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a b s t r a c t

It is well known that two main flow regimes are present in bubble columns, being the evaluation of

transition between homogeneous and heterogeneous regimes of crucial importance for reactor design.

For air–water systems, several models have been satisfactorily proposed to explain this phenomenon.

However when gas–liquid–solids systems are considered, solid particles influence on regime transition

is not yet clear, in spite of the amount of research developed over the past years.

The objective of this work is to evaluate the effect of a specific solid phase – spent grains – on

homogeneous regime stability and regime transition. Spent grains are cellulose-based particles that

have been used to immobilize cells on biotechnology process. These particles are wettable and have a

density close to water and its influence on bubble column reactors is particularly important in order to

establish the limits were both regimes prevail.

A cylindrical Plexiglax BC of 18 L volume was used with air, water and spent grains at different

concentrations (0–20% (wt.WET BASIS/vol.)) as gas, liquid and solid phases. Regime transition was

determined according to the drift-flux and slip speed concept.

It was found that at studied concentrations of spent grains, critical gas hold-up decreases as solids

concentration increases. At the highest solids concentration and lowest gas flow rates no fluidization of

the solid phase was observed. It is believed that the critical hold-up decrease was mainly due to bubble

coalescence, as larger bubbles were observed when heterogeneous regime was present. This coales-

cence may be caused by the non-uniform distribution of solid phase on the column and the interaction

of spent grains with bubbles in the liquid–gas interface

& 2011 Published by Elsevier Ltd.
1. Introduction

Over the last decades hydrodynamics of gas–liquid–solid
systems has been intensively study due to their applications in
several industrial fields such as petrochemical, chemical, bio-
chemical and biotechnology processes. The study of the hydro-
dynamics on three-phase systems presents a challenge to several
research communities, which are dealing with bubble columns,
airlift reactors, flotation columns, bubbly flow and fluidized beds.
Most of the recent work dealing with bubble columns (BC) is
focused on the stability of its flow regime (Zahradnik et al., 1997;
Ruzicka et al., 2001a, 2003; Mena et al., 2005a)

In BC two main flow regimes occur: the homogeneous regime
and the heterogeneous regime, that may be identified by varying gas
input (Zahradnik et al., 1997; Ruzicka et al., 2001a). The homo-
geneous regime (HoR) is characterized by a uniform bubble rise
through the column. Bubbles usually have similar size, are spherical,
small and rise almost vertical. There is any large-scale liquid
circulation and other phenomena as coalescence and break-up are
Elsevier Ltd.
negligible (Ruzicka et al., 2001a). In contrast, the heterogeneous
regime (HeR) is characterized by a large bubble size distribution.
Macro-scale liquid circulation, coalescence and a parabolic/non-
uniform radial profile of hold-up with a maximum at center are
typical on this regime (Mena et al., 2005a). The transition starts
when the HoR loses its stability and gradual process occurs, where
there are an increasing number of coherent structures (circulations)
with increasing size and intensity (Zahradnik et al., 1997; Ruzicka
et al., 2001a; Mena et al., 2005a).

Due to their characteristics, HoR and HeR have a different
hydrodynamic behavior. This results in different mass, heat and
momentum transfer properties. Consequently, it is important to
clarify how operating parameters (reactor geometry, gas and
liquid flow rates, and properties of the contacting phases) act on
flow regime properties and transition (Zahradnik et al., 1997).

Parameters such as superficial gas velocity, column diameter,
liquid and gas phase properties and distributor geometry acts
simultaneously on regime transition(Shaikh and Al-Dahhan,
2007). The selection of the correct distributor is required to study
regime transition, being perforated or porous plates the most
commonly applied at laboratory and industrial scale.(Zahradnik
et al., 1997). Zahradnik et al. (1997) demonstrated that perforated
plates with holes inferior to 1 mm and porous plates are adequate
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to characterize regime transition. Vijayan et al. (2007) studied the
influence of sparger geometry in the regime transition, evaluating
the influence of the ratio between area of sparger and area of
column cross section. They found that if this ratio is increased the
critical and global values of gas hold-up also increases (Vijayan
et al., 2007).

