of two primitives. It is given

by the Yager intersection.
. . , representing “More than” LT and is given by

mMT , LT . .
. , , means “Less than” LT and is given by the

function mLT , LT . .
. j j, describes “Between two” LT and is given by

mB , LT1 . , LT2 . .
. #, means a “Separator between a” primitive and a LT.
. ( ), imposes a hierarchy in the rule.

For each texture technique a partial fuzzy rule is created

(Figure 11). The texture is completed defined by the final rule

resulting from the aggregation of the three partial rules, using

Yager intersection.
Consider the texture depicted in Figure 4(b). Figure 12

illustrates the values of the elevenmembership function
R
for the

primitive FWD00M (Figure 12(a)), primitive FWD21CBNNV

(Figure 12(b)), primitive FWD22CBNNV (Figure 12(c)) and

primitive FWD22CBANV (Figure 12(d)). Primitive FWD00M

has non-zero degrees of membership for LT HistVar:0, LT

HistVar:1 and LTHistVar:2. The highest fuzzy value is obtained

using LT HistVar:0. Thus, HistVar:0# FWD00M is part of the

fuzzy rule which characterizes this texture.
If more than one linguistic term gives fuzzy values superior

to 0.75, fuzzy modifiers like “More than”, “Less than” and

“Between”, is applied to combine the obtained results.

Accordingly, . HistVar:9# FWD22CBNNV is part of the

fuzzy rule which characterizes this texture for primitive

FWD21CBNNV. For primitive FWD22CBNNV, the result

will be , HistVar:1# FWD22CBNNV and for the primitive

FWD22CBANV the result will be HistVar:6k HistVar:7#

FWD22CBANV.

5. System evaluation

The system was evaluated and tested using a universe of 727

images (128 £ 128 pixels) of 30 texture samples, from fabric,

cork, and wood Portuguese industrial sectors and also from

Brodatz database.
Figures 13-15 present some results of the system

application in order to demonstrate its performance.

Figures 13 and 14 show graphically the magnitude of the

fuzzy rule response for each window under analysis. These

graphics exemplify how the rule with the higher value defines

the class of the texture that the window belongs. In both

cases, the classes are clearly discriminated as response values

are well apart.
Figure 15 shows the performance of the prototype for a

subset of textures from the database (Figure 15(a)).

Figure 15(b)-(e) show the response of each texture rule

(gray bars) as well as the overall response of the rule that

characterize the other textures (red bars), for the partial

FBIM fuzzy rule, partial wavelet fuzzy rule, partial fuzzy

spectrum fuzzy rule and global fuzzy rule, respectively. Higher

mean response values are obtained in aggregation conditions.

Concerning the partial rules, the wavelets present higher

mean response values and lower difference, whereas FBIM

allows a better discrimination between rules.
A specific advantage of the developed approach is that when

a texture is presented to the inference system it gives a

response with high value (normally higher than 0.85) for

the rule that describes this texture. In contrast, the rules

corresponding to the other textures give low response values.

Figure 11 Procedure to create the final fuzzy rule
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This means that the system creates disjoints rules and assures

a good classification.
Considering the universe of samples under test, high

classification rates were achieved. Specifically, 94 percent for

wavelet partial fuzzy rule, 91 percent for FBIM partial fuzzy

rule, 90 percent for fuzzy spectrum partial fuzzy rule, and 98

percent for the aggregated fuzzy rule.

Figure 16 shows the application to a fabric image with a

texture defect. For this sector, a 92 percent rate were achieved

during fabric inspection procedures. The system was also

applied to a cork inspection machine in an industrial

environment, using only the FVW. It was used an image

size of 1,024 £ 1,024 pixels – pulnix camera, a matrox

acquisition board, and it was developed in Cþþ . Good

classification rates, higher than 90 percent, were achieved

suggesting the efficiency of the inference system when applied

to this Portuguese industrial sector.

