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Abstract: Detailed kinetic models at the network reaction level are usually constructed using enzymatic mechanistic rate
equations and the associated kinetic parameters. However, during the cellular life cycle thousands of different reactions occur,
which makes it very difficult to build a detailed large-scale ldnetic model. In this work, we provide a critical overview of
specific limitations found during the reconstruction of the central carbon metabolism dynamic model from E. coli (based on
kinetic data available). In addition, we provide clues that will hopefully allow the systems biology community to more
accurately construct metabolic dynamic models in the future. The difficulties faced during the construction of dynamic
models are due not only to the lack of kinetic information but also to the fact that some data are still not curated. We hope
that in the future, with the standardization of the in vitro enzyme protocols the approximation of in vitro conditions to the in
vivo ones, it will be possible to integrate the available kinetic data into a complete large scale model. We also expect that
collaborative projects between modellers and biologists will provide valuable kinetic data and permit the exchange of
important information to solve most of these issues.
1 Background

During the last years, the tremendous increase in the
availability of biological data because of novel high-
throughput analytical techniques, such as the ones used in
metabolomics, proteomics and transcriptomics, allowed an
unprecedented insight on intracellular dynamics [1, 2].
However, more detailed mathematical models are necessary
to integrate these experimental data in the interest of
understanding metabolism under a quantitative aspect [3].

A variety of macroscopic mathematical models can be
found in the literature for the growth of microorganisms
with successful industrial applications [4–6]. However,
when a more detailed investigation of the complexity of
metabolic and/or signalling pathways is desired, models that
incorporate intracellular phenomena are necessary. The
most suitable large-scale cell models are stoichiometric
models and models that account for dynamics at the
enzyme level [7–9]. In many cases, a well-constructed
dynamic model is preferable because it provides a basis for
testing hypotheses under different perturbations over time
and other analyses, such as metabolic control analysis [10].

Dynamic modelling of biochemical networks, although not
a recent topic, has evolved substantially in recent times, aided
by the arrival of completely sequenced genomes [11], the
development of technologies to rapidly obtain quantitative
measurements for multiple metabolites [12, 13] and the
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completion of publicly available metabolic databases
[14–20].

Non-linear ordinary differential equations (ODE’s) systems
are the most commonly applied techniques in this context

dCi

dt
=

∑r

j=1

Nijvj − mCi (1)

where Ci stands for the intracellular concentration of
metabolite i, and Nij is the stoichiometric coefficient of
metabolite i in reaction j. The term vj is the rate of reaction j,
which depends non-linearly on the metabolites concentrations
and kinetic parameters, r is the number of reactions in the
network and m is the specific growth rate.

These models require prior knowledge on the network
structure and detailed kinetic rate laws. They also depend
on a large number of enzymatic kinetic parameter values
and a description of the experimental conditions under
which they were determined. However, one of the major
problems of setting up large-scale dynamic mechanistic
models is precisely the lack of kinetic information. In
addition, usually obtained experimental results are not
directly comparable if the assay conditions are not
standardised. Despite recent achievements in enzymatic
high-throughput assays, the kinetic parameters are usually
unknown for a large number of enzymes or species, or are
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available in the literature/databases only as general values
obtained by in vitro experiments by enzymologists [15, 16].
These kinetic parameters should be used with care by
modellers, since enzymologists in general work under
optimal conditions for the enzyme and do not perform the
enzyme characterisation under physiological conditions,
restricting the in silico applicability of these parameters
[21]. Consequently, for the integration of kinetic
information from many different labs under different
conditions, it is that the uniformity of the experimental
procedures should also be representative of the in vivo
conditions.

On the other hand, the developments in modern high-
throughput methods have allowed the generation of in vivo
time series or steady-state data of metabolite concentrations
and metabolic fluxes, and enable us to tackle also parameter
estimation by collective fitting [8, 22, 23]. The clear
advantage of using a reverse approach is that the
information from modern high-throughput techniques is
collected within the same organism and under the same
experimental conditions. Although these high-throughput
data are becoming increasingly available, challenges in
kinetic parameter estimation and model structure
identification remain vast. For example, the difficulty of
extracting precise kinetic parameters from collective fitting
can reduce the extrapolation ability of the dynamic model
[24].

The aim of this work was to provide a critical overview of
specific limitations found during the reconstruction of
dynamic metabolic models. Emphasis is given on providing
clues that will hopefully contribute to the standardisation of
experimental procedures and efforts to bring the systems
biology community and biologists closer. Furthermore,
alternative methods to overcome some of the limitations on
kinetic information are described.