Generally, regime evolution is observed by increasing gas flow
rate input and determining the correspondent gas hold-up. There
are several techniques to determine local or global gas hold-up
such as: bed expansion (Zahradnik et al., 1997; Ruzicka et al.,
2001a,b, 2003; Mena et al., 2005a), pressure drop, dynamic gas
disengagement (Schumpe and Grund, 1986; Yang et al., 2010),
conductivity (Ohkawa et al., 1997) and optical fibers (Cartellier,
1990). A complete review of the techniques used for hold-up
measurement in two and three phase systems has been published
by Boyer et al. (2002).

The analysis of the gas hold-up vs superficial gas velocity
graph shows that HoR appears as a convex line while HeR follows
a rational function (concave line). These lines are connected by a
transition zone for intermediate gas velocity values (Ruzicka
et al., 2001a). Regime transition identification is possible by
applying the drift-flux concept initially proposed by Wallis
(1969). In this method, the drift flux, jgl (the volumetric flux of
either phase relative to a surface moving at the volumetric
average velocity) is plotted against the gas hold-up. The change
in the slope of the curve represents the transition from homo-
geneous to heterogeneous flow. This concept has been used and
modified by several authors for determining regime transition
(Vial et al., 2000; Ruzicka et al., 2001a,b ; Mena et al., 2005a;
Krishna et al., 1999).

Several models for regime transition have been proposed
based on: (1) bubble drag force (Riquarts, 1979), (2) gas phase
slip velocity ( Joshi and Lali, 1984), (3) energy balance of the two
flow mixture (Gharat and Joshi, 1992), (4) bubble size (Krishna,
1991; Hyndman et al., 1997), and (5) coupling between phases
(Ruzicka et al., 2001a). The model proposed by Ruzicka et al.
(2001a) based on the concept of the Darwinian drift of bubbles
was able to describe with good accuracy the transition between
HoR and HeR in a two-phase system. However some factors that
affect regime stability namely, column dimensions, liquid phase
properties and solids presence are not explicitly involved in the
proposed model and experiments have been done over the last
years to validate particular aspects of the stability criteria
(Ruzicka et al., 2001a, 2008; Mena et al., 2005a).

In three-phase bubble column reactor, the effect of solids on
gas hold-up has been the focus of several studies (Banisi et al.,
1995a,b; Gandhi et al., 1999; Mena et al., 2005a,b, 2008). These
systems can be classified as liquid-gas flow with the presence of
solids or as liquid–solid fluidized beds with the presence of gas
bubbles. However comparison between the different studies is
difficult and results are often contradictory, due to differences in
column design, operating parameters (mainly liquid throughput)
and solids properties. Properties of the solid particles can be quite
different depending on the size, shape, density, wettability,
hydrophobic and surface properties. Having this in mind, their
effect in gas hold-up and flow regime transition is far from being
totally explained despite several attempts. Banisi et al. (1995a,b)
reported that the presence of solids decreased gas hold-up while a
dual effect was observed by other authors (Mena et al., 2005a; Xie
et al., 2003). The presence of solids on bubble columns affects the
gas–liquid mixture in several ways: bubble formation (Yoo et al.,
1997), bubble rise, axial and radial (Gandhi et al., 1999; Warsito
et al., 1997) profiles, mixing and dispersion, mass transfer (Mena
et al., 2005b), gas hold-up and flow regimes (Mena et al., 2005a).

Generally gas hold-up decreases with solids concentration.
There are several possible explanations for this kind of effect such
as increased coalescence (Lu et al., 1995; Gandhi et al., 1999) and
reduction of bubble breakup (Gandhi et al., 1999), increased
apparent viscosity, and steric effect.

In what concerns the effect of apparent viscosity, some authors
consider the solid and liquid phases as a ‘‘pseudo-homogeneous’’
phase, this requiring the need to define an apparent viscosity due
to solid presence in liquid (Lu et al., 1995; Freitas et al., 1999). In a
similar way to what has been reported for two-phase flows where
a higher viscosity decreases gas hold-up, while at low viscosities
the opposite occurs (Eissa and Schugerl, 1975; Ruzicka et al.,
2003), a identical behavior might be expected for the effect of
solids concentration on gas-hold-up. Nevertheless, recent studies
in regime transition studying the effect of liquid viscosity
reported that even at low viscosity values the global hold-up
decreases (Yang et al., 2010). In general, an increase of viscosity is
related with a decrease on gas hold-up. When solids are present,
some authors consider the solid and liquid phases as a ‘‘pseudo-
homogeneous’’ phase. This leads to the need of defining an
apparent viscosity due to the solid presence in the liquid that
would affect liquid phase properties as density and viscosity (Lu
et al., 1995; Freitas et al., 1999). As far as we are aware some
relations to determine viscosity are reported in literature being
the most common ones by Oliver et al. (1961) (cited by Lu et al.,
1995); Thomas (1965) (cited by Yoo et al., 1997); Barnea and
Mizrahi (1973) (cited by Gandhi et al., 1999) and Metzner (1985)
(cited by Yoo et al., 1997).