6. Conclusion

In this paper, a generic prototype for texture segmentation

was presented. In order to achieve higher flexibility,

concerning the diversity of textures and its number, a fuzzy

grammar inference system was used and several features from

different techniques were aggregated to obtain the texture

characterization.
The texture segmentation was based on six features extracted

for each detail image of the wavelet transform of a gray scale

image; and on two vectors, Zlr and Zsr extracted from the

FBIM technique; and on 16 elements of the fuzzy spectrum.
Another advantage of the proposed solution is that the

learning phase can be done with a unique sample of each type

of texture.
High classification rates were achieved for inspection

applications independently of the texture nature, suggesting

the efficiency of the prototype when applied to different

industrial sectors. The cork inspection as well as the fabric are

important demanding sectors concerning the need of

technologies for quality control, in the Portuguese industrial

scenario. The prototype was tested in both sectors revealing

good performance results, with classification rates higher than

90 percent.

Figure 12 Membership degree of linguistic terms: (a) primitive FWD00M; (b) primitive FWD21CBNNV; (c) primitive FWD22CBNNV; (d) primitive
FWD22CBANV
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Figure 13 Response values of the rules, generated for BASE and UPPER
texture, for each window under analysis
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Figure 15 (a) Some examples of the textures used to texture segmentation procedure evaluation. Rule response for the images of (a); (b) partial FBIM;
(c) partial wavelet; (d) partial fuzzy spectrum; (e) global

(b)
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The flexibility of the solution was reinforced through its

application in the development of a robot tracking system

with a wavelet decomposition of three levels and window size

of 45 £ 34 pixels. In this case, results were also prominent

allowing the achievement of a good tracking performance and

a processing time of 40ms.

References

Ballard, D.H. and Brown, C.M. (1982), Computer Vision,

Prentice-Hall, Englewood Cliffs, NJ.
Benedetto, J.J. and Frazier, M.W. (1994), Wavelets

Mathematics and Applications, CRC Press, Boca Raton, FL.
Bennamoun, M. and Mamic, G.J. (2002), “Object

recognition – fundamentals and case studies”, in Singh, S.

(Ed.), Advances in Pattern Recognition Series, Springer-

Verlag, New York, NY.
Bezdek, J.C. and Pal, S.K. (1992), Fuzzy Models for Pattern

Recognition, IEEE Press, New York, NY.
Bharati, H.M., Liu, J.J. and MacGregor, J.F. (2004), “Image

texture analysis: methods and comparisons”, Chemometrics

and Intelligent Laboratory Systems, Vol. 72, pp. 57-71.
Bovik, A.C., Clark, M. and Geisler, W.S. (1990),

“Multichannel texture analysis using localized spatial

filters”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 12 No. 1, pp. 55-73.
Brodatz, P. (1966), “A Photographic album for artists and

designers”, Dover, New York, NY, available at: www.ux.his.

no/ , tranden/brodatz.html (accessed February 3, 2004).
Bumble-Bee (2008), “Parser generator manual [online]”,

Bumble-Bee Software, available at: www.

bumblebeesoftware.com (accessed August 30, 2008).
Carpenter, G.A. and Grossberg, S. (1992), Neural Networks for

Vision and Image Processing, MIT Press, Cambridge, MA.
Chaudhuri, B.B. andSarkar,N. (1995), “Texture segmentation

using fractal dimension”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 17 No. 1, pp. 72-6.
Chen, C. and Chu, H. (2005), “Similarity measurement

between images”, Proceedings of the 29th Annual

International Computer Software and Applications Conference,

Edinburgh, Scotland, July 26-28, Vol. 2, pp. 41-2.

Chetverikov, D. (1995), “Texture anisotropy, symmetry,

regularity: recovering structure and orientation from

interaction maps”, Proceedings 6th British Machine Vision
Conference, Birmingham, UK, pp. 57-66.