2 Use of in vitro kinetic parameters in
metabolic models

The applicability of parameter values measured in vitro to a
particular in vivo system has been the subject of much
debate in the last years. Wright et al. [25] and Bakker et al.
[26] reported two of the first works that describe in vivo
systems on the basis of in vitro kinetics. In addition, the
dynamic model constructed by Teusink et al. [21] intended
to test whether in vivo systems could be described on the
basis of the kinetic parameters determined from isolated
enzymes. Besides illustrating some of the difficulties
involved in the construction of large-scale models based on
in vitro kinetics data, these authors also found that in many
cases there was sufficient consistency of metabolite
concentrations and kinetic parameters. More recently, Ishii
et al. [27] estimated experimentally unknown parameter
values of three isolated enzymes (Glk, Glucokinase; Pgi,
phosphoglucoisomerase and PfkA, phosphofructokinase)
from Escherichia coli under the same experimental
conditions. These kinetic parameters were then incorporated
in a model and the simulations compared with time course
metabolite concentrations. The successful application of this
approach indicates that when automated enzyme assays and
accurate in vitro kinetic parameters are provided, a living
cell model can be built.

Ideally, all metabolite and enzyme data should come from
the same organism, tissue, extract and also from the same
experimental conditions (e.g. pH, temperature, redox
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balance, ionic strength etc.). Unfortunately, these data are
often measured under non-standard conditions and
furthermore published data often lack some of this crucial
information for the set up of dynamic models. In other
words, an environment that fails to mimic an in vivo system
to determine the kinetic parameters may contribute to
flawed model predictions. In addition, often all the
necessary kinetic information for model construction cannot
be taken from a single data source. Therefore their use is
limited and it is difficult to set up large-scale kinetic
dynamic models.

Thus, the applicability of the dynamic modelling has been
limited to biochemical networks of limited size. An example
of a comparison between dynamic simulation results from a
small biochemical network model and experimental time
series data for E. coli is shown in Fig. 1. The model was
constructed based only on kinetic information from the
literature and public web databases, obtained in conditions
similar to the experimental data. The simulation results,
when compared with the measured time series data for
metabolite concentrations after addition of glucose, show a
reasonable agreement (Fig. 1).

In the course of the reconstruction of the dynamic model
for the central carbon metabolism of E. coli we have
encountered several problems with the available enzyme
kinetic data. These problems, together with some
suggestions on how to integrate useful information from
available databases, will be described in the next section.

3 Limitations of published kinetic data –
some considerations to set up dynamic models

One of the steps of a typical dynamic model building cycle is
the collection of various kinetic/thermodynamic parameter
values with the respective kinetic rate laws from databases
or the literature and/or their estimation from time course
experimental data. However, while pathways information has
been compiled in several publicly available databases and
biochemistry textbooks [17, 30], there are currently few
databases collecting kinetic data (see Table 1). In addition, the

Fig. 1 Comparison between simulated (lines) and experimental data
(symbols) for Glucose (B); fructose-6-phosphate, F6P (V); fructose
1,6-diphosphate, FDP (×) and glucose-6-phosphate, G6P (O)

Lines represent the simulation using rate laws for each reaction based on Ishii
et al. [27]. Kinetic parameters (Vmax,GLK ¼ 158 U/mg,
KGLK,glucose ¼ 0.15 mM, KGLK,atp ¼ 0.5 mM; Vmax,PGI ¼ 122.5 U/mg,
KPGI,eq ¼ 0.31; KPGI,g6p ¼ 0.28 mM, KPGI,f6p ¼ 0.147 mM;
Vmax,PFK ¼ 190 U/mg, KPFK,f6p ¼ 0.45 mM, KPFK,atp ¼ 0.018 mM,
n ¼ 2.2) were taken from Brenda database [15] and the literature [28, 29]
and were obtained in conditions similar to the experimental data
(pH ¼ 7.2). The experimental data set is from Ishii et al. [27]
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available kinetic data have several limitations and
inconsistencies for constructing dynamic models of metabolism:

1. Large networks are accessible in databases such as
MetaCyc [33] and KEGG [30], but the reaction mechanism
and reliable rate equations for most reactions remain
unknown.
2. Some databases such as EcoCyc [17] and KEGG [30] have
inconsistencies on the reversibility of the reactions. For
example, on the pathways maps the reaction mechanism for
pyruvate oxidase (EC 1.2.2.2) is indicated as reversible in
KEGG and as irreversible on EcoCyc. This is because most
times reversibility is species dependent as, for the same
enzyme, it changes with intracellular conditions. Therefore
organism-specific databases usually have more accurate
information that can differ from what can be found in
multi-organism databases.
3. Kinetic parameters are usually available in repositories
like BRENDA [15] and KMedDB [34], which however
lack the kinetic expressions describing the associated rate
law. This is owing to computational issues, as it is not
straightforward to include mathematical formulae in a semi-
automatic way in databases. In these cases, parameter
values are not really helpful to integrate in the dynamic
models. For example, in some works the kinetic law type is
available but the respective mathematical equation is not
[35, 36].
4. In those data sources, for reversible reactions, it is frequent
to find only the parameters for the forward and rarely for the
reverse reaction or for both [37]. A reason for this is that the
reverse reaction is less favourable thermodynamically and
therefore difficult to operate assays in those directions.
5. Experimental conditions under which the kinetic
parameters had been determined and the methodology of
the assay are rarely available. On the other hand, even in
the cases where some of this information is available, it
refers generally only to temperature and pH. Therefore data
standardisation is necessary to reach comparability of
enzyme kinetic data and to ensure data quality. A good
starting point for the experimentalists to achieve
standardisation of the kinetic data in the future is to follow
the recent recommendations and guidelines from the
STRENDA (standard for reporting enzymology data)
commission [38].
6. Equilibrium constants (Keq) dependent on temperature and
pH are needed to calculate the steady-state concentrations of
the metabolites not experimentally measured, assuming near-
equilibrium for the reversible enzyme reactions [39].
However, these important constants are usually not reported
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in databases and, when available, have often been extracted
from conditions different from the physiological ones [40].
This fact can introduce discrepancies between the
determined concentration and the real values. Therefore
experimentally measured values are required or the recently
available database for enzyme catalysed reactions [41] can
help to obtain Keq values as close as possible to the
physiological conditions.
7. The maximum velocity (vmax) depends on the amount of
enzyme present and is often measured in test tubes.
However, in dynamic modelling we are interested in the in
vivo data. Furthermore, the values usually reported in the
literature are of specific activities and come as
mmol min21 mg21

protein. Since information on the conditions
in which the assay was performed is scarce, it is often
impossible to convert these units to maximum velocities: if
the reported specific activity has been obtained using a
‘pure extract’, conversion to mmol min21 L21 would be
performed by multiplying the specific activities by the
values of enzyme concentration (usually in mM) in the
living cell [42] and the molecular weight for the particular
enzyme obtained from available sources such as GenoBase
[43]; otherwise, if the specific activity has been obtained
from a ‘crude extract’ fraction, the average amount of
protein in the cell (e.g. 235 mg mL21

cell volume for E. coli) [44]
can be used.
8. Sometimes values regarding an inhibition constant are
given in literature or databases, but information on the type
of inhibition they refer to (competitive, non-competitive,
uncompetitive etc.) is not available. Again, this might be
related with computational difficulties in representing the
kinetic laws.
9. The quality of the determined kinetic parameters,
expressed, for example, in confidence intervals and standard
errors is seldom available, although this information is
important for modelling [45]. This is because of the fact
that it is still not a common practice to publish kinetic
parameters with confidence intervals.

Although great effort has been carried out by the
STRENDA commission in the last few years for the
standardisation of the enzyme kinetic data for use in kinetic
models, examples can easily be found in the literature
where some of these important recommendations are not
followed. For example, on the recent publication on in vivo
kinetic parameter estimation of E. coli [27] there are
missing data, such as on the purity of the enzymes and the
accuracy of the parameters (e.g. standard deviation and
confidence intervals). More important, however, and crucial
Table 1 Summary of some data sources available online with kinetic information useful for the construction of kinetic models of

metabolic pathways

Database Characteristics Reference

BRENDA contains kinetic parameters for several organisms with comments on the experimental conditions

and enzyme kinetics

[15]

SABIO-RK kinetic parameters for various organisms. Associated kinetic equations describing the reaction

rates are also available. Includes experimental conditions from the original paper and reaction

buffer. No information is given about the assay

[16]

SigPath collection of parameters and kinetic equations for some organisms, but not for E. coli [31]

BioNumbers offers kinetic and biological data for several organisms [32]

CCDB collection of detailed enzymatic data about E. coli. Mathematical equations and experimental

conditions are not incorporated

[14]
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for the success of dynamic modelling, is the definition of
standard assays close to the intracellular conditions.
Successful results were obtained in [46], where the authors
provide and test a standard ‘in vivo-like’ assay medium for
determining kinetic parameters in yeast systems biology
projects. This appears a promising way to overcome some
of the obstacles and therefore may serve as a first step for
the standardisation of enzymes data.