The change in viscosity promoted by solids in the liquid-phase
reveals that possible relations/interactions between solids and
viscosity are likely to occur on their effect on flow regime
destabilization of g–l–s systems. Mena et al. (2005a) noticed that
only for a high solid content the viscosity had an important
contribution for this; however, this cannot be generalized as the
solid effect on the apparent viscosity of the mixture depends on
the properties of the solids applied. It seems that the BC design
and size also play an important role when all these aspects are
considered (Yang et al., 2010; Ruzicka et al., 2001b, 2003).

The dual effect that has been reported in the recent years lead
to a discussion of what is the real effect of solids in BC. It seems
that size, concentration and wettability play an important role on
this effect. Accordingly to Banisi et al. (1995a,b) fine particles in
small amount (suppressing coalescence) and large particles in
high amount (promoting breakup) tend to increase hold-up, while
moderate concentrations and sizes seem to decrease gas hold-up.
Concerning the influence of the wettability, its real effect on gas
hold-up remains unclear. Jamialahmadi and Muller-Steinhagen
(1991) report that wettable particles increased hold-up while
non-wettable particles have the opposite effect. However, Mena
et al. (2005a) worked with alginate beads (low density and
completely wettable soilds) and found that a dual effect is present—
for low solid content (o3.0%) solids enhanced the HoR regime
stabilization and global hold-up increased while for higher solids
content (43.0%) the opposite effect was observed. (Mena et al.,
2005a).

From a critical point of view the actual knowledge of the flow
regime transition in three-phase system remains scarce. The main
reason is related not only with the correct data interpretation in
terms of physical mechanism but also with the difficulty of
relating all results reported in literature.

The aim of this study is to contribute to this subject and
examine the effect of spent grains on the flow regime transition in
a BC. These solids are flat, cellulose-based, completely wettable,
low size and low density particles (Brányik et al., 2001). The
choice of this solid phase corresponds to our interest in three-
phase airlift reactors with immobilized biomass for continuous
production of alcohol-free beer. Moreover, the calibration method
to determine gas hold-up in three-phase airlift was also tested.
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2. Methods

2.1. Apparatus and measurements

Measurements were performed in a cylindrical Plexiglas bubble
column with internal diameter of 0.142 m. The distributor was a
ceramic porous plate with 0.09 m of diameter and an approximate
porosity of 38% (vol.). It ensures the three regimes: homogeneous,
transition and heterogeneous. Compressed filtered air was the gas
phase and water the liquid phase (T¼20 1C). Spent grains, almost
flat particles, with equivalent diameter dEQo2.1 mm and density
r¼1037 kgWET BASIS/m3 were the solid phase. The size distribution
of the particles was determined by sieving into fractions using a
portable sieve shaker (Model Analysette, Fritsch, Germany). With
the obtained data, the equivalent diameter was calculated. The
solids are completely wettable with a water adsortion index (WAI)
of 8,12 gWET/gDRY. The following five solid loadings were used: 0
(water), 4%, 8%, 12%, and 20% (wt.WET BASIS/vol.). The clear liquid
height was Hl0¼1.09 m for all experiments (no liquid throughput).
The dependence of the voidage (e) on the gas flow rate (q) was
measured three times and then averaged. The gas superficial
velocity varied in the range q¼0–0.027 m/s (0–0.43 dm3/s), cover-
ing the homogeneous and part of the transition regime. The gas flow
was measured with a Mass Flow Controler (Alicat Scientific, Inc.,
Tucson, AZ, USA) and variations in gas superficial velocity close to
the transition point were within 2 mm/s (0.033 dm3/s).

2.2. Gas hold-up

Gas hold-up was measured using two techniques: (1) bed
expansion and (2) water column based differential pressure.