Chetverikov, D. (1999), “Texture analysis using feature based

pairwise interaction maps”, Pattern Recognition, Vol. 32,

pp. 487-502 (special issue on color and texture).
Clausi, D.A. and Yue, B. (2004), “Comparing coocurrence

probabilities and Markov random fields for texture analysis

of SAR sea ice imagery”, IEEE Transactions on Geoscience
and Remote Sensing, Vol. 42 No. 1, pp. 215-28.

Costa, L.F. and Cesar, R.M. Jr (2001), “Shape analysis and
classification”, in Laplante, P.A. (Ed.), Image Processing
Series, CRC Press, Boca Raton, FL.

Cross, G.R. and Jain, A.K. (1983), “Markov random field
texture models”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-5 No. 1, pp. 25-39.

Cui, J.,Wang, Y., Tan,T.,Ma, L. andSun,Z. (2004), “A fast and
robust iris localizationmethodbasedon texturesegmentation”,

in Jain, A.K. and Ratha, N.K. (Eds), Proceedings of SPIE –
Biometric Technology for Human Identification, Orlando, USA,
April 12, Vol. 5404, pp. 401-8.

Ducher, S.P., Nanyan, P., Lemineur, G., Benhamou, L. and

Courteix, D. (2004), “Fractal analysis of bone texture: a

screening tool for stress fracture risk”, European Journal of
Clinical Investigation, Vol. 34, pp. 137-42.

Duda, R.O. and Hart, P.E. (1973), Pattern Classification and
Scene Analysis, Wiley, New York, NY.

Fan, G. and Xia, X. (2003), “Wavelet-based texture analysis

and synthesis using hidden Markov models”, IEEE
Transactions on Circuits and Systems, Vol. 50No. 1, pp. 106-20.

Gonzalez, R.C. and Woods, R.E. (1992), Digital Image
Processing, Prentice-Hall, Englewood Cliffs, NJ.

Haralick, R.M. and Shapiro, L.G. (1992), Computer and Robot
Vision, Vol. 1, Addison-Wesley, Reading, MA.

Heeger, D.J. and Bergen, J.R. (1995), “Pyramid-based texture

analysis/synthesis”, Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, Los Angeles,
CA, USA, August 6-11, pp. 229-38.

Huang, Z., Zheng, C., Du, J. and Wan, Y. (2006), “Bark

classification based on textural features using artificial

neural networks”, Advances in Neural Networks, Vol. 3972,
pp. 355-60 (Lecture Notes in Computer Science).

Ivancic, F. and Malaviya, A. (1998), “An automatic rule base

generation method for fuzzy pattern recognition with multi-
phased clustering”,Proceedings of IEEE Conference of Knowledge
Engineering System, Adelaide, Australia, April 21-23, Vol. 3,
pp. 66-75.

Jafari-Khouzani, K. and Soltanian-Zadeh, H. (2005), “Radon

transform orientation estimation for rotation invariant

texture analysis”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 27 No. 6, pp. 1004-8.

Jang, J.R., Sun, C.T. andMizutani, E. (1997), Neuro-fuzzy and
Soft Computing, a Computational Approach to Learning and
Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ.

Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Karras, D.A.

and Tzivras, M. (2003), “Computer-aided tumor detection
in endoscopic video using color wavelet features”, IEEE
Transactions on Information Technology in Biomedicine, Vol. 7
No. 3, pp. 141-52.

Laine, A. and Fan, J. (1993), “Texture classification by wavelet

packet signatures”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 15 No. 11, pp. 1186-90.

Figure 16 Application to fabric inspection: (a) original image;
(b) segmentation result. dx ¼ D and dy ¼ D

(a) (b)

A texture segmentation prototype

Manuel Ferreira, Cristina Santos and Joao Monteiro

Sensor Review

Volume 29 · Number 2 · 2009 · 163–173

172



Latif-Amet, A., Ertuzun, A. and Erçm, A. (2000),
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