Furthermore, even when available sources comply with
STRENDA requirements, some extensions would make
them more useful for modellers, such as the integration of
transcriptome, proteome and/or thermodynamics data [47].
These data can be useful when extrapolating the value of
the Vmax parameter. For example, if we know the gene
expression or protein level for two conditions and the Vmax

for one of them and assuming a proportional change for the
two (Vmax ¼ kcat[E]), the unknown V′

max value can be
calculated (V′

max/Vmax ¼ [E]′/[E]) [48].
Also, it is necessary to increase the adoption of the

guidelines suggested by the STRENDA commission in the
scientific community, including in biochemical journals. To
facilitate that, it would be important to develop a repository
for the electronic submission of standardised kinetic data
and experimental raw data prior to publication, to ensure
high accessibility, data quality and data exchange.

We have also observed that the publicly available kinetic
databases miss some information important to the modellers
that, nevertheless, had been described in the original papers.
For example, the most popular database of functional and
kinetic enzyme data, BRENDA [15], has limited
information about the kinetic parameters for the pyruvate
dehydrogenase enzyme (EC 1.2.4.1) (PDH) from E. coli
(see Table 2), although the original source contains
important details.

Owing to the fact that the collection of kinetic data from the
literature is usually carried out manually, some efforts have
been recently reported on the application of literature
mining approaches for kinetic data extraction [50–52]. The
extraction of kinetic parameters using these literature
mining algorithms that can be fed with information from
standards [53] holds promise in terms of literature coverage
and data accuracy. However, this is still a technologically
challenging task, most available tools are only semi-
automatic and a posterior manual curation by consultation
of the literature is required.

Finally, even improving existing resources, available
kinetic data are not sufficient for the construction of
dynamic models for most organisms and pathways, simply
because the involved enzymes have not yet been
characterised. There is therefore a need for high-throughput
enzyme characterisations to overcome these limitations. One
160
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approach in this direction was proposed by Gabdoulline
et al. [54] where the authors apply Brownian dynamic
simulation, based on protein three-dimensional structures, to
estimate the undetermined kinetic parameters. An
alternative method, the PIPSA (protein interaction property
similarity analysis) methodology [55], was introduced in
[56] to estimate parameters based on protein structural
information. This approach relates variations in kinetic
parameters to difference in the protein structures. Thus,
unknown parameters can be estimated for an organism
where only a parameter is available for another related
organism or obtained under different conditions.

4 Alternative dynamic modelling approaches

There are some solutions proposed in the literature to
overcome the problems of unavailable kinetic information
based on different modelling approaches for large-scale
metabolic networks such as statistical frameworks,
approximate non-mechanistic kinetic formats or hybrid
modelling techniques [57–61]. Such approaches usually
help to reduce the number of the total parameters to be
estimated and allow estimating parameters from the model
structure or other available models.

Dynamic flux balance analysis (dFBA) is a dynamic
formulation that allows variation of external metabolite
concentrations and assumes an internal pseudo steady state
[62, 63]. It performs time-course simulation by solving a
flux balance analysis (FBA) problem [64] at each time step.
One advantage of this method is the scalability to genome
scale networks. However, this gives no insight into
intracellular dynamics and the formulation of the objective
function may not be trivial for transient conditions.

In [61], the authors proposed a hybrid modelling approach
composed of detailed mechanistic rate equations for the key
central carbon metabolism enzymes and approximated
kinetics for all the remaining enzymes. A good performance
of this hybrid modelling approach was demonstrated for
large-scale models. However, one disadvantage is the
arbitrary selection of the set of key enzymes. A hybrid
modelling approach combining approximated lin-log
kinetics and Michaelis–Mentens equations are introduced
in [65]. Another hybrid approach was developed by Yugi
et al. [60]. The proposed method aims at reducing the
number of enzyme kinetic assays necessary to build a
dynamic model, by considering a dynamic and a static part.
At each time-step the rate laws of the dynamic part are used
to calculate its flux distribution. The fluxes at the border
between the static and the dynamic part are used in
a manner similar to metabolic flux analysis (MFA) [66]
to constrain the solution space. As in the previous
Table 2 Kinetic data for PDH enzyme from E. coli as cited in BRENDA and the original reference [49]