2.2.1. Bed expansion

In each experimental run, the gas flow was set, the bed height
was recorded after the time (never less than five minutes)
required to reach a steady value was achieved, and then the gas
flow was increased. Each of the eight runs was repeated three
times and the voidage values were averaged. Gas hold-up was
determined according to (Deckwer, 1992; Zahradnik et al., 1997;
Gandhi et al., 1999; Ruzicka et al., 2001a,b, 2003, 2008; Mena
et al., 2005a; Yang et al., 2010):

eg ¼ ðHgþ l�HlÞ=Hgþ l ð1Þ

2.2.2. Water columns differential pressure

The gas hold-up was determined by measuring static pressure
difference between two heights in the column using water
columns. Our interest in using this technique is related with
future tests to be performed in a three-phase airlift. Moreover, it
is reported that pressure difference per se is not enough when
three phase systems are applied (Boyer et al., 2002) and an
additional technique should be applied to determine solids
hold-up. Differential pressure was measured by the difference in
water columns height. For each set of experiments, pressure
differences (H1–H2) were measured at least three times during
5 min (after a gassing time of no less than 5 min). The mean value
was then used to determine gas hold-up using the following
equation (Freitas and Teixeira, 1998a,b):

eg ¼ ðH1�H2Þ=d�ðrl�rsÞes=rl ð2Þ

2.3. Solids hold-up

Solids hold-up and distribution were determined using the
method developed by Freitas et al. (1997). Briefly, a sampler
adapted to retain spent grains with 60 mL of volume is used
for collecting solids in the bubble column. This sampler consists
of a cylinder with two valves in each end. The sampler is
introduced into the BC between the two points where the
pressure is measured, with the valves open in the flow direction
and then these are closed simultaneously for sample collection. In
order to achieve higher accuracy the retained solids were then
filtrated and dried at 105 1C for 12 h before weighting. Then solids
volume was determined and solids hold-up calculated accord-
ingly (Freitas et al., 1997):

esi ¼ Vs=Vspl ð3Þ

2.4. Measurements errors

The relative error for bed expansion method is considered to
be less than 5%. On the homogeneous and in the beginning of
transition regime the layer is uniform and the interface is easy to
locate with a 1 mm precision (precision of scale—millimeter
paper). This resolution was considered adequate due to the height
of the column used (1090 mm). However when transition starts
to occur and waves appear and the determination of the height of
the bubble column is difficult. To minimize this effect, the
obtained value corresponds to the mean of the values measured
during several oscillations. At the end of transition and in the
beginning of heterogeneous regime oscillations were at max-
imum 30 mm around the mean value. Having in mind the
increase in height column for these superficial gas velocities, it
was possible to have an experimental error not exceeding 5%.

The resolution obtained for the water column method was the
same as for bed expansion, for the highest flow rates. However,
for the low gas flow rates, the error is larger (up to 10%),
considering the measured differences of the height in water
columns (10–120 mm). The measurement error associated with
solids hold-up determination is considered to be not more than
10% (Freitas and Teixeira, 1998b).

Overall, the combined error for the determination of gas hold-
up using is at its maximum 15%.

2.5. Evaluation of critical gas hold-up and critical gas velocity

Considering the primary data obtained (e vs q), the critical
point could be determined as the inflexion point of the data
graph. However, its direct determination in the graph is difficult
and inaccurate. Consequently, the data were re-plotted according
to the drift-flux model and the inflexion point determined from
the deviation of the data from the theoretical line of the uniform
regime. This is a standard procedure. The theoretical line j¼ j(eg)
is defined as:

jt ¼ egð1�egÞu ð4Þ

where u is the hindered bubble speed. Bubble speed (u) is the
mean slip speed in case of no liquid flux through the column. The
concept of the Darwinian drift was used to determine the bubble
mean slip speed (Ruzicka et al., 2001a). Thus:

utheo ¼ u0ð1�aeg=ð1�egÞÞ ð5Þ

where u0 is the bubble terminal speed, and a is the bubble drift
coefficient.

For each data line eg EXP(q), they are obtained by linearization
of Eq. (5), using the basic relation:

eg EXP ¼ qexp=uexp ð6Þ

The experimental drift-flux is obtained from Eq. (4) together
with Eq. (6),

jexp ¼ ð1�egÞq ð7Þ
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The transition begins where Eq. (7) separates from Eq. (4): it is
the critical point [qC,eC], the instability threshold. The values of qC

and eC are the quantitative measures of the homogeneous regime
stability. The evaluation procedure is an iterative process. The
homogeneous data range is initially assessed, then is used for the
linearization, till the correlation coefficient of the linearization is
sufficiently close to unity.

The regime transition was also found using the slip-speed
concept, where, at the critical point, the slip speed data uEXP,
departs from the uTHEO obtained from the model line.

The first criteria of the drift flux model is based on the
coupling of phases, i e., on the mass conservation of the phases.
The slip speed concept is based on the fact that, in HoR, the
bubble speed decreases with the increase of hindrance caused by
the increase of bubble concentration.

The obtained results are the average of these two methods.
Since these two methods are equivalent, only different co-ordi-
nates are used, the results should be similar. This was the test of
correctness (Mena et al., 2005a; Ruzicka et al., 2008a).

In the literature, the stability criteria normally used on GLS
systems are scarce and several principles have been applied. Initially,
they have been based on correlations obtained from experimental
data but they lack in terms of universal application due to their
specificity (Krishna, 1991; Wilkinson et al., 1992; Reilly et al., 1994).
Theoretical criteria based on theoretical concepts are more accurate
and may be applied a priori (Ruzicka and Thomas, 2003; Shnip et al.,
1992) or a posteriori as the slip speed concept and the drift-flux
model (used in this work).
3. Results and discussion

3.1. Bed expansion vs water columns differential pressure for gas

hold-up determination

For the system considered, the determination of gas hold-up
using both techniques showed similar results. The measuring of
gas hold-up by water columns combined with the modified
method for solid hold-up determination used by Freitas et al.
(1997) appears to be a suitable method to determine gas hold-up
in three-phase systems where spent grains are the solid phase. In
fact and considering the solid distribution in the entire BC the
difference between the experimental and theoretical values of
solid load determined by this technique was 2.97%; 3.32%; 3.98%
and 6.94% for 4%; 8%; 12%; 20% (wt.WET BASIS/vol.), respectively.
The obtained errors are in the same range of the ones obtained by
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other authors (Freitas et al., 1997; Freitas and Teixeira, 1998a,b).
Having in mind that these values have been calculated with the
experimental values for gas hold-up, it is clear that the applied
technique may be applied with a good accuracy.

Moreover, the results presented in Fig. 1show the experimen-
tal errors for the two techniques confirm this conclusion.
In Fig. 1A, the deviations for all range of solids loads used are
shown while in Fig. 1B only the first three solids loads are
considered (4%, 8% and 12% (wt.WET BASIS/vol.)).

The maximum and mean deviations between the results
obtained with the two different techniques are, respectively, 26%
and 7%, with most of the measured values with errors in the range
78% an acceptable result having in mind the applied techniques.
Nevertheless the highest errors occur at the lowest gas flow rates
and high solids content. In fact, for the maximum solids content
and due to the non-homogeneity of solids in the column, especially
at low gas flows, the combined method for solids and gas hold-up
determination is not suitable. It seems that, for these type of solids,
only solids load values below 12% (wt.WET BASIS/vol.) are accurate
enough to perform a correct evaluation of the data in terms
of regime transition. Thus, for 20% (wt.WET BASIS/vol.) solids load
the results were not used for the determination of regime transi-
tion. Anyway no regime transition was observed at this solids load.
For higher gas flow rates the agreement between the data was
always below 4%. Therefore both techniques were considered for
the determination of critical values (eC and qC) for regime
transition.
3.2. Assessment of primary data

In Fig. 2 are plotted the curve e(q) obtained for each concen-
tration of solids (0–20% (wt.WET BASIS/vol.)).

Fig. 2 shows that, in this column, regime transition occur at lower
gas flows than the ones obtained by other authors in BC (Ruzicka
et al., 2001a,b; Mena et al., 2005a). However the values of gas hold-
up are in the same range. There are two possible explanations for
this: bubble column size and the effect of the distributor.