Parameter(value) BRENDA (released 02/2008) Original publicationa

Vmax(0.445 U/mg) wild-type enzyme,

2,6-dichlorophenolindophenol

assay, substrate pyruvate

confidence intervals for parameters, description of the

spectrophotometric method to measure enzyme activity,

reaction medium (50 mM KH2PO4 (pH ¼ 7.0), 1 mM MgCl2,

2.0 C3H3NaO3, 2.5 mM NAD+, 0.1–0.2 mM CoA, 0.2 mM

ThDP and 2.6 mM dithiothreitol) temperature ¼ 308C,

turnover number ¼ 28.89 s21

Km,pyr(0.515 mM)b wild-type enzyme

nPDH(1.38)c no data

aInformation not available on BRENDA
bMichaelis–Menten constant for the PDH enzyme
cHill coefficient
IET Syst. Biol., 2011, Vol. 5, Iss. 3, pp. 157–163
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approach, a clear advantage of this method is to take into
account the intracellular dynamics. Also, using an MFA
instead of an FBA-based approach has the advantage of not
requiring an objective function. However, there are some
limitations to be considered for accurate simulations, such
as the need to obtain elasticity coefficients at boundary
reactions between modules and inconsistencies in the static
module caused by the inclusion of irreversible reactions. In
addition, it limits the scalability of the approach, because,
for large-scale networks, the size of the static part would
not allow the application of MFA since this part would be
significantly larger than the dynamic part.

More recently, mass-action stoichiometric simulation
models have been proposed by Jamshidi and Palsson [57,
67] as a way to incorporate kinetic information into
stoichiometric reconstructions, using mass-action kinetics for
all reactions, and where the kinetic parameters are estimated
from equilibrium constants, metabolome and fluxome
measurements. A limitation of these models is that mass-action
kinetics does not reflect the usual non-linearity of enzymatic
reactions. This limitation is overcome by including the
mechanistic substrate/enzyme reactions, with the drawback of a
dramatic increase in the network size by the inclusion of
concentrations of a large number of intermediate reactions.

Alternatively, lin-log models [68] have been used, such as
in [69], where the authors have developed a model of the
central carbon metabolism in hepatoma cells, and where in
vivo time-series data were used for deducing the kinetic
parameters and analysing the distribution of metabolic
control. The lin-log models constitute an extension of
metabolic control analysis, and hence allow analysing the
control in large-scale metabolic networks only near the
steady state [70]. In both approaches, accounting for
intracellular dynamics is a clear advantage.

Smallbone et al. [59, 71] proposed a method for combining
two modelling approaches (approximated lin-log kinetics and
constraint-based modelling), in which the parameters
(elasticities) are given by the negative stoichiometric coefficient
for the respective metabolites and/or derived from available
kinetic models within Biomodels database [72]. The reference
steady-state fluxes are estimated by the FBA approach.
However, using the negative stoichiometric coefficient values
and parameters taken from yeast or other species models are
rough estimations and may result in false predictions. In
addition, the computational cost of integrating ODE’s with
hundreds or thousands of equations may become a limiting step.

On the other hand, a method for ‘bridging the gap’ between
the kinetic and structural modelling is introduced in [73]. This
approach shows that it is possible to acquire detailed
quantitative representation of metabolic networks without
explicitly referring to a set of ODE’s.

The choice of a modelling approach depends on the
available information and the purpose of the kinetic model.
Therefore it is impossible to state a priori which approach is
more accurate in a general sense. Developing computational
approaches for large-scale metabolic networks is hence a
major challenge for the near future.

5 Concluding remarks and future directions

One key challenge in systems biology is to create
computational models for performing in silico experiments.
For that purpose, the integration of kinetic information into
the models from different research laboratories is required.
Therefore there is the need to standardise the experimental
procedures and data requirements for modelling purposes.
IET Syst. Biol., 2011, Vol. 5, Iss. 3, pp. 157–163
doi: 10.1049/iet-syb.2009.0058
In this paper, we have described some limitations and
inconsistencies detected during the reconstruction of the
dynamic metabolic model of E. coli based on the literature
and public databases, such as missing information on the
experimental conditions in which the parameters had been
determined. Furthermore, important information that had
been reported in the original publications is missing in
some kinetic databases. We also propose some suggestions
to overcome several of the limitations found.

We hope that in the future, with the standardisation of the
in vitro enzyme protocols and the approximation of in vitro
conditions to the in vivo ones, it will be possible to
integrate available kinetic data into complete large-scale
models. We also expect that collaborative projects between
modellers and biologists will provide valuable kinetic data
and allow the exchange of important information to solve
most of these issues.

Finally, while a sufficient amount of standard kinetic data
are not available, alternative metabolic modelling
approaches have been used that speed up model
development, like the hybrid dynamic/static method or
approximate kinetics [59, 60].
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