It is reported that column size (diameter and height) influences
the global hold-up. Also, sparger influence over the column axis can
go up to four times the column diameter (Gandhi et al., 1999; Lu
et al., 1995).For the same gas flow, Ruzicka et al. (2001b) observed
that gas hold-up values are usually lower when BC diameter
increases and/or column height increases. Thus the critical values
(eC vs qC) for regime transition also diminish (Ruzicka et al., 2001b).
Generally gas spargers in BC have a diameter that occupies all cross-
section of the BC. As in our case the sparger corresponds to 2/3 of
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the bubble diameter, this characteristic is responsible for a higher
height until gas flow stabilizes and for local liquid circulation near
the sparger. This means that the height of the column necessary for
the gas to achieve a flat profile is higher as there is a region at the
bottom of the column where liquid circulation occurs (less visible at
low flows), which difficults a rapid stabilization of the gas profiles as
typically occurs in HoR. The liquid circulation is a consequence
of the higher amount of bubbles in the center of the column
immediately above the distributor, resulting in ‘‘local’’ lower hold-
up values. The influence of sparger geometry on gas hold-up values
has also been studied by Vijayan et al. (2007). As the gas hold-up
values obtained in this work are in the same range values as those
reported by these authors when similar HD/D and AS/AC ratios are
considered, our experimental values may be considered to be within
the expected range (Vijayan et al., 2007).

The selection of this distributor is related with our interest on the
study of the three-phase hydrodynamics in an internal airlift reactor,
as in these systems the distributor cross section is of the same order
of magnitude of the airlift riser cross section and always smaller than
the total column cross section. The applied distributor allowed to
reach the objective of solids fluidization at low gas flow rates (except
for the maximum solids concentration).

Even if this system would behave differently from those
reported in literature, which is not the case, it would still possible
to conclude on the effect of the solid phase on flow regime
transition, as experiences were done for all cases in the same BC.
In addition, the presence of both regime flow (HoR and HeR) in
air–water systems was clearly identified.

From Fig. 2, it is also possible to observe, at low gas flows, that
the presence of the solid phase causes an increase in gas hold-up.
This may be attributed to a stabilization effect of the bubbles at
low gas flows, being the opposite effect observed as gas flow is
increased. This ‘‘stabilization’’ effect causes an increase in gas
residence time and consequently hold-up is higher. This is also
related with a decrease of the height that the gas needs to achieve
the flat profile, typical for HoR.

The effects associated with the use of a sparger not occupying
the entire cross section of the column may also contribute to the
observed increase in gas hold-up. As due to their sedimentation
properties an increase in solids concentration near the distributor
occurs (specially at low gas flow and high solids load), a higher
interaction between bubbles and particles occurs. There are also
the steric effect (presence of solids) of spent grains as well as its
surface properties that can have an important effect on the
interactions between solids and bubbles. This effect reduces
bubble rise velocity leading to a slight increase on hold-up (Lu
et al., 1995; Mena et al., 2005a). In fact, when solids were present,
a larger amount of smaller bubbles near the wall was observed in
comparison with air–water systems.
Spent grains wettability is another factor that may contribute
to the obtained results. Also, it has been reported that the
influence of the physical properties of solids is higher when solids
have a small size compared with bubble size, as is the case (Mena
et al., 2005a). A higher drag force on the bubble surface (gas–
liquid interface) is created by the presence of small size solids
with a consequent reduction on bubble rise velocity and gas hold-
up increase (Mena et al., 2005a). The combination of the above
mentioned effects contributes for the observed increase in gas
hold-up at lower gas flows when solids are present. This is in
agreement with Jamialahmadi and Muller-Steinhagen (1991) that
concluded that wettable particles increased hold-up by suppres-
sing coalescence while non-wettable particles had the opposite
effect. It may also be noted that the resistance promoted by solids
sedimentation characteristics was evident when maximum solid
concentration was tested (20% (wt.WET BASIS/vol.)), as no fluidiza-
tion of solid particles was observed at the lowest gas flow rates.

In Fig. 3A, it is possible to verify that when solids are present,
at low gas flows, global gas hold-up tends to increase with a
maximum around 8% (vol./vol.) of solids. In HoR, this result is a
consequence of particle–bubble interactions that result in bubble
break-up and dispersion, reduced bubble rise velocity and con-
sequent increase in hold-up.

On the other hand, Fig. 3B shows that in HeR at high flows the
opposite effect is present revealing a dual effect of the particles.
At these values of gas flow (HeR) liquid circulation is higher and
more pronounced, the effect of particle–bubble interaction being
lower. Bubble–bubble interactions increased and coalescence
occurred. At this stage, coalescence does not seem to be signifi-
cantly affected by the presence of the solid phase. However, with
the obtained data, it is impossible to identify/evaluate the
importance of the physical mechanisms related with solid proper-
ties (wettability, size, and density). At high gas flows, larger
bubbles were visually observed revealing coalescence phenomena
at these stages. The absence of 20% (wt.WET BASIS/vol.) solids data
is related with the fact that HoR was not achieved under this
solids load condition (see Fig. 4).
3.3. Assessment of secondary data

In Fig. 4 are plotted the Drift-flux results for the data obtained
by the bed expansion method. This method allows for an accurate
determination of the critical point (point at which HoR stability
disappears). The critical point, which corresponds to the inflexion
points on Fig. 2, is now clearly identified on Fig. 4 (open symbols)
for the different experimental conditions. As previously said, this
point corresponds to the beginning of separation of the plots of
the experimental and calculated data.
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From the results plotted in Fig. 4, a decrease of critical gas
hold-up and critical gas flow with solids load is clearly observed.
Critical gas hold-up decrease presents a linear behavior, while
critical gas flow has an exponential trend. This suggests that
above 12% (wt.WET BASIS/vol.) of spent grains loading the critical
gas flow is similar to the minimum gas fluidization flow for this
system. In fact, as said before, when the highest solids load was
applied, the value for minimum fluidization gas velocity was only
20% inferior to the critical gas flow for 12% (wt.WET BASIS/vol.)
loading. This indicates that, under the tested solids load, 12%
(wt.WET BASIS/vol.) solids load was the minimum concentration
where HoR could be established and only for a small range of gas
velocities (0.2 cm/soqGo0.5 cm/s). Concerning the critical gas
hold-up, the following correlation can be found to describe its
dependence on solids load (Eq. 8):

ec ¼ 0:104�0:558ds R2 ¼ 0:94; Rxy ¼ 0:97 ð8Þ

This equation indicates the way spent grains influence regime
transition on the studied bubble column. Eq. (8) intercepts y-axis
at a value lower than the ones found in the literature (Mena et al.,
2005a), this being related with the above addressed specific
issues of this BC. When comparing the slope of Eq. 8 with the
one reported by Mena et al. (2005a) for alginate beads as the solid
phase, the obtained value with spent grains is two times larger.
This allows to conclude that spent grains have a more pronounced
effect on regime transition than alginate beads. This is not
unexpected as the properties of both solids are different, mainly
size, shape and wettability.

Presented results indicate that a reduction in HoR regime
stability is observed when solids are present (Figs. 4 and 5). It
was visually verified that when gas flow was increased big
bubbles start to appear, especially in the column center, due to
coalescence. In fact, at maximum solids load where no HoR was
established, bubble coalescence was observed even at the lowest
flows. At the highest flow, slug regime was present, a typical
situation for BCs with diameters inferior to 20 cm (Deckwer,
1992). This result contradicts the one obtained by Jamialahmadi
and Muller-Steinhagen (1991) that observed that wettable parti-
cles increase gas hold-up by suppressing coalescence. In fact this
occurs at low gas flows (Fig. 3A), but not at higher ones (Fig. 3B).
As above said, this dual effect of spent grains is attributed to the
BC design. The increase in gas hold-up by the action of spent
grains means that more bubbles are present and interactions
between bubbles are higher. This increased rate of collisions
promotes coalescence. With the gas hold-up increase in the HoR
by the presence of the solid phase, non-uniformities are formed in
the gas phase and the stability of HoR is reduced. Thus the HeR is
achieved earlier and the critical values (eC vs qC) are lower when
solids are present (Fig. 5).

It is also possible to observe that either bed expansion and
water columns techniques show similar results (Fig. 5). This
indicates/confirms that, for solids loads inferior to 12% (wt.WET

BASIS/vol.), the combination of solid hold-up method and water
columns appear to be a suitable technique to evaluate gas hold-up
in different reactors configurations.

It was suggested that solids effects can be similar to what
occurs in a low viscosity liquid on bubble columns (Mena et al.,
2005a). In our case, critical values (eC vs qC) decrease with solids
load, which is in agreement with published results on viscosity
effect on flow regime transition (Yang et al., 2010). Ruzicka et al.
(2003) reported a dual effect of liquid viscosity when low
viscosity (o2.1 mPa s) and high viscosity liquids are present.
Meanwhile, recent studies published by Yang et al. (2010)
identified that at low viscosity liquids there is a fast decrease of
critical values (gas hold-up and gas flow) followed by a small
decrease. The critical viscosity where this change occurs was
around 3 mPa s. The behavior of critical gas flow vs viscosity was
(Yang et al., 2010):

qC1 ¼�0:019lnmlþ0:025 and qC2

¼�0:018lnmlþ0:056 for mlo2:8mPa s ð9Þ

These authors considered that the first value for the critical gas
flow – qC1 – corresponds to the end of the homogeneous regime
when the first big bubbles are formed and the second one – qC2 –
is obtained when full heterogeneous regime is established
(JH Yang et al., 2010). Accordingly, they suggest that the values
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obtained for critical values of transition correspond to the value
when homogeneous regimes loses stability (qC1).

Oliver et al. (1961) cited by Lu et al. (1995) suggested the
determination of a pseudo-homogeneous viscosity for a solid–
liquid mixture according to the following equation:

ms�l ¼ ml½f ðdsÞ�
�1, ð10Þ

where

f ðdsÞ ¼ ð1�0:75d1=3
s Þð1�2:15dsÞ=ð1�dsÞ

2: ð11Þ

The application of this equation to our experimental data was
based on the fact that the solid phase used – alginate beads –
by Lu et al. (1995) had similar properties – density and size –to
the solids used in this work. In our case, the following empirical
curve relating critical gas flow with the pseudo-homogeneous
viscosity (1 mPa somS�Lo1.7 mPa s) was obtained:

qC1 ¼�0:032lnmlþ0:02 ðR2 ¼ 0:98Þ: ð12Þ

This relation was obtained for solids load 0%, 4%, 8% and 12%
(wt.WET BASIS/vol.) as only in these situations transition regime
was observed. The obtained values are in the same range as those
of Eq. (9) (JH Yang et al., 2010).

These results demonstrate that the influence of spent grains
load in the critical value corresponding to the end of HoR (qC)
follows the same pattern of low viscosity liquids. It seems that,
depending on the column size (diameter and height), type of
distributor and type of solids, the dual effect of solids and
viscosity suggested by some authors (Ruzicka et al., 2003; Mena
et al., 2005a) may or may not occur (Yang et al., 2010) as in this
case. It is important to notice that Eq. (12) is limited to this
particular system (air–water–spent grains), being similar evalua-
tions possible and desirable for other gas–liquid–solid systems in
order to have a better understanding of its hydrodynamics.

Although the presented information aims at contributing to
the effect of a solid phase on the hydrodynamics of g–l–s systems,
further work is required to clarify how solids influence regime
transition and the magnitude of this influence. Obtained results
allowed to confirm that that solid influence is related with the
low viscosity of the ‘‘pseudo-homogeneous’’ liquid phase formed
and that other parameters such as steric effect, wettability, BC
design and distributor geometry play also an important role in
flow regime transition.
4. Conclusion

The effect of spent grains particles on homogeneous regime
stability and regime transition in a three-phase bubble column was
investigated experimentally. The stability was expressed by the
critical values of gas holdup and gas flow rate. The experiments
showed that the solids promoted stabilization on HoR for low gas
flow rate. Moreover, it was demonstrated that spent grains decrease
the critical values where the HoR prevails. This influence was
demonstrated to have similar effect to the one found for low
viscosity liquids on regime transition. In addition, it was possible
to conclude on the importance of the steric effect of solids as well as
their specific properties (wettability) on regime transition.

Despite this, the mechanisms by which solids affect the regime
transition is far from being understood. Furthermore the influence
of column size and type of solids makes difficult a real assessment
when all results available in literature are compared.

Nomenclature

H column height, bed expansion, (mm)
H1 column height, water column nr 1, (mm)
H2 column height water column nr 2, (mm)
d distance between water columns points (mm)
Vs volume of solids collected (mL)
Vslp volume of sample (mL)
j drift flux (m3/m2 s)
u mean bubble rise speed, mean velocity of gas in column,

(m/s)
u0 Terminal bubble speed (m/s)
a coefficient of the Darwinian drift (dimensionless)
q gas flow rate (m/s)
AS/AC ratio between area of sparger and area of cross section

(dimensionless)

Greek symbols

e hold-up (dimensionless)
r density (kg/m3)
d solid load, %, (vol./vol.)
m viscosity (mPa s)

Sub/superscript

g gas
l liquid
s solid
theo theorical
exp experimental
C critical
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